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particles are studied with respect to fint-order symmetries that they admit in the context 
ofthe Lie extended method. Their explicit forms are understood as elements orthe PoincarC 
enveloping algebra in terms of well-known 4-vectors and second-order tenson. Supentruc- 
tures in the Dirac case and parasuperstructures in the Kemmer case are pointed out. The 
generalization to arbitrary spins is also considered. 
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1. Introduction 

Kinematic symmetries of free relativistic wave equations for arbitrary spin particles 
have already been obtained in Wigner's work [ I ]  on the Poincare group and its 
irreducible unitary representations [I, 21. The corresponding results are quoted in 
different textbooks [3-61 and play a fundamental role, especially in particle physics 
[3] and in quantum field theory [4]. They correspond to the crucial notion of Poincari 
invariance associated with inhomogeneous Lorentz coordinate transformations in 
Minkowski spacetime: they lead to 10 symmetries easily obtained from the classical 
infinitesimal Lie method [5-71, giving the well-known closed structure known as the 
'Poincark (Lie) algebra' generated by spacetime translations (P, ,  p = 0, 1, 2, 3) and 
rotations ( M W v ,  p, U = 0, 1, 2, 3, M,. = -Mu&). , 

As iar as non-zero mass particies of spin-5 are concerned, i.e. those which are 
described by the Dirac equation [8], new symmetries have recently been added (see 
[6,?, IO] and references therein) but by considering the whole set of operators contain- 
ing only first-order derivatives, without any demand concerning a closed structure. 
These new symmetries (which are complementary to the IO Poincari ones) have been 
collected as Lie extended symmetries (see [6]  in particular) and there are 15 new ones 
besides the trivial unit operator, so that it makes sense to speak now about 10+ 1 5 +  1 = 
26 symmetries of the Dirac equation. We have especially reconsidered this study [lo] 
but with specific purposes such as going to the limit case of zero rest mass particles 
like the Weyl neutrino, etc. Let us also recall that to these Lie extended symmetries 
correspond new conservation laws which cannot be found in the previous approach. 

From another point of view, these Dirac symmetries can also generate some Lie 

obtained when we add to the above extended symmetries the 10 second-osder operators 
P,Pu as will be recalled later. Moreover, we have recently pointed out [12] that these 
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6146 J Beckers et a l  

Dirac extended symmetries contain hidden supersymmetries [ 131 generating, for 
example, a superalgebra sqm(3) in this free context. Such remarks strengthen the 
association between the Dirac theory and supersymmetric quantum mechanics very 
often exploited in recent works [14,15]. 

Let us now ask if the above results are only true for spin-f particles or if they can 
be appropriately extended to other spin contexts. Effectively, we plan to consider the 
case of free Kemmer particles [16, 171 and to study their Lie extended symmetries in 
connection with parasupersymmetric quantum mechanics [ 18,191. This association 
with the spin-1 case of the Kemmer theory has very recently been exploited in the 
construction of pararelativistic harmonic oscillators [20]. 

The contents of this paper are then as follows. In section 2 we show that the Lie 
extended Symmetries of the Dirac equation can effectively be deduced from those of 
the Klein-Gordon equation. We first construct the invertible operators V and W and 
show how Dirac and Klein-Gordon problems can be intimately connected (section 
2.1); the symmetries of the Dirac context are then simply recovered according to 
previous results [9] discussed [IO] elsewhere. We also point out a new invariance 
superalgebra (section 2.2). In section 3 the Kemmer theory is considered in a parallel 
way, and the information given in section 3.1 leads, in the spin-l case, to new explicit 
forms of the 15 Lie (extra) extended symmetries given in terms of Kemmer matrices. 
In section 3.2 we explicitly construct a Lie parasuperalgebra according to our mathe- 
matical developments, this Lie parasuperalgebra being expressed in terms of a Lie 
product given, for example, by double commutators [21]. The spin-0 case is then 
considered in section 3.3 by referring to a six-dimensional representation where the 
p5 matrix takes a non-trivial form. Section 4 contains general comments and con- 
clusions, mainly discussing the generators in terms of scalars, 4-vectors and second- 
order (symmetric or antisymmetric) tensors admitting only first-order derivatives as 
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2. Extended symmetries of Dirac particles 

Since the Wigner study of the irreducible unitary representations of the Poincart group 
[l], we know that the Dirac relativistic equation admits 10 Lie symmetries including 
translations (P,) and Lorentz transformations ( M e V )  such as pure rotations ( M y )  and 
boosts ( M o t ) .  Other symmetries have recently been added: they are called ‘extended 
Lie symmetries’ and lead here to 15 non-trivial first-order generators [6,9,10]. With 
the 10 Poincart symmetries besides the identity, we thus deal with 26 generators in 
the spin-; case. They take the following forms for p, v = 0, 1, 2, 3: 

1 s~u=-tv,.~.l @.la) 4 M,. = Lpu + SF, L,. = X*P, - X,P“ 

(2.lb) 

(2.2a) 

(2.26) 

(2.2c) 

(2.2d) 
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where 

= -&0123 = 1 and ys = iyoy’y2y3 = ys (2.3a) 

with [X, 101 

{y’.y”)=2g’”L {Y5, y’)=O.  (2.36) 

Here the Dirac theory is covariantly described by the equation [XI: 
L,YD= (iy’J, -m)YD=O. (2.4) 

The results (2.1) and (2.2) are readily obtained by solving the usual requirement that 

[QO,LD]=ALO (2.5) 

given that Q, is a symmetry generator of equation (2.4), so that QoY is once again a 
solution iff ‘P is a solution [6 ,9 ,  101. Let us insist that, in general, A is an operator. 

In order to extend these Dirac results to other spin cases, we will first construct 
two interesting operators VD and WD and show that they lead to aone-to-one correspon- 
dence between symmetries of the Dirac type (2.5) and those associated with the 
Klein-Gordon equation (section 2.1). Finally, we will then point out in this Dirac case 
a new invariance superalgebra (section 2.2). 

2.1. The invertible operators V, and WD 

It is well known that each component of the wavefunctions describing a relativistic 
system has to satisfy the Klein-Gordon equation. As is the case forthe four (=2(2s+ 1 )  
when s =;) components of the Dirac wavefunction, we can search for information on 
the Dirac symmetries through those obtained (more easily) in the Klein-Gordon 
context. This leads to another economical method for getting the explicit results (2.1) 
and (2.2). It deals with the construction of the two operators V, and WD 1251 leading 
to the property that equation (2.4) and 

L&VY’,=O Lb= WDLDV,l Tub = V,VD (2.6a) 

admit the same numbers of symmetries Qo and QL, respectively, where 

Qb= V,Q,V,‘. (2.66) 

Indeed, if Q is a symmetry operator of the Dirac equation, i.e. if it satisfies equation 
(2.5), then we have 

[Qb,Lb]=A’LL (2.7a) 

where 

A ’ =  WDA W;’ - W,Q,WG’+ VOQ,V,’. (2.76) 

Conversely, if QL satisfies equation (2.7a), it is easily proved that equation (2.5) holds. 
Let us construct the following invertible operators: 

(2.80) 
1 vg = 1T- (1 - ys)ywP’ 
7m 

and 

1 
2m 

W2=1*-(1+y,)y,P’.  (2.86) 
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Due to the fact that V ,  is not unitary, we can only conclude that there is a one-to-one 
correspondence given by equation (2.6b) between the numbers of symmetry operators 
Qo and QL although formulae (2.4) and (2.6a) are not equivalent. 

1 

We immediately get 

L;= W + ’ L , V - ’ = - - ( l + y , ) P , P , - m  2m (2.9) 

so that, in the chiral Dirac representation characterized by a diagonal y5 matrix 
(us= diag(l,l, -1, -l)),welearnthatthe Diracequation (2.4) isnowincorrespondence 
with equations (2.6a) and (2.9), i.e. with the system 

(P,P”- m2)\Yi = O  ( i =  1,2) ul; = ul; = 0. (2.10) 

We consequently notice that we obtain ((2s + I )  for s = f )  Klein-Gordon equations, 
each equation admitting the usual Poincari symmetries associated with translations 
(P,,) and Lorentz rotations ( MGv= L,,”). It has to be pointed out that, through equation 
(2.66), we have thus to consider the 10 transformed operators 

V,’L,,VD and VD’ P, v, . (2.11) 

Explicit calculations show that we recover the IO expected Poincari symmetries (2.1) 
but supplemented by linear combinations of some new ones appearing in equations 
(2.2). In order to get the whole set of first-order symmetries, i.e. the 26 symmetries 
generated by equations (2.1) and (U), we have to consider products of the above 
symmetries which evidently are still symmetries of the Dirac equation. Such interesting 
results are immediately understood by noticing the following identifications inside the 
1 5  Dirac operators (2.2) acting on solutions of equation (2.4): 

WE = fa,,, M “pP“ M”P = L“P+S? (2.12a) 

(2.126) 
1 

m 
w ~ ” = - ( P , w : - P ” w ; )  

A, D 1  = - ( E + ~ ~ ~ M ” ~  Wg- tP, )  (2.12c) 
m 

B, = $ E , . ~ ~ M ~ ” M  p m  (2.12d) 

where the M,” and P, generators are the usual Dirac ones (equations (2.1)). The 
4-vector (2.12a) is simply the Bargmann-Wigner operator [22] leading to the Pauli- 
Lubanski (Casimir) operator [26] classifying the irreducible unitary representations 
of the Poincari group. Let us also note that the six components (2.12b) are characteristic 
of antisymmetric spin tensors [23,24] of the Hilgevoord-Wouthuysen type while the 
time component of the 4-vector (2 .12~)  is a Dirac constant of motion which has already 
played an interesting role in quantum mechanics 1271. All the operators (2.12) belong 
to the Poincark enveloping algebra generated by the usual M,. and P, operators: they 
are the only first-order operators. The arbitrary nth order has been considered elsewhere 
[281. 

2.2. The largest inoariance superalgebra 

Due to the system (2.10) including the Klein-Gordon operator, let us introduce the 
second-order translation generators P,Pv in addition to the 26 Dirac symmetries. 
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Among them we can select the 31 operators 

(2.13) 

and point out that they generate a Lie superalgebra 1111. There are 21 even operators 
{I, P,,, MeV, PpPu} satisfying commutation relations between themselves and 10 odd 
ones { WF, W:J satisfying anticommutation relations between themselves andcommu- 
tation relations with the preceding even operators. This superalgebra has recently been 
used to show [ 121 that Dirac theory contains in particular a hidden supersymmetry in 
the free context as well as in some interacting cases. It also contains another previously 
noted [IO] superalgebra having the structure 

I @ [ ( P , ,  M,p)O(P,pu,  WEv)] (2.14) 

where direct (8) and semidirect (a) sums appear. 

3. Extended symmetries of Kemmer particles 

Among the irreducible unitary representations of the Poincark group [l], there are 
those associated with physical particles of non-zero rest mass with spin 1 or 0, the 
so-called vector or scalar mesons, respectively. These representations admit as a 
relativistic equation invariant under the PoincarC group the so-called Kemmer equation 

LK’PK= (ip,d*-m)’PK=O (3.1) 

as derived by Kemmer, Duffin and Petiau. The four matrices p p ( p  =0, 1,2, 3) satisfy 
the characteristic structure relations of a K(4) Kemmer algebra 

(3.2) 

which contains 126 linearly independent elements. Three of them belong to the centre 
and lead to the decomposition 

r16,171 

P,P”PA+ PhBB, = % , ” B A +  %& 

126= (1)2+(5)2+(10)2 (3.3) 

in terms of dimensions of the irreducible representations. It is easy to convince ourselves 
that the usual Klein-Gordon equation describing free scalar mesons can be rewritten 
in the form (3.1) by dealing with 5 x 5 matrices satisfying the structure relations (3.2). 
The same is true for the relativistic description of vector mesons but by dealing now 
with l o x  10 matrices satisfying the algebra (3.2). Each of these Kemmer descriptions 
evidently contains redundant components, three in the spin-0 case and four in the 
spin-1 case, ensuring 2 (2s+ 1) independent components in each context as expected 
from a relativistic point of view. Let us also point out that the Kemmer equation (3.1) 
admits, as a covariant equation, the 10 PoincarC symmetries (2.1) associated with 
translations and spacetime rotations but with 

CU = i[P,, p.1 (3.4) 

replacing S:” in equation ( 2 . 1 ~ )  in the Dirac context. Here the new problem correspond- 
ing to equation (2.5) is too complex, necessitating solution of the associated system 
and developing all matrices in the 126-dimensional basis of K(4). Consequently, we 
will use the other above-mentioned method, constructing two operators hereafter called 
V, and W, for evident reasons and showing that they lead once again to a useful 
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one-to-one correspondence between the Kemmer and Klein-Gordon symmetries (sec- 
tion 3.1). Moreover, on the basis of the associations between Dirac theory and Lie 
superalgebras [14, 151 as well as between Kemmer theory and Lie parasuperalgebras 
[4, 20, 21, 29, 301, we will show in this Kemmer context the existence of a Lie 
parasuperalgebra generated by some of these Kemmer symmetries (section 3.2). Finally, 
we will give some details on the spin-0 case where specific difficulties can be circumven- 
ted (section 3.3). 

3.1. Invertible operators V,  and W, 

In this Kemmer context, equation (3.1) and 

L;*;=o L;= WKL,V,' VL= vKqK (3.5) 
admit the same numbers of symmetries QK and Qk, respectively, where 

Q:= VKQKV,'.  (3.6) 
The argument given here is completely parallel to that previously developed in the 
Dirac context (see equations (2.6) and (2.7)). Let us then construct the operators 

v,= 1 --Pp,P"P:+? (P:-Ps)[P,P"-2(P,P')'l (3.7~1) 
1 1 
m 2m 

1 1 
m 2m2 m (3.7b) 

and 

(3.8) 

1 
Ps =; E"""P,P"PPP, (3.9) 

and satisfies the relations (3.2). The resulting operator Li( (see equations (3.5)) is then 
obtained as 

1 
2m 

L:=- ( p : + p , ) ( P , , ~ ' -  m2) +f(p:+Ps-2)m. (3.10) 

Within a representation where ps is diagonal, we choose for example in the vector 
context Ps=diag(l ,  1,  1, -1, -1,  -1,  0, 0, 0, 0) and equations (3.5) and (3.10) give 

(3.11) 

We thus obtain an analogous result to that obtained in the Dirac context (see equation 
(2.10)) but with ((2s + 1 )  for s = 1) Klein-Gordon equations admitting PoincarC and 
products of Poincari symmetries deduced from the 10 transformed operators 

vi' L,.vK (3.12) 

and 

V,'P,VK. (3.13) 
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First-order generators are then immediately obtained: there are 26 of them, which can 
once again be collected in the compact forms 

W: = $ E , , , M ” ~ P “  M”P = L”p + szn (3.14a) 

(3.14b) 

,+I( E , , , M ” ~ W ~ - - ~ P , )  ( 3 . 1 4 ~ )  

BK = ~ E , , , , M ” M ~ “  (3 .14d)  

in correspondence with equations (2.12) in the Dirac case and evidently supplemented 
by the identity and the 10 Poincari operators M,,” and P,. Once again we recover 
here symmetry operators belonging to the Poincari enveloping algebra as already 
shown in the Dirac context. 

K 1  w,, = ; (P ,  w: - P” w:, 

m 

3.2. Towards Lie Parasuperalgebras 

It is remarkable to now be able to put forward new Lie structures through these 
Kemmer symmetry operators. By considering once again the 10 second-order translation 
operators P,Pu for evident reasons connected in particular with the Klein-Gordon 
operator, we can collect together the 31 operators 

{I ,  P,, P,Ps. WE, WE.) (3.15) 

in analogy to the set (2.13) in the Dirac context. On the one hand, the set (3.15) does 
not lead to a Lie superalgehra under the Lie superbracket referring to commutators 
and anticommutators (as in the Dirac case): it is easy to show for example that the 
anticommutators between two WE-s do not close. On the other hand, the same set 
(3.15) leads to a Lie parasuperalgebra under the Lie bracket defined by double 
commutators [21] or by other specific laws [31 ] .  For this second possibility, note that 
it is necessary to consider I, P,, M,. and P,P. as even operators and WE and W$ 
as odd ones in accordance with the characteristics pointed out in the Dirac context. 

It should be noticed in general that for each property in the Dirac theory connected 
with the supersymmetric theory there is a corresponding parallel property in the 
Kemmer theory connected with the parasupersymmetric theory. The above correspon- 
dence between the sets (2.13) and (3.15) is only an illustration of this fact up to the 
replacement of Lie superstructures by Lie parasuperstructures for example. The same 
is true at the level of more recent properties obtained in the Dirac theory as hidden 
supersymmetries [12], so that here we could point out hidden parasupersymmetries in 
the Kemmer theory. For brevity we shall not proceed in this direction at the moment, 
but we could define parasupercharges from linear combinations such as W ,  f$e , Iky . :L- ,  
etc. 

3.3. The particular case of scalar mesons 

Up to equation (3.10) in section 3.1 we have not been obliged to select the description 
of vector or scalar mesons. Formally speaking, the situation is completely parallel for 
spins 0 and 1 except that, for the spin-0 case within a five-dimensional representation 
of the Kemmer matrices, we know [32] that the matrix ps is identically zero, so that 
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our invertible operators VK and WK reduce trivially to the identity. An elegant way to 
avoid this difficulty is realized by going to an equivalent context where the fifth matrix 
P s  can play its role. Let us consider a K(5) Kemmer algebra characterized by the 
structure relations 

PAPBPC +PCPsPA = gABPC +gCBP.4 (A,B,C=O,1 ,2 ,3 ,5)  (3.16) 

with g,, = +l. It contains 462 linearly independent elements [33]. Five of these belong 
to the centre, and lead to the decomposition 

462 = (6)’+ (10)’+(10)*+ (15)’. (3.17) 

We now propose to exploit the six-dimensional representation to describe scalar 
mesons. A specific choice for the corresponding matrices is given by 

Po= eIz+  e2,, P k  = i(el ,~+z+ek+2,1) P s =  el,,+ e6.1 (3.18) 

where k = 1 , 2 , 3  and the symbols em,” refer to a 6 X 6 matrix whose non-zero element 
located at the intersection of the mth row and nth column is equal to one. It is easy 
to convince ourselves that such a representation is associated with the spin-0 context 
by evaluating the spin tensor components (3.4) and by showing that they act trivially 
on the non-redundant components. Within such a representation, the matrix Ps can 
be diagonalized by 

1 
U = ut =- (e,,, + e2,2+ Jz - e + -  es.s- e,,,+ el,,+ e+3+eSt+ e6,d 

so that we get 

p;=diag(l,O, O,O, 0, -1). (3.19) 

At this stage, the developments (3.5)-(3.8) apply and the result (3.10) leads to the 
following system: 

(p,,P” - m’)‘u: = 0 (3.20) 

‘u”-y; 2 -  =, , , =‘u; = 0 (3.21) 

which is equivalent to equation (3.5) in this spin-0 case. We thus get here ((2s+ 1) for 
s = 0) one Klein-Gordon equation when considering the three spins 0, f and 1 in a 
unique discussion that is summarized in section 4. 

4. General comments and conclusions 

As a consequence of the previous sections, the different spin cases show analogous 
properties as far as s = 0, for 1 values are considered for first-order symmetry operators. 
Due to the analogous role played by the fifth matrix (n in the spin-f case and P s  in 
the spin-Oorspin-1 cases), we obtained in each case a theory described by wavefunctions 
without redundant components satisfying the Klein-Gordon equation as expected. For 
each sign of the energy we have obtained the required number (2s + 1) of such non-trivial 
components. From the symmetry point of view, we have also deduced ‘parallel‘ 
conclusions within the Dirac-supersymmetry and Kemmer-parasupersymmetry associ- 
ations, respectively. One of the main points is that we have collected the extended 
symmetries in identical formulae (see equations (2.12) and (3.14) for example), showing 

l 
i 
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that all these extended symmetries are simply the resulting products of Poincart- 
symmetries, SO that we are always considering elements of the Poincare enveloping 
algebra. By dealing with symmetric (G = {g,,}) and antisymmetric ({sGvw)) tensors 
and with only the 10first-order Poincare generators P, and Me”, we immediately get 
the only scalar ( B ) ,  4-vectors ( W, and A,) and second-order tensor ( W,”) compactify- 
ing our 15 extended operators due to trivial ‘identities’ such as 

&,,L”PP“ = 0 &,,,L*”LP” = 0 P,W’=O 

as well as to the characteristic properties of the two Poincare Casimir operators. These 
properties explain the following expressions of these 15 operators independently of 
the particular spin context under study: 

W, = $E, , ,M”~P“ = $B,, ,S”~P“ ( 4 . l a )  

1 
m A P = - E  W”P= M ” p  W” =- (LmPS,,P, +2LmPS,,,P, + SmoS,,P, +2S*’S,,P,) (4 .1~)  

1 
B = - - E  @“or M’”MPU=fEILyp“LII“SP(I+?& 4 *,“S W ”  s Pc . (4.ld) 

The last expressions are given in terms of the spin tensor {Spu}, ensuring that they act 
trivially for scalar mesons in particular. 

Let us now conclude by adding the two following remarks. First, we notice that, 
through the above expressions, it is evident that the 15 operators (4.1) are Lie extended 
symmetry operators for arbitrary spin values. It has then to be noticed that they are 
all first-order generators for the spin values s = 0, f and 1 ,  as can be verified explicitly. 
For other spin values, the symmetries W,, and A, are, in general, second order. The 
second remark concerns the general symmetries which are admitted by relativistic 
covariant equations such as the Bhabha equation 1341 for arbitrary spins. We know 
that there exist [35] Poincare generators satisfying the PoincarC commutation relations 
and, consequently, that for arbitrary spins the operators (4.1) exist and belong to the 
Poincard enveloping algebra. It can be shown that, except for the cases of spins 0,; 
and 1, there are also symmetry operators of the Bhabha equation which do not belong 
to this enveloping algebra; however, we do not want to go further in this direction in 
the present context. 
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