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1 Introduction

Appeared more than one century ago, the classical Lie approach serves as a powerful tool
in investigations of symmetries of partial differential equations. In the last three decades
there appear essential generalizations of this approach. They are the modern version of
the Lie-Bäcklund symmetries [1], the non-Lie approach [2–4], the conditional symmetry
approach [5–7], etc.

I will speak about non-Lie symmetries of equations of mathematical physics. The term
”non-Lie symmetries” has appeared in papers of Fushchych [2], the main ideas and basic
results of the non-Lie approach are outlined in our books [3, 4].

To formulate the general idea of non-Lie symmetries, we consider a linear differential
equation

L
(
x, ∂∂x

)
ψ(x) = 0 (1.1)

where L is a linear differential operator, x = (x1, x2, ..., xm) , ψ = (ψ1, ψ2, ..., ψn) are sets
of independent and dependent variables. In the Lie approach we search for generators of
the invariance group of (1) in the form

Q = ζ(x, ψ)
∂

∂x
+ η(x, ψ)

∂

∂ψ
(2.1)

where ψ and η are functions have to be determined. The procedure of finding these
functions is well known and is outlined, e.g., in Olver’s book [8].

The main idea of the non-Lie approach is to extend the class of symmetry operators
(1.2). It can be done, e.g., by including terms with higher order differentials or even by
considering integro- differential symmetry operators. In this way we find such symmetries
of the equation considered which a priori cannot be found in the classical Lie approach.

In order this idea to be constructive, it is necessary to show a way for exact calculations
of extended Lie symmetries. The algorithms for calculations and exact forms of these
symmetries for the fundamental equations of quantum mechanics are outlined in our books
[2, 3]. I remind that using the non-Lie approach a new eight-parameter symmetry group
for the Maxwell equations was found [2]. The generators of this group belong to the class
of integro-differential operators.

I will discuss non-Lie symmetries for the Schrődinger and Dirac equations. Being rela-
tively simple models, these equations present a straightforward possibility to demonstrate
the main ideas of the non-Lie approach. Moreover, in this way I will present some of our
last results as application of this approach.
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2 Symmetries of the one-dimensional Schrödinger equation

Let us start with the Schrődinger equation

Lψ(t, x) = 0, L = i∂t −H,

H = 1
2

(
−∂2

x + U(x)
)
, ∂t ≡ ∂

∂t , ∂x ≡ ∂
∂x

(2.1)

where the potential U = U(x) is an arbitrary function of the only spatial variable.
The problem of a complete description of Lie symmetries of equation (2.1) was solved

in papers [9,10], where all the potentials U generating nontrivial symmetries have been
found. The general form of these potentials is

U = ao + a1x+ a2x
2 + a3

(x+ a4)2 (2.2)

where a0, ..., a4 are arbitrary parameters.
Group properties of equation (2.1), (2,2) were used to solve it exactly, to establish

connections between equations with different types of potentials, to separate variables,
etc. [11]. Unfortunately, all these applications are valid for a very restricted class of
potentials given in (2.2).

But the class of privileged potentials can be extended if we suppose that (2.1) admits
non-Lie symmetries. Consider higher order symmetry operators which we represent in the
form

Q =
n∑

i=0
(hi · p)i, (hi · p)i = [(hi · p)i−1, p]+, (hi · p)0 = hi (2.3)

where hi are unknown functions of (t, x), [A,B]+ = AB +BA, p = −i ∂∂x .
Operators (2.3) do not include differentials in respect with t which are expressed via

p2 + U on a set of solutions of (2.1).

Definition. Q is a symmetry of (2.1) if it commutes with L:

[Q,L] = 0 (2.4)

Substituting (2.3) into (2.4) we come to the following system of the determining equa-
tions

∂xhn = 0, ∂xhn−1 + 2∂thn = 0,
∂xhn−m + 2∂thn−m+1−

−
[m−2

2 ]∑
k=0

(−1)k 2(n−m+ 2 + 2k)!
(2k + 1)!(n−m+ 1)!hn−m+2k+2∂

2k+1
x U = 0,

∂th0 +
[n−1

2 ]∑
p=0

(−1)p+1h2p+1∂
2p+1
x U = 0

(2.5)

where m = 2, 3, ..., n, [y] is the entire part of y.
The system (2.5) describes coefficients of an n-order symmetry operator for arbitrary

n. Moreover, the compatibility condition for this system is the equation for potentials
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admitting these symmetries. For n = 2 the general solution of (2.5) for U reduces to the
form (2.2) and the corresponding symmetries reduce to the usual Lie symmetries if we
take into account (2.1).

Consider the case n = 3 (the simplest non-Lie symmetry). The system (2.5) reduces
to the form

h′3 = 0, h′2 + 2ḣ3 = 0,
2ḣ2 + h′1 − 6h3U

′ = 0,
2ḣ1 + h′0 − 4h2U

′ = 0,
ḣ0 − h1U

′ + h3U
′′′ = 0

(2.6)

where the dot and prime denote derivations in respect with t and x.
The compatibility condition for (2.6) can be present in one of the following forms

U ′′ − 3U2 − 4ω0U = 4ω1, (2.7a)

U ′′ − 3U2 = 8ω2x, (2.7b)

(U ′′ − 3U2)′ − 2ω3(xU ′ + 2U) = 0, (2.7c)

ϕ′′′ − 3(ϕ′)2 − 4ω4(x2ϕ)′ = 1
3ω

2
4x

4 + ω5, (2.7d)

U ′′′ = 0 or 2U + (x+ ω6)U ′ = 0 (2.7e)

where ϕ and U are connected by the relation U = ϕ′ and ω1, ..., ω6 are arbitrary constants.
Formula (2.7a) presents the Weierstrass equation whose solutions are expressed via

elliptic integrals. The first integral of (2.7a) has the form

1
2(U ′)2 − U3 − 2ω0U

2 − 4ω1U = C (2.8)

and a particular solution of (2.8) is

U = ν2(2 tanh2(νx)− 1), ω0 = −1
2ν

2, ω1 = 1
4ν

4, c = ν6. (2.9)

Formula (2.7b) defines the first Painlevé transcendent. Equation (2.8c) reduces to the
second Painlevé transcendent

W ′′ = 1
18W

3 + 1
3yW +K (2.9)

where

U = −
3

√
ω2

3
6 V x = − 3

√
1

6ω3
y, V = W ′ − 1

6W
2, W ′ = ∂W

∂y .

Equation (2.7d) reduces to the Riccatti form

f ′ = f2 + x2/4 (2.10)

where ϕ = 2f − ω4x
3

3 .
Equations (2.7e) are easily integrated, their solutions have the form (2.2).
Thus the set of potentials admitting third-order symmetries is rather extended and

described by nonlinear equations (2.7).
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3 Algebraic properties of symmetry operators

Using definitions (2.3), (2.6) we find the explicit form of symmetries corresponding to
solutions of (2.7):

Q = p3 + 3
4[U, p]+ + ω0p (3.1a)

Q = p3 + 3
4[U, p]+ − ω2t, (3.2b)

Q = p3 + 3
4[U, p]+ + ω3(tH − 1

4[x, p]+), (3.1c)

Q± = 1√
24

[
p3 ∓ i

4ω[[x, p]+, p]+ −
[
ω2x2 − 3ϕ′, p

]
+∓

∓ i2ω
(
ϕ+ 2xϕ′ − ω2

3 x3

)]
exp(±iωt), ω =

√
−ω1.

(3.1d)

Solutions of equations (2.7e) correspond to such third order symmetry operators which
are products of the usual Lie symmetries.

Symmetries (3.1) are not generators of Lie groups. Nevertheless, these symmetries
generate very interesting algebraic structures, satisfying the following relations

[Q,H] = 0,
Q2 = 2H(2H + ω0)2 − ω1(2H + ω0)− C

8 ;
(3.2a)

[Q,H] = iω2I, [Q, I] = [H, I] = 0; (3.2b)

[Q,H] = −iω3H; (3.2c)

[H,Q±] = ±ωQ±, [Q+, Q−] = ωH2. (3.2d)

Formula (3.2a) corresponds to a particular case of the general theorem [13] maintaining
that commuting ordinary differential operators are connected by a polynomial algebraic
relation. In the following we use (3.2a) to integrate the corresponding equations (2.1).

Relations (3.2b) define the Heisenberg algebra; relations (3.2c) mean that Q plays a
role of dilatation operator which continuously changes eigenvalues of H. In accordance
with (3.2d), Q± play a role of increasing and decreasing operators like it takes place for
the harmonic oscillator problem.

4 Exact solutions, conditional symmetry
and non-Lie generation of solutions

For the potentials satisfying (2.7a), it is convenient to search for solutions of (2.1) in the
form

ψ(t, x) = exp(−iEt)ψ(x), (4.1)

where ψ(x) are eigenfunctions of the commuting operators H and Q:

Hψ(x) = Eψ(x) (4.2a)

Qψ(x) = λψ(x). (4.2b)
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Using (4.2a) we reduce (4.2b) to the form(
2E + U

2 + ω0

)
ψ′ =

(
1
4U

′ + iλ
)
ψ. (4.3)

Integrating (4.3) we obtain

ψ = A
√
U + 4E + 2ω0 exp

(
2iλ

∫ dx
U + 4E + 2ω0

)
(4.4)

where A is an arbitrary constant and E, λ are connected by the relation

λ2 = 2E(2E + ω0)2 − ω1(2E + ω0)− C
8 , (4.5)

C is an arbitrary constant of (2.8).
Thus, the third-order symmetry presents a powerful tool to obtain exact solutions of

the corresponding Schrődinger equation. Moreover, solutions (4.4) are easily generalized
to satisfy the nonlinear equation

i∂tΨ = 1
2p

2Ψ + 1
2A2 (Ψ∗Ψ)Ψ (4.6)

if we set
Ψ = exp (iεt)ψ(x), ε = −3E − ω0 (4.7)

Let us present a new procedure of generation of solutions of (2.1) using the conditional
symmetry approach [6]. We start with a nonlinear equation which is Galilei invariant. So
we can make the usual Lie generation of solutions starting with (4.7):

Ψ = A
√
U(x− vt) + 4E + 2ω0 exp

[
i

[
(2ε− v2) t2 + vx+ 2λ

∫ x−vt
0

dy
U(y) + 4E + 2ω0

]]
,

(4.8)
v is a transformation parameter.

Functions (4.8) for the case of potentials satisfying (2.9) reduce to soliton solutions

Ψ = A [ν tanh[ν(x− vt)]± i
√
ε] exp

[
i

(
ν2 − v2

2

)
t+ (v ∓

√
ε)x+ ϕ0

]
. (4.9)

In spite of the fact that the corresponding linear Schrődinger equation does not pos-
sesses any nontrivial (different from time displacements) Lie symmetry, we can generate
new solutions using the conditional symmetry [5–7]. Indeed, solutions (4.4) satisfy the
relation

ψ∗ψ = A2(U + 4E + 2ω0). (4.10)

But equation (2.1), (2.7a) with additional condition (4.10) is invariant under the Galilei
transformation. This circumstance enables us to generate a new solution

ψ = A
√
U(x− vt) + 4E + 2ω0 exp

[
i

[
(−E − v2) t2 + vx+ 2λ

∫ x−vt
0

dy
U(y) + 4E + 2ω0

]]
.

(4.11)
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The corresponding Schrődinger equation includes a potential U(x − vt) where U(x) is a
solution of (2.7a).

One more generation can be made using the third-order symmetry

Q = p3 + 1
4[3U + 2ω0 + 6v2, p]+ + 3

2vU (4.12)

which is admitted by the Schrődinger equation with U = U(x− vt). Acting on (4.11) by
(4.12) we obtain a new solution

ψ′ = Qψ = aψ + iv2ψ1, a = λ+ 4Ev + ω0v − 4v3,

where
ψ1 = U ′ + 4iλ

2(4E + U + 2ω0)
ψ (4.13)

We notice that if ψ is the soliton solution

ψ = νA
cosh[ν[x− vt)] exp

[
i

(
−v

2

2 t+ vx+ ϕ0

)]
,

then the generated solution ψ1 is a soliton solution also

ψ1 = ν2A sinh[ν(x− vt)]
cosh2[ν(x− vt)]

exp
[
i
(
− iiv2

2 t+ vx+ ϕ0

)]
.

Thus non-Lie symmetries present new possibilities in solving the Schrődinger equation
and generating new solutions [4].

5 Symmetries in supersymmetric quantum mechanics

The motion equation of supersymmetric quantum mechanics [14] has the form

Lψ ≡
(
i ∂∂t −H

)
ψ = 0, H = 1

2
(
p2 +W 2

)
+ σ3W

′ (5.1)

where ψ = ψ(t, x) is a two-component wave function, σ3 is the Pauli matrix, W (x) is a
superpotential.

Equation (5.1) has two specific symmetries (supercharges)

Q1 = 1√
2

(σ1p+ σ2W ) , Q2 = 1√
2

(σ2p− σ1W ) (5.2)

which are valid for any superpotential. Moreover, these operators satisfy the following
superalgebra

[Qa, Qb]+ = 2δabH, a, b = 1, 2,
[Qa,H] = 0.

(5.3)

Investigations of Lie and non-Lie symmetries of equation (5.1) are complicated by the
matrix form of the Hamiltonian H. The corresponding symmetries can be expanded using
the complete set of the Pauli matrices

Q =
3∑

µ=0

n∑
i=0

(
h

(µ)
i · pi

)
i

(5.4)
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where the notations (2.3) are used. Then starting with definition (2.4) we come to the
following determining equations for unknown functions h(α)

i , α = 1, 2, h±i = 1
2

(
h0

i ± h3
i

)
and superpotentials W [15]:

∂xh
(±)
n = 0,

∂h
(±)
n−1 + 2∂th

(±)
n = 0,

∂h
(±)
n−m + 2∂th

(±)
n−m+1−

[(m−2)/2]∑
s=0

(−1)s 2(n−m+ 2 + 2s)!
(2s+ 1)!(n−m+ 1)!h

(±)
n−m+2s+2∂

2s+1
x

(
W 2 ±W ′) = 0,

∂th
(±)
0 +

[(n−1)/2]∑
p=0

(−1)p+1h
(±)
2p+1∂

2p+1
x

(
W 2 ±W ′) = 0;

∂xh
(α)
n = 0,

∂xh
(α)
n−1 + 2∂th

(α)
n + 2i(−1)αh

(α)
n ∂xW,

∂xh
(α)
n−2 + 2∂th

(α)
n−2 + 2i(−1)αh

(α)
n−1∂W − 2nh(α)

n ∂xW
2 = 0,

∂xh
(α)
n−2p−1 + 2∂th

(α)
n−2p−

p−1∑
s=0

(−1)s 2(n+ 1 + 2s− 2p)!
(2s+ 1)!(n− 2p)! h

(α)
n+1+2s−2p∂

2s+1
x W 2 + 2i(−1)αh

(α)
n−2p∂xW+

i
p−1∑
s=0

(−1)α+s+p (n− 2s)!
(n− 2p)!(2p− 2s− 1)!(p− s)h

(α)
n−2s∂

2p−2s+1
x W = 0,

p = 1, 3, ...,
[
n− 1

2
]
,

∂xh
(α)
n−2p + 2∂th

(α)
n−2p+1−

p−1∑
s=0

(−1)s 2(n+ 2 + 2s− 2p)!
(2s+ 1)!(n− 2p+ 1)!h

(α)
n+2+2s−2p∂

2s+1
x W 2 + 2i(−1)αh

(α)
n−2p+1∂xW−

i
p−2∑
s=0

(−1)α+s+p (n− 2s− 1)!
(n− 2s+ 1)!(2p− 2s− 3)!(p− s− 1)h

(α)
n−2s−1∂

2p−2s−1
x W = 0,

p = 2, 4, ...,
[
n
2

]
,

∂th
(α)
0 +

[(n−1)/2]∑
q=0

(−1)q+1h
(α)
2q+1∂

2q+1
x W 2 + i

[n/2]∑
q=0

(−1)q+αh
(α)
2q ∂

2q+1
x W = 0.

(5.5)

Equations (5.5) present a complete description of Lie and non-Lie symmetries of ar-
bitrary order n. For exact solutions of (5.5) and the discussion of the corresponding
symmetries refer to [15]. Here we present only the conclusion [15,16] that all physically
interest (”privileged”) potentials generate nontrivial Lie or non-Lie symmetries.

Such an analysis of Lie and non-Lie symmetries was extended to the case of parasu-
persymmetric quantum mechanics [17].

We also analyzed non-Lie symmetries of Wess-Zumino supersymmetric quantum me-
chanics [18, 19]. All these symmetries belong to the envelopping algebra generated by the
first order summetries obtained by Arai [19].
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6 Symmetries of three-dimension Schrődinger equation

Let us start with the free equation(
i ∂∂t −

p2

2m

)
ψ = 0, ψ = ψ(t, x) (6.1)

where
x = (x1, x2, x3) , p2 = p2

1 + p2
2 + p2

3, pa = −i ∂∂xa
. (6.2)

It is well known that the maximal Lie symmetry of (6.1) is described by the 12-
parameter Schrődinger group. The analysis of the non-Lie symmetries is complicated by
multidimensionality of independent variables. This complication is overcome using the
approach of generalized Killing tensors [20].

Let us represent a n-order symmetry in the form

Q =
n∑

i=0

[[
... [Ka1a1...aj , ∂a1 ]+ , ∂a2

]
+
, ...∂aj

]
+
, (6.3)

Then the invariance condition (2.4) leads to the following determining equations

∂(aj+1Ka1a2...aj) = −2m(j + 1)K̇a1a2...aj+1 , j = 0, 1, ...n− 1,
∂(an+1Ka1a2...an) = 0,
K̇ = 0, j = 0

(6.4)

where the complete symmetrization is imposed over the indices in brackets.
A differential consequence of (6.4) is

∂(aj+1∂aj+2 ...∂aj+sKa1a2...aj) = 0, s = n− j + 1. (6.5)

We call solutions of (6.5) generalized Killing tensors of order s and rank j.
For the general solution of (6.4), (6.5) see [20,21]. The corresponding number of linearly

independent n-order symmetries is

Nn = 1
4!(n+ 1)(n+ 2)3(n+ 3) (6.6)

and all these symmetries belong to the envelopping algebra of the Lie algebra of the
Schrődinger group.

For symmetries of the Schrődinger equation with a potential V = V (x)[
i ∂∂t −

1
2

(
p2 + V

)]
ψ = 0

we obtain the following determining equations [22]

∂(an+1Ka1a2...an) = 0,
2K̇a1a2...a2m + 1

2m∂(a2mKa1a2...a2m−1)+

[(n−1)/2]∑
k=m

(−1)m+k+1 2(2k + 1)!
(2k − 2m+ 1)!(2m)!

Ua1a2...a2m
k ,

(6.7)

2K̇a1a2...a2l+1 + 1
2l + 1∂

(a2l+1Ka1a2...a2l)

+
[n/2]∑

k=l+1

(−1)k+l 2(2k)!
(2k − 2l − 1)!(2l + 1)!

W
a1a2...a2l+1

k
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where
m = 0, 1, ..., [n/2] , l = 0, 1, ..., [(n− 1)/2] ,

Ua1a2...a2m
k = Ka1a2...a2mb1b2...b2k−2m+1∂b1∂b2 ...∂b2k−2m+1

V,

W
a1a2...a2l+1

k = Ka1a2...a2l+‘1b1b2...b2k−2l−1∂b1∂b2 ...∂b2k−2l−1
V.

These equations define as coefficients of the n-order symmetry (6.3) as potentials V ad-
mitting it. In paper [22] we solved (6.7) for the case of three-dimension potentials of the
type (2.2) and found complete sets of the corresponding n-order symmetries.

7 Symmetries of the Dirac equation

Searching for non-Lie symmetries of the Dirac equation

Lψ = (γµp
µ −m)ψ = 0 (7.1)

needs a combination of the approaches mentioned in Sections 4 and 5, inasmuch as L is
a matrix operator with differentials in respect to four variables. For the corresponding
determining equations refer to [4]. Here we present the exact number of n-order symmetries

Nn = 5
4!(n+ 1)(n+ 2)(2n+ 3)(n2 + 3n+ 4)−

1
6(2n+ 1)(13n2 + 19n+ 18)

− 1
2[1− (−1)n].

(7.2)

In particular,
N0 = 1, N1 = 25, N2 = 154. (7.3)

The first-order symmetries are exhausted by the following 25 representativities

Pµ = pµ, Jµν = xµpν − xνpµ + Sµν ,

W4µ = i
2γ4(pµ −mγµ),

Wµν = i
2γ4(γµpν − γνpµ),

B = iγ4(D −mγµx
µ),

Aµ = i
2γ4εµνρσJ

νργσ + 1
2γµ.

(7.4)

Non-Lie symmetries (7.4) do not form a Lie algebra but include subsets generating
superalgebras [23]. We present one of them

Qa = 2W4a + εabcWbc, a = 1, 2, 3 (7.5)

Symmetries (7.5) satisfy relations (5.3) together with H = p2 +m2. In other words,
non-Lie symmetries of the Dirac equation generate the symmetry superalgebra of super-
symmetric quantum mechanics.

In conclusion we notice that the above results admit extensions to much more compli-
cated systems having arbitrary numbers of independent and dependent variables. Non-Lie
symmetries of two-particle and arbitrary spin particle equations were analyzed in [24, 25].
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