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Different choices of matrices characterizing p = 2 parafermions are analyzed in connection 
with the description of relativistic spin-one particles through the Kemmer 
formulation. The free and interacting cases are considered and the relations between 
parasupersymmetry and Kemmer theory are enhanced as it is also the case between 
supersymmetry and Dirac theory. In that way the oscillatorlike context leads to the 
characterization of pararelativistic oscillators. 

I. INTRODUCTION 

As generalizations of ordinary (p= 1) bosons and 
fermions, arbitrary (p-th order) parabosons and parafer- 
mions are described by parastatistics and associated 
parafields. IT3 Their respective superposition led to super- 
symmetry4 and parasupersymmetry5 which appear now 
as fundamental tools characterizing respectively the so- 
called N= 2 supersymmetric quantum mechanics 
(SSQM) 6 when bosons and fermions are concerned and 
the so-called N=2 parasupersymmetric quantum me- 
chanics (PSSQM) 5 when bosons and p = 2 parafermions 
are considered. 

Essentially developed through nonrelativistic 
Schrodinger-Pauli type wave equations, these specific 
quantum contexts SSQM and PSSQM have different con- 
nections with relativistic developments. On the one hand, 
supersymmetry has indeed been related many times7 with 
the Dirac theory and its unitarily equivalent Foldy- 
Wouthuysen representation.’ On the other hand, parasu- 
persymmetry has also to deal with a relativistic formula- 
tion if we recall that parafields have already been realized 
in terms of spin-one (Kemmer) matrices but only for 
p = 2 parafermions.’ We can thus relate parasupersymme- 
try with the Duffin-Kemmer-Petiau” equation hereafter 
called the Kemmer equation. These Dirac and Kemmer 
equations are the first simplest Bhabha formulations.‘1-‘3 

If we have already concentrated our attention’ on 
fermions (which are p= 1 parafermions) and the Dirac 
theory in connection with SSQM and supersymmetry in 
general, let us focus our attention on p=2 parafermions 
(the simplest nontrivial parafermionic context) and the 
Kemmer theory in connection with PSSQM and N=2 
parasupersymmetry in particular. 

The contents of this paper are then distributed as 
follows: in Sec. II we will first consider free (p= 1) par- 
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titles (Sec. II A) in connection with Witten’s supersym- 
met& and, second, free (p=2) paraparticles (Sec. II B) 
in connection with a recent approachI of parasupersym- 
metry. Both subsections will be constructed in order to 
show that different supersymmetrization procedures are 
explicitly dependent of the choices of (para)fermionic 
matrices inside the (para) supercharges. This conclusion 
will lead us to new parasupersymmetrizations if we want 
(Sec. II C) to connect such developments with a relativ- 
istic Kemmer formulation. Section III will deal with the 
interacting cases mainly developed for spin-one (para) 
particles in harmonic oscillatorlike contexts (Sec. III A) 
or in interaction through arbitrary potentials (Sec. 
III B). In the (Dirac) spin one-half context, such devel- 
opments led to relativistic oscillators (Ref. 8 and refer- 
ences therein) while we will get here typical informations 
on pararelativistic oscillators inside the Kemmer theory. 

As far as relativistic considerations enter in this pa- 
per, we will adopt Bjorken and Drell’s conventions*5 for 
the metric and the associated Lorentz covariance of the 
(Dirac as well as Kemmer) equations. 

II. ON FREE p=l PARTICLES AND p=2 
PARAPARTICLES 

Let us first distinguish in SSQM the possible proce- 
dures of supersymmetrization on free bosons and fermi- 
ons, i.e., on p= 1 (para)particles (Sec. II A) in order to 
exploit this way of reasoning in PSSQM for free p= 2 
paraparticles (Sec. II B) when bosons and parafermions 
are superposed along the Beckers-Debergh recent ap- 
proach14 in PSSQM. Then (Sec. II C) let us discuss the 
latter PSSQM characteristics in connection with the rel- 
ativistic Kemmer theory.” 
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A. Superposition of free bosons and fermlons 

After Witten, the N=2 superalgebra sqm (2) ex- 
pressed in terms of two Hermitian supercharges (Q,,Q*) 
and of the supersymmetric Hamiltonian HSS is character- 
ized by 

CQa,QtJ =&dh [Q&h1 =O W=L2), 
(2.1) 

containing, in particular, the three relations 

&=Hss, &=Hss, CQl,Q2)=0. (2.2) 

If the free context is visited in a three-dimensional space, 
we evidently ask for 

[p,$kl =O, j,k= L.4, (2.6b) 

c&i&> = 2qw 9 (2.6~) 

C~~~k)=2Sjk=(aj+n,~k+n), (2.6d) 

Coit~kk+n)= 2c~jk= - 2czki, c=O or 1. (2.6e) 

The bosonic characteristics (2.6b) are the usual ones 
while the fermionic matrices c.s and u’s generate Clifford 
algebras in direct (c=O) or semidirect (c= 1) sums as 
already noticed.21 These supercharges (2.5), directly con- 
nected with the ones given by (2.3), can now be discussed 
as follows. If d= 1, we have the only possibility n = 1 =p 
and we get 

Hg =; p2, QI=CI jil MjPj 9 

3 

Q2=c2 k+Pk. 

(2.3) 

where the superscript (0) refers to this free case, cl and c2 
being arbitrary coefficients (EB) and where the Hermit- 
ian matrices (M1,M2,M3) and (N1,N2,N3) have specific 
properties if the conditions (2.2) are required. It is not 
difficult to convince ourselves that Eqs. (2.2) lead to the 
respective conditions 

{M&/J=: ajk, IN,N/J=i 6jk, {ikf+&] = CEjk , 

(2.4) 

where ~jk = - Ekj. The coefficient c(EB) determines that 
we are working within the original standard (Witten) 
procedure6 of supersymmetrization iff c=O or within the 
so-called spin-orbit coupling procedure16 of supersymme- 
trization iff c= 1 in this three-dimensional context (see 
also Refs. 17 and 18 ) . 

A refined discussion of such properties can be use- 
fully displayed here by giving to the supercharges (2.3) 
more explicit expressions based on Green-Cusson An- 
s5itze’*19 that we have recently proposed.20 Indeed, let us 
consider d-dimensional spaces with the two supercharges 

(2Sa) 

Both associated M and N matrices lead here to the two 
possibilities of standard or spin-orbit coupling proce- 
dures. If d=3, we have once again only two possibilities 
according to Eq. (2.6a): (n=l, p=3) or (n=3, p=l) 
and it is straightforward to show that the two procedures 
can appear. Finally, let us mention that, for d>4, F@. 
(2.6a) gives more than two possibilities among which we 
evidently recover the two ones characterized by n= 1 or 
p= 1 leading once again to the above two possible proce- 
dures; all the other possibilities are not consistent with the 
free case (the free Hamiltonian does not result from the 
squares of the corresponding supercharges Q, when nf 1 
and p#l) and ask for other procedures of supersymme- 
trization compatible with some interactions.20P22 

and 

Q2=$ jz, ~~,P~++lip&@“j+n9 (2.5b) 

where evidently 

d=n.p, (2.6a) 
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Such considerations are useful for connecting SSQM 
results and the Dirac theory in Minkowski space-time. 
The latter includes the d=3 context, so that the above 

1 1 
QI”=~p,C, @o,=z~plMl, 

1 1 
Q$“=-p s!j 8 a2=--p,N, 

u”z ” I!2 
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(2.7) 

showing that 

CM,,NJ =O (2.8) 

and ensuring that we only get here the standard proce- 
dure (c=O) as expected. If d = 2, there are two possibil- 
ities which correspond to n = 1, p = 2 or n = 2, p = 1, so 
that we get two subcases. With (n= 1, p=2), we obtain 

QL2)=$ il P&J @ “a (a= V), (2.9a) 

while, with (n = 2, p= 1 ), we distinguish 

QL2)‘=-$ ji,pJa@Oj (a=1,2). (2.9b) 
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properties lead to the conclusion that the two procedures 
of supersymmetrization are admissible in accordance 
with previous results.’ In fact, due to the four- 
dimensional matrices included in Dirac theory, we know 
that this strictly corresponds to c=l, so that the spin- 
orbit coupling scheme is here priviledged: it leads to a 
semidirect sum of two Clifford algebras %TG issued from 
Eqs. (2.4) with cl=cz= l/a. We are thus dealing with 
the four-dimensional representation of su (2 12) (Ref. 2 1) 
characterized in terms of Dirac matrices by the choices 

Mj=cLi, Nj=i/3cri, j= 1,2,3, (2.10) 

and satisfying the relations (2.4) on the forms 

{Ci>Uk) = 2Sjk, (@ffj&kX~) = 2Sjk , 
(2.11) 

{a&Iak) = ip[ Uk,Cij] . 

The above discussion enlightens the main role of the 
spin-orbit coupling procedure in connection with the 
Dirac equation: It also opens the way for the interacting 
context when oscillatorlike characteristics have to be in- 
cluded* leading in particular to the description of relativ- 
istic oscillators. 

B. Superposition of free bosons and p=2 
parafermions 

Let us now consider PSSQM through two Hermitian 
parasupercharges Q, and Q, satisfying a Lie parasuperal- 
gebra23’24 characterized by the following nilpotent rela- 
tions: 

(Ql-iQ2)“=0 (Ql+iQ2)‘=0 (2.12) 

and the double commutators 

besides the commutation relations ensuring the conserved 
character of Q, and Q2, i.e., 

[HPSSQII =O> [H~ss,Qd =a (2.14a) 

Equations (2.12) and (2.13) can also be rewritten 

In the d=3-dimensional space, Hpss is the parasuper- 
Hamiltonian which reduces once again in the free case to 
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H'O' =I. 
PSS 2p 

2 (2.15) 

and the parasupercharges can be defined as follows 

Ql=Cl jil MjP> QZ=CZ C NjPjt (2.16) 
j=l 

where the matrices (M1,M2,M3) and (Nt,Nz,Ns) have 
now specific properties issued from Eqs. (2.14)) (2.15), 
and (2.16). Moreover, if we remember that p=2 para- 
fermions have to deal with Kemmer matrices,’ it is not 
difficult to show that Eqs. (2.14b) and (2.14~) imply the 
following properties: 

MjMkMl+M$fkMj= 6j/&fl+ ak&fj s (2.17a) 

Np#l+ NflkNj= aj;ENI+ Sk flj 9 (2.17b) 

I i-C: 

NjM,@l+NflkNj= -3~2 (6j&fl+ ak&fj) 
2 

-Cl) (1) -(2) (2) +dl=jk QI +d$kl Qj t 

(2.17~) 

i-c; 
MjN&fI+MlNkMj= -T (SjIcN/+6kflj) 

1 

+d3E;&x/3’+d 4Qq), 

(2.17d) 

1+2ct+$c;(f-c:, 
MjNkNl+ N fl&fj= 2 

4c2 
(alSj#l 

-(5) (5) 
+blSk&fj) +d+jk QI 

+d6~1,6’~jp’+d7~~~‘or,!” 

+ d&;;, (2.17e) 

and 
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+d =(10)&O) 
lo-lj 

+dll=,, -(“)#) d -(I*) 
1 + 12=jkl * 

(2.17f) 

Here d i, d 2,...,d12 are arbitrary constant coefficients, the 
matrices E$$) and EFaL are completely antisymmetric 
ones while the a$) are supplementary matrices with the 
same dimensions as the Mj and NP 

The general results (2.17c)-(2.17f) do take into ac- 
count possible extra terms which, contracted with the 
symmetric triple products pgkpl, give exactly null contri- 
butions in Eqs. (2.14b) and (2.14~~). Such a system 
(2.17) can then be tested in connection with different 
matrix realizations essentially expressed as Kemmer ma- 
trices belonging to two Kemmer algebras K(3) charac- 
terized by Eqs. (2.17a) and (2.17b). 

By exploiting some recent results in three- 
dimensional spaces on p = 2 parafermionic matrices typi- 
cally introduced for the standard procedure23 and for the 
spin-orbit coupling procedure,24 it is not possible through 
the corresponding matrices Mj and Nj to satisfy simulta- 
neousf’y Eqs. (2.17) and the dimensional requirements for 
spin-one matrices in the Kemmer context. Let us only 
mention here their explicit forms according to the stan- 
dard characteristics [see Eqs. (3.4a) and (3.4c) of Ref. 
23 when n=3 therein]: 

NF= (i/v% (e7,7-j-e7-j,7+e4-j,7-ee,,4-j>, 
(2.18) 

where the notations ek,l refer to 7 X 7 matrices whose rows 
and columns are labeled from 1 to 7 containing zeros 
everywhere except units at the intersection of the kth row 
and Ith column. For the spin-orbit coupling characteris- 
tics [see Eqs. (2.7) and (2.8a) of Ref. 24 when the sum- 
mations are taken from 1 to 3 therein], we also get a 
realization of 6 X 6 matrices given by 

NY= - (i/fl)aj@ (el,3+e2,3-e3,1-e3,2), 
(2.19) 

where, evidently, the matrices ek,l are here three- 
dimensional ones. 

None of the above realizations is convenient, so that, 
at this stage, we cannot associate the Kemmer equation 
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for spin one particles with the above two procedures of 
parasupersymmetrization in the free case. Consequently, 
every ten-dimensional (or six-dimensional) realization of 
the matrices Mj and Nj u= 1,2,3) satisfying E+. (2.17) 
will be associated with a new (para) supersymmetriza- 
tion procedure. 

C. The free case and the Kemmer formulation 

Let us give an example through the Hamiltonian 
form25 of the Kemmer theory.” With the Bjorken- 
Drell” conventions we are considering the covariant 
Kemmer equation expressed in terms of matrices & (p 
=0,1,2,3) such that 

Pp&&+PAwp=qLdh+&& (2.20) 

where g,= -gkk= 1. The Kemmer Hamiltonian can 
then be written 

HK=B*p+mBo 

with 

(2.21) 

Bj~~~j-~~o (j= 1,2,3), BOG& . (2.22) 

Exploiting the Kemmer algebra,‘* we can propose the 
following choice 

Mj= Bj, Nj= iv&j, 770’ 2&-I, (2.23) 

showing that Eqs. (2.17) are readily verified with 

1 

a,=b,=az=b,=E 
41 * 

(2.24) 

The Eqs. (2.17) expressed in this context (2.23)-(2.24) 
lead to a semidirect sum of two K (3)-Kemmer algebras 
corresponding to a procedure which is neither a standard 
one, nor a spin-orbit coupling one. In a parallel way with 
the Dirac theory,8 we thus can construct two Kemmer 
Hamiltonians as follows: 

Hi’ = 2v’TQ, + mflo, Hg’ = 2vTQ2 + rnflo , (2.25) 

which are unitarily equivalent through the operator 

U=(l/vT)(l+iqo). (2.26) 

Let us end this free case by two remarks. First, let us 
point out that the above ten-dimensional Kemmer real- 
ization has to be completed by an initial condition elim- 
inating the (4) redundant components in the wave func- 
tion. The well-known Sakata-Taketani formulationa 
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corresponds to this point of view and deals with 6X 6 
matrices. We just want to mention here that, if we con- 
sider the respective substitutions in Mj and Nit 

B,+KT, 8 Sj ir]$,twz @ Sj , (2.27) 

where CSj (j= 1,2,3)} correspond to the D(l) representa- 
tion of the Lie algebra su(2,C), we immediately satisfy 
the relations (2.17) with (2.24), so that we get an iso- 
morphic semidirect sum as expected. This corresponds to 
the well-known reduction leading to the 2( 2s+ 1) de- 
scription for s= 1 relativistic particles. As a second re- 
mark, let us mention that the above study could be de- 
veloped through the Rubakov-Spiridonov approach’ of 
PSSQM which differs from ours essentially through 
(2.13) and consequently through (2.14b) and (2.14c). 
From the start,*’ we know that these developments do 
not permit the spin-orbit coupling procedure, so that we 
have decided to discuss the more general context we have 
at our disposal. 

III. ON INTERACTING BOSONS AND p=2 
PARAFERMIONS 

As already discussed in SSQM,* the oscillator inter- 
acting context is related to the Dirac equation and there 
we speak about relativistic oscillators. We now propose to 
examine the corresponding case in PSSQM (Sec. III A) 
by dealing evidently with p=2 parafermions (instead of 
p= 1 fermions) and by exploiting the results of Sec. II on 
the Kemmer formulation: we construct in that way what 
we call here pararelatiuistic oscillators. This first step then 
leads easily to the case of arbitrary interactions in the 
spin-one developments (Sec. III B). 

A. On pararelativistic oscillators 

The interacting context with oscillatorlike character- 
istics corresponds to a first generalization of Eqs. (2.15) 
and (2.16) but by maintaining the validity of Eqs. (2.14). 
Indeed, we can define the new parasupercharges 

3 

BjPj+i@Vo c Bjxi 
j=l 

(3.la) 

and 

Q2=$ (iv0 C BjPj-W IZ? B,Xj), j=l j=l 
(3.lb) 

where w is, as usual, the harmonic angular frequency and 
the matrices B> v. are ten-dimensional ones already in- 
troduced in Sec. II C. We evidently have included in such 
parasupercharges the information (2.23) and (2.24) but 
also extra terms analogous to those introduced in the spin 
one-half case.8 Relatively tedious but straightforward cal- 

culations show that the parasupersymmetric Hamiltonian 
issued from such developments is given by 

@?.$$=~p*+$0*~~+0~~(~-B~B), (3.2) 

so that Eqs. (2.14) are satisfied ensuring, in particular, 
that the parasupercharges are conserved ones. We recog- 
nize in (3.2) the expected bosonic part (fp2+&*x2) sup- 
plemented by a typical spin-one term which is not of a 
spin-orbit coupling type (also expected from our infor- 
mation issued from the free case in Sec. II). Through a 
10~ 10 realization of the matrices &= (2.20) given for 
example by 

~O=el,7+e2,8+e3,9~e7,1 -ke8,2fe9,3 , 

(3.3) 
fl2= -i(e2,10+ e4,9-e6,7-e7,6 + e9,4 + e10,2)v 

~3=-i(e3,10-e4,8~e5,7~e7,5-e8,4+e10,3)~ 

it is straightforward to see the Hamiltonian (3.2) as the 
diagonal matrix 

@&=o diag[N+ l,N+ l,N+ l,N+2,N+2,N 

+W+2,N+2,N+W+31, (3.4) 

where N refers here to the usual bosonic degeneracy 

N=2n+l, 0=21+1, l=O,l,... . (3.5) 

Let us now consider the two Kemmer Hamiltonians 
(2.25) with the parasupercharges (3.1). For example, we 
evidently have 

(3.6) 

leading to a Kemmer formulation characterized by a six- 
component wave function due to the fact that the Hamil- 
tonian equation has to be completed by an initial condi- 
tion25 saying that 

(H&?o-m)Y=O. (3.7) 

Within the representation (3.3 ), the condition (3.7) is 
equivalent to the four equations 

my4 = i(p3 - hx3) Yg - i(p2 - itix2) Yg, 

mY5=i(pl-iwxl)Yg--i(p3-k0x3)Y7, 
(3.8) 
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when we have denoted the transposed wave function YT 
= (Y ,,Yz,Y3,...,Y i,-,). These equations express the ex- 
pected redundancy in terms of the four components Y,+, 
y5, *6, and YlO. 

Now, if we take account of this redundancy in the 
nonrelativistic context in order to get a self-consistent 
physical theory simply related to a (physical) pararela- 
tivistic oscillator, we suppress in (3.4) the fourth, fifth, 
sixth, and tenth lines and columns and get the six- 
dimensional nonrelativistic Hamiltonian 

I$$‘=, diag[N+ l,N+ l,N+l,iV+2,N+2,N+2]. 

(3.9) 

subject to supplementary conditions for avoiding redun- 
dancy as discussed in the previous harmonic context. In 
principle, physical applications (other than oscillatorlike 
ones) such as electromagnetic interactions can evidently 
be developed through these characteristics. 
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B. Toward arbitrary (parasuper) potentials 

In the harmonic case, the construction of the parasu- 
percharges (3.1) corresponds to a potential W(x) such 
that 

VW(x) =wx. (3.10) 

So we can immediately propose the general parasuper- 
charges 

Q, = ( 1/2~)(B*p+i770B*VW(x)) 

and 

(3.11a) 

Q2=( 1/2ti)(i~0B*p-B*VW(x)). (3.11b) 

According to Eqs. (2.14), we get here the general 
parasuper-Hamiltonian 

HPr,,s=;p2+f(VW)2+~o[A%2(BV)2~], 
(3.12) 

which has to deal with the two unitarily equivalent Kem- 
mer Hamiltonians 

li(K1) = B-p + iqOB*V W( x) + mPo 

or(and) 

(3.13a) 

EI(K2) = iqoB*p - B-V W( x ) + rnfio , (3.13b) 
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