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Abstract

A constructive algorithm is proposed for the investigation of symmetries of par-
tial differential equations. The algorithm is used to present classical Lie symmetries
of systems of two non-linear reaction diffusion equations.
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1 Introduction

Mathematical models which ultimately involve the analysis of coupled systems of nonlinear
diffusion equations are often discussed in the literature. The Schrödinger equation in
m-dimensional space is an obvious example from mathematical physics whilst activator-
inhibitor reactions [1], predator-prey systems, λ − ω reaction systems [2] are common
examples from mathematical biology. These systems are very complex in nature and
admit fundamental particular solutions (for example, travelling waves and, spiral waves)
which have a clear group-theoretical interpretation and which can be obtained using the
classical Lie approach. The existence of such solutions suggests an important role for
both the classical and non-classical symmetry analysis of systems of reaction diffusion
equations. However, to the best of our knowledge, a comprehensive group analysis has
not been undertaken previously although analyses of some special cases do exist.

In this paper we discuss symmetries of equations in the general form

∂u

∂t
− A

∑
i

∂2u

∂x2
i

− f(u) = 0 (1)

where u ∈ R
n, f ∈ R

n, (x, t) ∈ R
m × R and A is a n × n constant non-singular matrix.

Actually we restrict ourselves to the case n = 2 but all results present in Section 2 and
the main part of results of Section 3 are valid for arbitrary n.

We note that equation (1) with m = n = 1, f ≡ 0 was the subject of a group analysis
by Sophus Lie [3]. In addition, classical Lie symmetries of equation (1) with, n = m = 1,
were investigated by Ovsiannikov [4] whose results were completed by Dorodnitsyn [5]
and then generalized to the case m = 2, 3 by Dorodnitsyn, Kniazeva and Svirishchevski
[6]. The related conditional (nonclassical) symmetries were described by Fushchych and
Serov [7] and Clarkson and Mansfield [8]. The classical symmetries are summarized in
Table 1.

Table 1: Symmetries of the scalar diffusion equation with source

f(u) Infinitesimals Generator, X
arbitrary X0

0 X0 + νG0 + µD̂0 + λÂ0 + σu ∂
∂u

+ ψ0
∂
∂u

1 X0 + νG1 + µD̂1 + λÂ1 + σ(u− t) ∂
∂u

+ ψ0
∂
∂u

u X0 + νG0 + µD̂2 + αÂ2 + σu ∂
∂u

+ ψ1
∂
∂u

un, n �= 1 X0 + µD̂3

eu X0 + µD̂4

f = u lnu X0 + νet
(

∂
∂x

− 1
2
xu ∂

∂u

)
+ µetu ∂

∂u

Here Greek letters denote arbitrary parameters and are the translation, X0; Galilei,
Gα (α = 0, 1); scale, D̂µ (µ = 0, 1, ..., 4) and conformal, Âs (σ = 0, 1, 2) generators
respectively, where :

X0 = α ∂
∂t

+ β ∂
∂x
, Gα = t ∂

∂x
− 1

2
xu ∂

∂u
+ 1

2
δα1tx

∂
∂u
, D̂0 = 2t ∂

∂t
+ x ∂

∂x
,

D̂1 = D̂0 + 2t ∂
∂u
, D̂2 = D̂0 + 2tu ∂

∂u
, D̂3 = D̂0 − 2

n−1
u ∂

∂u
,

D̂4 = D0 − 2 ∂
∂u
, Âµ = 1

2
tD̂µ − 1

4
(x2 + 2t)(1− δµ1t)u

∂
∂u
.

(2)
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In addition, δµν is the Kronecker symbol and ψn(n = 0, 1) is an arbitrary solution of the

linear diffusion equation
(

∂
∂t
− ∂2

∂x2

)
ψn = nψn.

A systematic investigation of the symmetries of the general equation (1) with m > 1
and n > 1 has so far not been considered in detail although partial results are available
in [10], [11], [9], [2]. In recent paper [12] Lie symmetries of a subclass of systems (1) for
n = 2 and arbitrary m were investigated. In this subclass the matrix A was diagonal
but not a multiple of the unit matrix. We shall demonstrate that the results [12] are
incomplete.

It is the aim here to undertake such an investigation for the most general case of an
arbitrary 2 × 2 matrix A. In this way we present a complete description of Lie symme-
tries of all possible systems (1) including the cases of the unit matrix A. This latter case
corresponds to the most rich of symmetries with many interesting applications. In par-
ticular, we find all nonlinear Schrödinger equations admitting nontrivial Lie symmetries
since these equations can also be represented in the form (1) with an antidiagonal matrix
A, as is demonstrated in Section 7. Moreover, we find new symmetries of (1) also in the
subclass studied in [12].

The additional main aim of this paper is to present the novel use of a rather conventional
algorithm for investigation of symmetries of a special class of partial differential equations
which includes (1) as a particular case. More precisely we will show that the classical Lie
approach (refer, for example, [13],[11]) when applied to systems (1) admits a rather simple
formulation in terms of commutator algebra which may also be applied to extended classes
of partial differential equations. Furthermore the algorithm may be used to determine
non-classical (or, conditional) symmetries of (1). It will be shown that for n > 1 there
is a proliferation of symmetries, including for the case when f(u) is linear which do not
have origins in symmetries of Table 1 for the one dimensional scalar diffusion equation
with source.

2 An Algorithm for the Determining equations of

symmetries for the system (1)

We require form-invariance of the system of reaction diffusion equations (1) with respect
to the one-parameter group of transformations:

t → t′(t, x, ε), x → x′(t, x, ε), u → u′(t′, x′, ε), (3)

where ε is a group parameter. In other words, we require that u′(t′, x′, ε) satisfies the
same equation as u(t, x):

L′u′ = f(u′), L′ =
∂

∂t′
− A

∑
i

∂2
i

∂x′
i
2
. (4)

From the infinitesimal transformations:

t → t′ = t+∆t = t+ εη, xa → x′
a = xa +∆xa = xa + εξa,

ua → u′
a = ua +∆ua = ua + επa

(5)
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we obtain the following representation for the operator L′:

L′ =
[
1 + ε

(
η
∂

∂t
+ ξa ∂

∂xa

)]
L

[
1− ε

(
η
∂

∂t
+ ξa ∂

∂xa

)]
+O(ε2). (6)

Using the classical Lie algorithm it is possible to find the determining equations for
the functions η, ξa and πa which specify the generator X of the symmetry group:

X = η
∂

∂t
+ ξa ∂

∂xa

− πb ∂

∂ub

(7)

where a summation from 1 to m and from 1 to n is assumed over repeated indices a and
b respectively. This system will not be reproduced here but we note that three of the
equations are:

∂η

∂ua

= 0,
∂ξa

∂ub

= 0,
∂2πa

∂uc∂ub

= 0. (8)

So from (8) η and ξa are functions of t and xa and, πa is linear in ua. Thus:

πa = −πabub − ωa (9)

where πab and ωa are functions of t and x = (x1, x2, . . . xm).
From (4) it is possible to deduce all the remaining determining equations. Indeed,

substituting (5), (9) into (6), using (1) and neglecting the terms of order ε2 we find that:

[Q,L]u− Lω = πf +
∂f

∂ua

(−πabub − ωa
)
, Q = η

∂

∂t
+ ξa ∂

∂xa

+ π (10)

and π is a matrix whose elements πab are defined by the relation (9).
To guarantee that equation (10) is compatible with (1) and does not impose new

nontrivial conditions for u in addition to (1) it is necessary to suppose that the commutator
[Q,L] admits the representation:

[Q,L] = ΛL+ ϕ(t, x) (11)

where Λ and ϕ are n× n matrices dependent on (t, xa).
Substituting (11) into (10) the following determining equations for f are obtained:

(
Λkb − πkb

)
f b + ϕkbub − (Lω)k = −(ωa + πabub)

∂fk

∂ua
. (12)

Thus, to find all non-linearities fk generating Lie symmetries for equation (1) it is
necessary to solve the operator equation (11) for L, Q given in (4), (10) and determine
the corresponding matrices Λ, π, ϕ and functions η and ξ. In the second step the non-
linearities fa may be found by solving the system of first order equations (12) with their
known coefficients.

Equation (11) is a straightforward generalization of the invariance condition for the
linear system of diffusion equations (1) with f (u) = 0, so that [Q,L] = ΛL, which
may readily be solved. By means of this ”linearization” the problem of investigating
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symmetries of systems of nonlinear diffusion equations is reduced to the rather simple
application of elements of matrix calculus in order to classify non-equivalent solutions of
the determining equations.

We notice that this approach is valid for the extended class of equations Lu = f(u)
where L is a linear differential operator with constant coefficients and where u ∈ R

n. We
note also that calculations of the non-classical (conditional) symmetries for the system
(1) may be reduced to the solution of the determining equations (12) where now Λ, π, ϕ,
η and ξ are defined as solutions of the following relationship:

[Q,L] = ΛL+ ϕ(t, x) + µ(t, x)Q, (13)

and where µ(t, x) is an unknown function of the independent variables.

3 The Symmetry Operators and their Simplification

We now determine the general solutions for matrices Λ, ϕ, π and also the functions ξ, η,
π which satisfy (12), (11).

Evaluating the commutator in (11) and equating the coefficients for linearly indepen-
dent differential operators we obtain the five determining equations:

A(ξa
b + ξb

a) = −δab(ΛA+ [A, π]), η̇a = 0, η̇ = Λ, (14)

ξ̇a − 2Aπa − Aξa
nn = 0, ϕ = Aπnn − π̇. (15)

Here the dots denotes derivatives with respect to t and subscripts denote derivatives with
respect to the spatial variables, so for example, ηa = ∂η

∂xa
.

From (14) Λ is proportional to the unit matrix, Λ = λI and from (14) [A, π] = 0.
Indeed, choosing a = b we obtain

π − A−1πA = (2ξa
a − λ)I. (16)

The trace of the left hand side of (16) is equal to zero, and so 2ξa
a−λ ≡ 0 and Aπ−πA = 0.

Equations (14)–(15) contain matrices which commute, and so they may easily be inte-
grated using, for example, the method of characteristics. The general solution of (14)–(15)
is:

ξa = C [ab]xb + ḋxa + ga, η = −2d,

π = 1
2
A−1( d̈

2
x2 + ġaxa) + C, Λ = −2ḋI,

ϕ = m
2
d̈− Ċ − 1

2
A−1(

...
d
2
x2 + g̈axa)

(17)

where d, ga are arbitrary functions of t and C is a t-dependent matrix commuting with A.
By considering the x-dependence of functions (17) it is convenient to represent still

unknown functions ωa, occurring in (12), as:

ωa = ωa
2x

2 + ωab
1 xb + ωa

0 + µa (18)
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where ωa
2 , ω

ab
1 , ωa

0 are functions of t, and µa is a function of t and x. Without loss of
generality we suppose that all terms in the right hand side of (18) are linearly independent.
Then comparing with (12), (17) the functions µk have to satisfy:

(Lµ)k = λkbµb + ξk
0 + ξkb

1 xb + ξk
2x

2 (19)

where λkb are constants and ξk
0 , ξ

kb
1 , ξk

2 are functions of t.
The final step is to substitute (17), (19) into (12) and equate coefficients for all different

powers of xa. As a result we obtain the system of equations:

d̈(A−1)kbf b +
...
d (A

−1)kbub − d̈(A−1)abub∂f
k

∂ua
= 4

(
ω̇k

2 + ξk
2 − ωb

2

∂fk

∂ub

)
, (20)

ġa(A−1)kbf b + g̈a(A−1)kbub − ġa(A−1)kbub∂f
k

∂ua
= 2

(
ω̇ka

1 + ξka
1 − ωba

1

∂fk

∂ua

)
, (21)

2ḋfk − Ckbf b − (Ċkb +
m

2
d̈δkb)ub + (ωa

0 + Cabub)
∂fk

∂ua

= ω̇k
0 − 2mAkbωb

2 + ξk
0 , (22)

∂fk

∂ub

µb = λkbµb. (23)

Thus, the general form of symmetry group generators for equation (1) is given by
relations (7), (17),(18) where d, ga, Cab, ωk

0 , ω
kb
1 , ωa

2 , µ
a are functions of t to be specified

using equations (20)-(23). These results are valid for equation (1) with arbitrary n × n
constant nonsingular matrix A.

In the following we restrict ourselves to the case of 2×2 matrix A. The related equation
(1) is reduced to the form:

∂

∂t
u1 −

∑
i

∂2

∂x2
i

(
A11u1 + A12u2

)
= f 1,

∂

∂t
u2 −

∑
i

∂2

∂x2
i

(
A21u1 + A22u2

)
= f 2 (24)

where A11, A12, A21 and A22 are elements of matrix A , f 1 and f 2 are functions of u1, u2 to
be specified.

First we present all non-equivalent matrices A which have to be considered in the
analysis. The ad hoc non-equivalent versions of equation (24) correspond to the following
matrices A:

Ia. A =

(
1 0
0 1

)
; Ib. A =

(
1 0
0 a

)
; II . A =

(
b −c
c b

)
; III . A =

(
1 0
c 1

)
(25)

wherea, b, c and e are arbitrary parameters, a �= 0, 1. All 2× 2 matrices can be reduced to
one of the forms (25) using linear and scale transformations of the dependent variables.
Moreover, without loss of generality it is possible to set c = 1 and e = 1.

The analysis of symmetries of systems of nonlinear diffusion equations present in paper
[12] was restricted to the case when matrix A had the form Ib. We consider here the most
general case, that is, all possible forms of matrix the A given by relations (25).We present
now an outline of the approach used to solve the system (20)-(23)and begin by noticing
that:
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• Except the functions µa depending on t, x and the constant matrix A−1 all quantities
in the determining equations belong to one of two classes. Either the quantities
depend of u but are independent of t, or, alternatively, the quantities depend of t
but are independent of u. This enables us to separate variable and so decouple the
equations.

• To simplify calculations it is convenient to use the equivalence transformations

ua → (u′)a = λabub + σa, fa → (f ′)a = λabf b (26)

where λab is an invertable constant matrix and σa are constants. Such transforma-
tions leave equation (1) form invariant and so make it possible to reduce A−1 (and
other matrices used in the analysis) to canonical forms (25).

• Many solutions of (20)-(23) are such that f is linear in u. Such possibilities are
considered separately.

An important a priori simplification of the determining equations can be obtained by
considering the compatibility of (20)-(23).

Lemma 1.Let equations (20), (22)be compatible and fk are nonlinear in u. Then, up
to equivalence transformations (26), the functions d and ωk

2 have to satisfy one of the
following relations

...
d = 0, ω1

2 = 0, ω̇k
2 = µωk

2 − ξk
2 + µd̈, or

...
d = µd̈, ω1

2 = ω2
2 = 0 (27)

where µ �= 0, ν1 and ν2 are constants, at least one of constants να is nonzero and nontrivial
ωk

2 are linearly independent of d̈.
The proof of Lemma 1 depends on the analysis of the consequences of differentiating

equation (20) first, with respect to uc and then with respect to ua and further consid-
ering the conditions for consistency of the resulting system. Details of this analysis are
straightforward and are omitted here.

An analogous result, with a similar proof is valid for equation (21) which generates the
following restrictions:

g̈a = 0, ω1b
1 = 0, ω̇2b

1 = νω2b
1 − ξ2b

1 , or g̈a = νġa, ω1b
1 = ω2b

1 = 0. (28)

These conditions are compatible with (20), (21) only when:

ḋ = d3t+ d4, ga = ga
3t+ ga

4 , ω2b
1 = νbω2

2, (29)

ḋ = d1 exp(νt) + d2, ga = ga
1 exp(νt) + ga

2 , ω2b
1 = νbω2

2 (30)

where ν, νa, ga
k , dk, k = 1 . . . 4 are constant.

Let µα are trivial then substituting these into (20)–(22) we find that

(A−1)kbfb = (A−1)abub
∂fk

∂ua
, d3 � =0 or/and ga

3 � =0, (31)

[−2(d3t+ d4)δ
kb + Ckb]f b + (m

2
d3δkb + Ċkb)ub =

= ω̇k
0 − 2mAk2ω2

2 − (ωa
0 − Cabub)∂fk

∂ua ,
(32)
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ω2
2

(
µδk2 − ∂fk

∂u2

)
= 0, (33)

or alternatively, the system which includes (33) and the two following equations

(A−1)kb(f b + µub) = (A−1)abub
∂fk

∂ua
, µ � =0, d1 � =0 or g1 � =0, (34)

[(2d1 exp(µt) + d2)δ
kb + Ckb]f b + (1

2
µd1 exp(νt)δ

kb + Ċkb)ub =

ω̇k
0 − 2Ak2ω2

2 − (ωa
0 − Cabub)

∂fk

∂ua .
(35)

Thus, the investigation of symmetries for systems of diffusion equations depends on
solving the determining equations (31)-(33) and (34), (35), (33). These include arbitrary
parameters dk, µ, arbitrary functions of t, i.e., ωa

0 , ω
a
2 , and an arbitrary matrix Cab which

commutes with A and also depend on t. The form of C is given as follows.
Lemma 2. A necessary condition of compatibility of system (31)-(33) is that the matrix

function Cab has the form

Cab = φ0F
ab + φ1B

ab + ν(δab − F ab) (36)

where F ab, Bab are constants and φ0, φ1 are functions of t satisfying the conditions

F akBkb −BakF kb = αBab + βF ab,

φ̇0 = k0φ0 + k1φ1 + k2, φ̇1 = n0φ0 + n1φ1 + n2.
(37)

Here α, β, ν, k0, k1, k2, n0, n1 and n2 are arbitrary constants.
Proof is straightforward but rather cumbersome, so we present its sketch only.
An arbitrary 2× 2 matrix C whose elements are Cab can be expanded as

C = C0I + C1σ1 + C2σ2 + C3σ3 (38)

where

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
1 0
0 −1

)
, (39)

C0, C1, C2 and C3 are functions of t. Let k (1 ≤ k ≤ 4) of these functions be linearly
independent, then equating in (32) the coefficients for these functions we obtain k systems
of equations for fa.

Considering the case k = 4 it is possible to convince ourselves that the related overde-
termined systems are incompatible. For k = 3 the compatibility condition for (32) reduces
to the form (36). Then equating coefficients for independent functions φ0 and φ1 in (32)
we come to systems of equations for fa, which are compatible provided relations (36) and
(37) are satisfied.

Substituting (27), (28) into (32) we obtain

φ0

[
F kb(f b + k0u

b)− F abub
∂fk

∂ua
+ n0B

kbub
]
+ φ1

[
Bkb(f b + n1u

b)−
−Babub

∂fk

∂ua + k1F
kbub

]
+ ν

[
(δkb − F kb)F b − (δab − F ab)ub

∂fk

∂ua

]
+ (n2F

kb

+k2B
ab)ub − 2(d3t+ d4)f

k + 1
2
d3u

k = −ω̇k
0 + 2mδk2A

k2ω2
2 + 2ωa

0
∂fk

∂ua .

(40)
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This equation has to be imposed together with (31) provided ga
3 � =0 or d3 � =0. Moreover,

different combinations of values of these parameters correspond to different systems of
determining equations. We specify the following five cases:

d3 = 0, ga
3 = 0, φ0 � ≡0, ω2

2 = ω2b
1 = 0, ωa

0 = const, n2 = k2 = 0,
d3 = 0, ga

3 = 0, φ0 ≡ 0, ω2
2 = ω2b

1 = 0, ωa
0 = const, n2 = k2 = 0,

d3 = 0, ga
3 � =0, ω2

2 = ω2b
1 = 0, ωa

0 = const,
d3 � =0, ω2

2 = ω2b
1 = 0, ωa

0 = const,
ω2

2 �= 0, ω2b
1 �= 0.

In this way the system of equations (31)-(33) may be solved explicitly using the method
of characteristics to determine fk and their corresponding symmetries. A similar approach
can be used for the alternative system (34) and (35) and for the case when µα are not
trivial. In the last case very strong restriction are imposed on fk by relation (23) which
has only few solutions.

4 Non-linearities and symmetries

We will not give the detailed calculations but present the general solution of relations
(20)-(23). In the following tables we present the results of the symmetry analysis for the
case where fk is non-linear in u.

First we present the list of non-linearities of the most general form which are defined
up to arbitrary functions. To make this we specify matrices B which commute with A
(25) according to the following categories:

I. B =

(
1 0
0 d

)
, A−1 =

(
1 0
0 a−1

)
if d �= 1;A−1 is arbitrary if d = 1;

II. B =

(
d −1
1 d

)
, A−1 = 1

b2+c2

(
b c
−c b

)
,

IIIa. B =

(
0 0
1 0

)
, A−1 =

(
1 0
−c 1

)
,

IIIb.B =

(
1 0
1 1

)
, A−1 =

(
1 0
−c 1

)
.

(41)

Table 2. Non-linearities with arbitrary functions
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Nonlinear Type of Argu- Conditions Symmetries, ZN

No terms matrix ments of for para- for A−1 � =κB
B (41) ϕ1, ϕ2 meters & ZE for A−1 = κB

1. f 1 = uk+1
1 ϕ1, I u2

ud
1

k �= 0 ZN = ZE =

f 2 = uk+d
1 ϕ2 = X0 + νD1

k = 0, ZN = X0 + λB̂,
d �= 0 ZE = ZN + σaGa

k = d = 0, ZN = X0 + αu1
∂

∂u1

ϕ1 �=const
k = d = 0, ZN = X0

ϕ1 = n +αu1
∂

∂u1
+ ψ̃n

∂
∂u1

2. f 1 = ekθ (ϕ1u2 + ϕ2u1) , II R e−dθ k �= 0 ZN = ZE =
f 2 = ekθ (ϕ2u2−ϕ1u1) = X0 + νD1

3. f 1 = ϕ1u
k+1
1 , IIIb u1e

−u2
u1 k �= 0 ZN = ZE = X0 + νD1

f 2 = (ϕ1 lnu1 + ϕ2)u
k+1
1

k = 0
ϕ1 �= const

, ZN = X0 + νu1
∂

∂u2

k = 0,
ϕ1 = n

ZN = X0 + νu1
∂

∂u2

+µψn
∂

∂u2

4. f 1 = e
k

u2
u1 ϕ1u1, IIIa u1 k �= 0 ZN = X0 + νD1

f 2 = e
k

u2
u1 (ϕ1u2 + ϕ2)

5. f 1 = u1(n lnu1 + ϕ1), I u2

ud
1

n �= 0 ZN = X0 + µentB̂,

f 2 = u2(n ln u2 + ϕ2) ZE = ZN + νaĜa

6. f 1 = ϕ1u2 + ϕ2u1 II, R e−dθ n �= 0 ZN = X0 + µentB̂,

+n
2

(
1
d
lnR + θ

)
(du1 − u2), d �= 0 ZE = ZN + νaĜa

f 2 = ϕ2u2−ϕ1u1 n = 0 ZN = X0 + µB̂,
+n

2

(
1
d
lnR + θ

)
(du2 + u1) ZE = ZN + λaGa

7. f 1 = (ϕ1 − nθ)u2 + ϕ2u1, II, R n �= 0 ZN = X0 + µentB̂,

f 2 = ϕ2u2 − ϕ1u1 d = 0 ZE = ZN + νaĜa

n = 0 ZN = X0 + µB̂,
ZE = ZN + λaGa

8. f 1 = ϕ1u1 + nu2, IIIb u2

u1
− ln u1 n �= 0 ZN = X0 + µentB̂,

f 2 = ϕ1u2 + u1ϕ2 ZE = ZN + νaĜa

+nu2

(
1 + u2

u1

)
n = 0 ZN = X0 + µB̂,

ZE = ZN + λaGa

9. f 1 = ϕu1 − su1, IIIa u1 s = 0, n �= 0
ZN = X0 + µu1

∂
∂u2

+νY1

f 2 = ϕu2 − nu1 s �= 0, n = 0 ZN = X0 + νu2
∂

∂u2

+µestu1
∂

∂u2

n = s = 0
ZN = X0 + νu2

∂
∂u2

+µu1
∂

∂u2
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Table 2. Continued
10. f 1 = ϕ1u1, IIIa u1 ϕ1 �= 0 ZN = X0 + µentB̂,

f 2 = ϕ1u2 + ϕ2u1 + nu2 ϕ1 = 0 ZN = X0 + µB̂ + ψn
∂

∂u2

11. f 1 = ϕ1u
1−k
1 , I, ln u1 + nu2 k �= 0 ZN = X0 + νD2

f 2 = ϕ2u
−k
1 d = 0

12. f 1 = ϕ1u1 +
s
n
u1u2, I, u2 − n ln u1 n �= 0, s = 0 ZN = X0 + λY2

f 2 = ϕ2 + su2 d = 0 s �= 0, n �= 0 ZN = X0 + λY3

13. f 1 = eku1ϕ1, IIIa nu2
1 + 2u2 k �= 0 ZN = X0 + λD3

f 2 = eku1(ϕ2 − nϕ1u1) k = 0, n �= 0 ZN = X0 + λY4

14.
f 1 = nu1 + ϕ1,

f2 = ku2 + ϕ1u1 + ϕ2
IIIb nu2

1 + 2u2 k �= 0
ZN = X0+

+νent
(
u1

∂
∂u2

+ ∂
∂u1

)
15. f 1 = n, IIIa u1 ϕ �=const ZN = X0 + λY5

f 2 = ku2 + ϕ +ψk
∂

∂u2

16
f 1 = (n− r)u1 + ϕ1,

f2 = −ru2 + ϕ2
IIIb u2

ZN = X0+
+νentψ(x) ∂

∂u1

17 f 1 = u1ϕ1 + nu1 lnu1, I, u2 n �= 0 ZN = X0 + λY6

f 2 = ϕ2 d = 0
18. fα = eku1ϕα, α = 1, 2 any ω1u2 − ω2u1 k � =0 ZN = ZE = X0 + νD4

19. f 1 = ϕ1 + su1, any u2 − ku1 k � =0, ZN = ZE = X0

f 2 = ϕ2 + su2 A �= κI +estψ (x) ( ∂
∂u1

+ k ∂
∂u2

)

A = κI u1 s = 0, A = κI ZN = X0 + ψ̃0
∂

∂u2

20 f 1 = ϕ1, f
2 = ϕ2 any u1, u2 ZN = ZE = X0

Here R =
√

u2
1 + u2

2,θ = arctan(u2

u1
), the Greek letters in the right column denote arbi-

trary coefficients whilst Dµ, G
i
a and Ḡi

a, XA, Ya, B̂ are various types of dilatation, Galilei
and special transformation generators as follows:

D0 = 2t ∂
∂t

+ xa
∂

∂xa
, D1 = D0 − 2

k
B̂, D2 = D0 +

2
k

(
∂

∂u2
+ nu1

∂
∂u1

)
,

D3 = D0 − 2
k

(
∂

∂u1
− nu1

∂
∂u2

)
, D4 = D0 − 2

k
ωa

∂
∂ua

,

Ga = t ∂
∂xa

− 1
2
xa(A

−1)nbub
∂

∂un
, Ĝa = ent

(
∂

∂xa
− 1

2
nxa(A

−1)nbub
∂

∂un

)
,

X0 = α ∂
∂t

+ βa
∂

∂xa
+ ν [a,b]xa

∂
∂xb

, ν [a,b] = −ν [b,a],

Y1 = ntu1
∂

∂u2
+ u2

∂
∂u2

, Y2 = u1
∂

∂u1
+ n ∂

∂u2
, Y3 = est

(
u1

∂
∂u1

+ n ∂
∂u2

)
,

Y4 = nu1
∂

∂u2
− ∂

∂u1
, Y5 = ekt

(
u1

∂
∂u2

+ nx2

2m
∂

∂u2

)
, Y6 = entu1

∂
∂u1

,

B̂ = Babub
∂

∂ua

(42)

where Bab are elements of the corresponding matrices (41). In addition, ψ(x) and ψ̃0 are

arbitrary solutions of equations ∆ψ(x) = 0 and ( ∂
∂t
−∆)ψ̃0 = 0 respectively were ∆ is the

Laplace operator.
In the following Tables 3 and 4 we use triplets of matrices (F , B , A−1) with F and

B forming two-dimensional Lie algebra and commuting with A (25). We classify such
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triplets according to the categories:

I. F =

(
1 0
0 d

)
, B =

(
0 0
0 1

)
, A−1 =

(
1 0
0 a−1

)
;

IIa. F =

(
1 0
0 1

)
, B =

(
0 −1
1 0

)
, A−1 = 1

b2+c2

(
b c
−c b

)
;

IIb. F =

(
d −1
1 d

)
, B =

(
1 0
0 1

)
, A−1 = 1

b2+c2

(
b c
−c b

)
;

IIIa. F =

(
0 0
1 0

)
, B =

(
1 0
0 d

)
, A−1 =

(
1 0
0 1

)
;

IIIb. F =

(
1 0
d 1

)
, B =

(
0 0
1 0

)
, A−1 =

(
1 0
−c 1

)
. (43)

where a, b, c and d are real parameters (a �= 0, b2 + c2 �= 0).

Table 3. Non-linearities which generate dilatation symmetry

No Non-linear terms
Conditions

for
parameters

Symmetries, ZN

for, A−1 �= κF
& ZE forA−1 = κF

Matrices (43)
and generator
parameters

1 f 1 = (guq
1u

r
2 + n)u1,

q �= 0,−1,
p �= 0, n = 0
q + r = 4

m

ZN = X0 + µF̂ + νD5,

ZE = ZN + σaGa + λÂ

I, k = 4
m
,

d = − q
r

f 2 =
(
puq

1u
r
2 − qn

r

)
u2

q = −1,
p = n = 0,
r = 4+m

m

ZN = X0 + µF̂ + νD5

+ψ̃0
∂

∂u1
,

ZE = ZN + σaGa + λÂ

I, k = 4
m
,

d = 1
r

q �= 0,−1, r �= 0
q + r �= 0, 4

m

ZN = X0 + νF̂ + µD5,
ZE = ZN + σaGa

I, k = r + q,
d = − q

r

p = n = 0, g �= 0
q = −1, r �= 0,−1

ZN = X0 + νF̂

+µD6 + ψ̃0
∂

∂u1
,

ZE = ZN + σaGa

I, d = 1
r
,

k = r

q = g = 0,
r �= 0,−1; p �= 0

ZN = X0 + νF̂

+µD6 + ψ̃n
∂

∂u1

I, d = 0,
k = r

2
f 1 = eqθRr(gu1

−pu2) + su2 − lu1,
s = l = 0,
r = 4

m

ZN = X0 + νF̂ + µD5,

ZE = ZN + σaGa + λÂ

IIb, k = 4
m
,

d = − q
r
, n = 0

f 2 = eqθRr(gu2

+pu1)− su1 − lu2,
r �= 4

m
, r �= 0,

s = l = 0
ZN = X0 + νF̂ + µD5,

ZE = ZN + σaGa

IIb, k = r,
d = − q

r
, n = 0

R2 = u2
1 + u2

2

l = − sq
r
,

s �= 0, r �= 0
ZN = X0 + νF̂ + µD6,

ZE = ZN + σaGa

IIb, k = r,
n = −s,
d = − q

r

θ = arctan
(

u2

u1

) s = 0, l �= 0,
q �= 0, r = 0

ZN = X0 + νF̂ + µD6,
ZE = ZN + σaGa

IIa, k = q,
n = −l
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Table 3. Continued 1

3 f 1 = pur+1
1 e

q
u2
u1

−su1,

r = −q = 4
m
,

s = 0
ZN = X0 + νF̂ + µD5,

ZE = ZN + αaGa + λÂ

IIIb, d = 1,
k = 4

m

f 2 = e
q

u2
u1 (pu2

+gu1)u
r
1

−q = r �= 4
m
,

s = 0, r �= 0
ZN = X0 + νF̂ + µD5,

ZE = ZN + αaGa

IIIb, d = 1,
k = r

−s
(
u2 − r

q
u1

)
q �= 0, s �= 0

ZN = X0 + νF̂ + µD6,

ZE = ZN + αaGa

IIIb, k = q,
n = −sq,
d = − r

q

4 f 1 = puk+1
1 ,

d+ k �= 1,
k �= 0, q �= 0,

s = n �= 0, p �= 0

ZN = X0 + νF̂
+µD6

IIIa

f 2 = uk
1

(
pu2 + qud

1

)
+ s

d+k−1
u1

k �= 0, s = 0,
q = 0, p �= 0

ZN = X0 + νF̂
+µD5 + λu2

∂
∂u2

IIIa, d = 0

pk �= 0, q = 0,
d = 0,

s = n(k − 1) �= 0

ZN = X0 + νF̂
+µD5 + λY1

IIIa, d = 0

d+ k �= 0, 1,
k �= 0, q �= 0,

s = n �= 0, p = 0

ZN = X0 + νF̂
+µD6 + ψ0

∂
∂ua

IIIa

5
f 1 = puk+1

1 ,
f 2 = puk

1u2

−knu1 ln u1

k �= 0, n �= 0,
p �= 0

ZN = X0 + νF̂ + µD6
IIIa,

d = 1− k

k �= 0, n �= 0,
p = 0

ZN = X0 + νF̂
+µD6 + ψ0

∂
∂u2

IIIa,
d = 1− k

6
f 1 = qur+1

1 eku2 + su1,
f 2 = pur

1e
ku2 − sr

k

r �= 0,−1; k �= 0,
p �= 0, q �= 0

Zn = X0 + νD7

+µY2

I, d = 0,
n = − r

k

p = 0, r = −1,
q �= 0, s = 0,

k �= 0

ZN = X0 + νD7

+µY2 + ψ̃0
∂

∂u1

I, d = 0,
r = −1,
n = 1

k

k �= 0,
s = r = 0

ZN = X0 + νu1
∂

∂u1

+µ
(
D0 − 2

k
∂

∂u1

) I

7
f 1 = pe(n−k)u2 + hu2,

f 2 = ge−ku2 + q
q = h = 0,
k �= 0, n �= 0

ZN = X0 + νD2

+ψ̃0
∂

∂u1

I, d = 0

q = 0, ZN = X0 + νD8 + ψ̃0
∂

∂u1
I, d = 0

k �= 0, h �= 0
p = q = 0, ZN = X0 + νD2 I, d = 0,

h = 0, k �= 0 +σu1
∂

∂u1
+ ψ̃0

∂
∂u1

n = 0

n = q = g = 0,
p �= 0

ZN = X0 + νD9

+µu2
∂

∂u1
+ ψ̃0

∂
∂u1

IIIa
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Table 3. Continued 2

8
f 1 = geu2+ku1 ,

f 1 = qeu2+ku1 + p
k �= 0

ZN = ZE

= X0 + νD10

+ψ(x)
(

∂
∂u1

− k ∂
∂u2

) I, a �= 1

ZN = ZE

= X0 + νD11

+ψ(x)
(

∂
∂u1

− k ∂
∂u2

) IIa, IIb,
c �= 0

k = 0
ZN = ZE = X0

+νD12 + ψ(x) ∂
∂u1

IIIb,
e �= 0

9

f 1 = p (u2 + nu2
1)

s+ 1
2

+ 1
2n(2s+1)

,

f 2 = − 1
2s+1

u1

+(q − 2npu1)

×(u2 + nu2
1)

s+ 1
2

s �= 0,−1
2
,

p �= 0, n �= 0
ZN = X0 + νD13 IIIa

10
f1 = guk+1

1 ,
f2 = (p lnu1 + q)uk+1

1

k = −1, q = 0,
p �= 0, g �= 0

ZN = ZE = X0

+ψ0
∂

∂u2

+ν
(
D5 + 2pt ∂

∂u2

) I, k = −1
d = 0

k = −1, p �= 0,
q = g = 0

ZN = ZE = X0

+ν
(
D5 + 2pt ∂

∂u2

)
+λ
(
BF̂ + pt ∂

∂u2

)
+ψ0

∂
∂u2

I, k = −1
d = 0

k �= 0,−1, ZN = ZE = X0 IIIb, d = 1
g = p +νD1 + ψ0

∂
∂u2

11
f 1 = g (u2 + su1)

k+1 ,

f 2 = q (u2 + su1)
k+1

+p

k �= 0,−1;
s �= 0

ZN = ZE

= X0 + νD14

+ψ(x)
(

∂
∂u1

− s ∂
∂u2

) I, a �= 1

k �= 0,−1;
s = 0

ZN = ZE = X0

+νD15 + ψ(x) ∂
∂u1

IIa, IIb,
c �= 0

IIIb, b = 1
c �= 0

12
f 1 = p ln(u2 + su1),
f 2 = q ln(u2 + su1)

s �= 0

ZN = ZE

= X0 + νD16

+ψ(x)
(

∂
∂u1

− s ∂
∂u2

) I, a �= 1,
k = −1

s = 0
ZN = ZE = X0

+νD17 + ψ(x) ∂
∂u1

IIa, IIb,
k = −1,
c �= 0;

IIIb, k = −1,
b = 1,
c �= 0

13
f 1 = guk+1

1 ,
f 2 = quk+d

1

g �= 0, k �= 0
ZN = ZE = X0

+ν(D0 − 2
k
F̂ ) + ψ0

∂
∂u2

I
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Table 4. Further non-linearities with arbitrary parameters

No
Non-linear

terms

Matrix
Class
(43)

Conditions
for parameters
and matrices Fa

Symmetries,
ZN for A−1 �= κFa

&ZE for A−1 = κF1

&Z̃E forA−1 = κF2

1

f 1 =
(k0 lnu1

+k1 lnu2

+q)u1,

I,
d = 0

δ > 0,∆ �= 0, k1 �= 0,
F1 = k1F + (n+ − k0)B,
F2 = k1F+(n− − k0)B,

n± = k0+n1

2
± δ

ZN = X0 + λen+tF̂1 + νen−tF̂2

ZE = ZN + σaĜa (n = n+),

Z̃E = ZN + σaĜa (n = n−)

f 2 =
(n0 lnu1

k1 = n0 = 0, k0n1 �= 0
ZN = X0 + νekotu1

∂
∂u1

+µen1tu2
∂

∂u2

+n1 lnu2 k1 = n0 = n1 = 0 ZN = X0 + ψp
∂

∂u2
+ νekotu1

∂
∂u1

+p)u2

∆ = 0, k1 �= 0,
k0 + n1 = n �= 0
F1 = k1F + n1B,
F2 = k0B − k1F ;

ZN = X0

+λe(n1+k0)tF̂1 + νF̂2,

ZE = ZN + σaĜa (n1 �= 0)

ẐE = ZN + σaGa (k0 �= 0)

k0 = n1 = n,
k1 = n0 = 0,

F1 = µF + νB, µν �= 0

ZN = X0 + αentu1
∂

∂u1

+λentu2
∂

∂u2
,

Z̃E = ZN + σaĜa

k0 = n1 = n,
n0 = 0, k1 �= 0

ZN = X0 + λentu1
∂

∂u1

+νent(k1tu1
∂

∂u1
+ u2

∂
∂u2

)

δ = 0,∆ �= 0, k0 + n1 = 2n
F1 = 2k1F + (n1 − k0)B,

F2 = tF1 + 2B

ZN = X0 + νX1 + µX2,

ZE = ZN + σaĜa

δ = ∆ = 0,
n0k1 �= 0,

F1 = k1F − k0B

ZN = X0 + ν[k1tu1
∂

∂u1

+(1− k0t)u2
∂

∂u2
]

+µ(k1u1
∂

∂u1
− k0u2

∂
∂u2

),

ZE = ZN + σaGa

k1 = n1 = 0, q = p, ZN = X0 + νu2
∂

∂u2
+ µu1

∂
∂u2

k0 = n0 = n, a = 1 +λent
(
u1

∂
∂u1

+ u2
∂

∂u2

)
,

F1 = F +B ZE = ZN + σaG̃a

k1 = n1 = 0, p = 0, ZN = X0 + νu2
∂

∂u2
+ µeptu1

∂
∂u2

k0 = n0 = n, q �= 0, +λent
(
u1

∂
∂u1

+ u2
∂

∂u2

)
,

a = 1,F1 = F +B ZE = ZN + σaG̃a

k0 = k1 = n1 = 0,
n0 �= 0

ZN = X0 + νu2
∂

∂u2

+µ(u1
∂

∂u1
+ n0tu2

∂
∂u2

)

δ = −ω2, 2n = k0 + n1 ZN = X0 + νX3 + µX4
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Table 4. Continued 1

2
f 1 = qu1,

f 2 = nu2 + pud
1

+su1 + k
IIIa

d �= 0, 1, 2; k = 0,
s = 0, n �= q,F1 = B

ZN = X0 + νB̂ + ψn
∂

∂u2
,

ZE = ZN + σaGa

d �= 0, 2;n = 0,
s = 0,
F1 = B

ZN = X0 + ψ0
∂

∂u2

+ν
(
B̂ − dkt ∂

∂u2

)
,

ZE = ZN + σaGa

d �= 0, 1, 2; k = 0,
s = 1

1−d
,F1 = B

ZN = X0 + νF̂

+µB̂ + ψq
∂

∂u2
,

ZE = ZN + σaGa

d = 2, k = 0, s �= 0 ZN = X0 + µY7 + ψn
∂

∂u2

n = 2 (q + p)
d = 2, k = s = 0,

F1 = B

ZN = X0 + νY8

+µB̂ + ψ0
∂

∂u2
,

ZE = ZN + σaGa

d = 2, p = −q,
n = s = 0

ZN = X0 + νY8 + ψ0
∂

∂u2

+µ
(
B̂ − 2kt ∂

∂u2

)
IIIb

k = s = 0,
d = 2,F1 = B

ZN = X0 + νB̂
+µeqtu1

∂
∂u2

+ ψ0
∂

∂u2
,

ZE = ZN + σaGa

3
f 1 = ku1 lnu1 + pu1,
f 2 = bu2 + n ln u1

I
b = k = q = 0,

p �= 0
ZN = X0 + νY9

+ψ0
∂

∂u2

q = p = 0, b = k ZN = X0 + νY10 + ψb
∂

∂u2

q = p = 0,
b �= k, b �= 0

ZN = X0 + νY11

+ψb
∂

∂u2

k = 0, nb �= 0
ZN = X0 + νebt ∂

∂u2

+µ(bu1
∂

∂u1
− n ∂

∂u2
)

b = p = 0,
k �= o, n �= 0

ZN = X0 + ψ0
∂

∂u2

+µekt(ku1
∂

∂u1
+ n ∂

∂u2
)

4 f 1 = k0u1 lnu1 + k1u1u2, I, k1 �= 0, δ = 0
ZN = X0 + νY12

+µ
(
tY12 + e

k0+n1
2

t ∂
∂u2

)
f 2 = n0 ln u1 + n1u2 d = 0 k1 �= 0, δ > 0 ZN = X0 + νY +

13 + µY −
13

k1 �= 0, δ = −ω2 < 0 ZN = X0 + νY14 + µY15

5 f 1 = puk
2 + qu1, I, p �= 0, kg �= q, ZN = X0 + νF̂ + ψ̃q

∂
∂u1

,

f 2 = gu2 d = 1
k

k �= 0, 1;F1 = F ZE = ZN + σaGa

6 f 1 = nu1 lnu1, I, n �= 0, p �= 0, ZN = X0 + µu1
∂

∂u2

f 2 = nu2 ln u1 + pu1 d = 0 F1 = B + F +ν
(
B̂ − ptu1

∂
∂u2

)
a = 1 +λent

(
u1

∂
∂u1

+ u2
∂

∂u2

)
,

ZE = ZN + σaG̃a

7
f 1 = puk+1

1 ,
f 2 = puk

1u2 + su2

IIIa,
d = 0

k �= 0, s �= 0
ZN = X0 + νu2

∂
∂u2

+µestu1
∂

∂u2
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Table 4.Continued 2

8

f 1 =
(k0u1 − n0u2) lnR
+θ (k1u1 − n1u2)

+pu1 − qu2,

IIa

δ > 0,∆ �= 0, k1 �= 0,
F1 = k1F + (n+ − k0)B,
F2 = k1F+(n− − k0)B,

n± = k0+n1

2
± δ

ZN = X0

+λen+tF̂1 + νen−tF̂2,

ZE = ZN + σaĜa,

Z̃E = ZE (k1 �= 0∗)

f 2 =
(k0u2 + n0u1) lnR
+θ (n1u1 + k1u2)

+qu1 + pu2

∆ = 0, k1 �= 0
k0 + n1 = n �= 0, :
F1 = k1F + n1B,
F2 = k0B − k1F ;
k1 = 0, n0 �= 0 :
F1 = n0B + k0F,

(k0 �= 0∗)
F2 = n1F − n0B;

(n1 �= 0∗)

ZN = X0 + µentF̂1

+νF̂2,

ZE = ZN + σaĜa,

Z̃E = ZN + σaGa,

9
f 1 = (k0 lnu1+
q)u1 + k1u2,

IIIb,
d = 0

k1 = n0 = 0,
k0 = n1 = n,
F1 = νF + µB

(ν �= 0∗)

ZN = X0 + αentF̂1,

ZE = ZN + σaĜa

f 2 =
(n0u1 + k0u2) lnu1

+k1
u2
2

u1
+ pu1

+(n1 + q)u2

δ = n0 = 0,∆ �= 0,
k1 �= 0,F1 = F,
n = 1

2
(k0 + n1)

ZN = X0 + µent(k1tF̂

+B̂) + νentF̂ ,

ZE = ZN + σaĜa

δ = k1 = 0,
k0 = n1,

n0 �= 0,F1 = B

ZN = X0 + µen1t(F̂

+n0tB̂) + νen1tB̂,

Z∗∗
E = ZN + σaĜa

δ = 0,∆ �= 0,
k0 + n1 = 2n
F1 = 2k1F

+(n1 − k0)B,
F2 = tF1 + 2B

ZN = X0 + νX1 + µX2,

ZE = ZN + σaĜa

k0 = k1 = n1 = 0,
n0 �= 0,F1 = B

ZN = X0 + νB̂

+µ
(
F̂ + n0tB̂

)
,

Z∗∗
E = ZN + σaGa

k0 = n0 = n1 = 0,
k1 �= 0,F1 = F

ZN = X0 + νF̂

+µ
(
B̂ + k1tF̂

)
ZE = ZN + σaGa

δ = ∆ = 0,
n0k1 < 0,

F1 = k1F − k0B

ZN = X0 + µ(k1F̂ − k0B̂)

+ν[k1tF̂ + (1− k0t)B̂],
ZE = ZN + σaGa

δ = −ω2, k0 + n1 = 2n ZN = X0 + νX3 + µX4
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In Table 4 columns 4 and 5 refer to the both non-linearities specified as Cases 8 and
9. However, the conditions marked by ∗ are related to Case 8 only and the symmetries
marked by ∗∗ correspond only to Case 9. In addition, κ =constant, ∆ = k0n1 − n0k1,
δ = 1

4
(k0 − n1)

2 + k1n0, F̂α = Fab
α ub

∂
∂ua

, F̂ = F abub
∂

∂ua
and:(

∂

∂t
− A

m∑
i=1

∂2

∂x2
i

)(
0
ψn

)
= n

(
0
ψn

)
,

(
∂

∂t
− A

m∑
i=1

∂2

∂x2
i

)(
ψ̃n

0

)
= n

(
ψ̃n

0

)
and n is an arbitrary parameter (including the case n = 0). The generatorsDµ, Â, Ga, Ĝa, Xν , Ys

when not specified in (42) are given by:

Â = t2 ∂
∂t

+ txa
∂

∂xa
− 1

4
x2(A−1)abub

∂
∂ua

− m
2
t
(
u1

∂
∂u1

+ u2
∂

∂u2

)
+ nt2F̂ ,

D5 = D0 − 2
k
(u1

∂
∂u1

+ u2
∂

∂u2
), D6 = D0 + 2tnF̂ − 2

k
B̂,

D7 = D0 + 2(st− 1
r
)u1

∂
∂u1

− 2srt
k

∂
∂u2

, D8 = D0 +
2n
k
u1

∂
∂u1

+ 2ht
k

∂
∂u1

+ 2
k

∂
∂u2

,

D9 = D0 − 2htu2
∂

∂u1
− 2

k
∂

∂u2
,

D10 = D0 − 2 ∂
∂u2

− p
k(1−a)

(x2

m
+ 2t)

(
∂

∂u1
− k ∂

∂u2

)
,

D11 = D0 − 2 ∂
∂u2

− p
c(1+k2)

(
x2

m
+ 2t(ck + b)

)(
∂

∂u1
− k ∂

∂u2

)
,

D12 = D0 − 2 ∂
∂u2

− p
e
(x2

m
+ 2t) ∂

∂u1
,

D13 = D0 − 1
s

(
u1

∂
∂u1

+ 2u2
∂

∂u2

)
+ t

2sn
∂

∂u1
− t

s
u1

∂
∂u2

,

D14 = D5 +
p(k+1)
ks(a−1)

(
2t+ x2

m

)(
∂

∂u1
− s ∂

∂u2

)
,

D15 = D5 − p(k+1)
kc

(
2tb+ x2

m

)
∂

∂u1
,

D16 = D5 +
1

s(a−1)

[
2t (q + ps(a− 1)) + q x2

m

] (
∂

∂u1
− s ∂

∂u2

)
,

D17 = D0 + 2
(
u1

∂
∂u1

+ u2
∂

∂u2

)
− 1

c

(
2t(bq − pc) + q x2

m

)
∂

∂u1
,

(44)

X1 = exp (nt)
(
2k1F̂+(n1 − k0)B̂

)
, X2 = tX1 + 2 exp (nt) B̂,

X3 = exp(nt)
[
k1 cos(ωt)F̂+((λ0 − k0) cos(ωt)− ω sin(ωt)) B̂

]
,

X4 = exp(nt)
[
k1 sin(ωt)F̂ + ((λ0 − k0) sin(ωt) + ω cos(ωt)) B̂

]
,

Y7 = exp(nt)
(
u1

∂
∂u2

− q
2p

(
sx2

2m
∂

∂u2
− ∂

∂u1

))
, Y8 = exp(nt)(u1

∂
∂u2

− ∂
∂u1

),

Y9 = u1
∂

∂u1
+ nt ∂

∂u2
, Y10 = exp(kt)

(
u1

∂
∂u1

+ nt ∂
∂u2

)
,

Y11 = exp(kt)u1
∂

∂u1
+ n

k−b
∂

∂u2
, Y12 = exp(λ0t)

(
k1u1

∂
∂u1

+n1−k0

2
∂

∂u2

)
,

Y ±
13 = exp (λ±t)

(
k1u1

∂
∂u1

+ (λ± − k0)
∂

∂u2

)
,

λ± = 1
2
(k0 + n1)±

√
δ, λ0 = 1

2
(k0 + n1) ,

Y14 = exp (λ0t)
[
k1 cos(ωt)u1

∂
∂u1

+((λ0 − k0) cos(ωt)− ω sin(ωt)) ∂
∂u2

]
,

Y15 = exp (λ0t)
[
k1 sin(ωt)u1

∂
∂u1

+ ((λ0 − k0) sin(ωt) + ω cos(ωt)) ∂
∂u2

]
.

5 Linear Systems

Consider now the linear case when f 1 and f 2 have the form, fa = Λabub +λa. In contrast
to the one-dimensional cases we find non trivial possibilities corresponding to the non-
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commutation of the matrices A and Λ where we specify A in formulae (25).

Table 5: Symmetries for linear systems

No
Form of
f 1 and f 2

Type
of A (25)

Conditions Symmetries

1 f 1 = f 2 = 0 Ia
X5 + λu1

∂
∂u2

+νu2
∂

∂u2
+ µu2

∂
∂u1

Ib X5 + µu2
∂

∂u2

II X5 + λ
(
u1

∂
∂u2

− u2
∂

∂u1

)
III X5 + λu1

∂
∂u2

2
f 1 = u2,
f 2 = 0

Ib

X0 + ψa
Λ

∂
∂ua

+α(D0 + 2u1
∂

∂u1
)

+λ
(
u1

∂
∂u1

+ u2
∂

∂u2

)
3

f 1 = au1 + bu2,
f 2 = cu1 + du2

Ib δ > 0
X0 + ψa

Λ
∂

∂ua

+ν
(
u1

∂
∂u1

+ u2
∂

∂u2

)
4

f 1 = au1 + bu2,
f 2 = cu1 + du2

II (a− d)2 + (b+ c)2 �= 0
X0 + ψa

Λ
∂

∂ua

+ν
(
u1

∂
∂u1

+ u2
∂

∂u2

)
5

f 1 = au1 + bu2,
f 2 = cu1 + du2

III b2 + (a− d)2 �= 0
X0 + ψa

Λ
∂

∂ua

+ν
(
u1

∂
∂u1

+ u2
∂

∂u2

)
In this table the following notation has been employed:

δ = bc− 1
4
(a− d)2 ,

X5 = X0 + ν
(
u1

∂
∂u1

+ u2
∂

∂u2

)
+ λD0 + ψa

Λ
∂

∂ua

+µ
(
t2 ∂

∂t
+ txa

∂
∂xa

− 1
4
x2(A−1)abub

∂
∂ua

− m
2
t
(
u1

∂
∂u1

+ u2
∂

∂u2

)
+ t2λabub

∂
∂ua

)
.

Note that symbols X0 and D0 has been defined in (42) and (25) and further ψΛ is an
arbitrary solution of the homogeneous equation:

(
∂

∂t
−

m∑
i=1

∂2

∂x2
1

)
ψj

Λ = Λjkψk
Λ.

6 Equivalence transformations

The solutions of the determining equations presented in Tables 2-5 are defined up to
the equivalence transformations (26) which do not change the shape of equations (1) for
arbitrary fk. However for some particular fk it is possible to indicate more extended
groups of equivalence transformations which include (26) as a subgroup. Here we discuss
such transformations.

The most extended equivalence groups appear for the case of linear fk presented in
Table 5. Let the related solutions have the following general form

fk = Λkbub (45)
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where Λkb is a matrix which commutes with (A−1)kb. So there exist an additional equiv-
alence transformation

ua −→ exp

(
−tΛ̂cbub

∂

∂uc

ua

)
= exp

(
−tΛ̂ab

)
ub (46)

where Λ̂cb is a matrix which commutes with Aab and Λab. The transformed equation has

the form (45) where f ′k =
(
Λkb − Λ̂kb

)
ub. In particular we can choose Λ̂kb = Λkb and

reduce the related fk to zero.
For A diagonal there exist also the following equivalence transformation

u1 → u1 exp(−kt), u2 → u2 + nt, (47)

u1 → u1 − tu2 +
t2

2
p, u2 → u2 − tp, (48)

u1 → u1 +
pt2

2
, u2 → u2 + pt (49)

moreover, (48) is valid only for the case when A is proportional to the unit matrix.
Solutions present in Table 5 are defined up to equivalence transformations (26), (46) -

(49).
Using the transformation

u1 → exp(nt)u1, u2 → exp
(
−qn

r

)
u2

it is possible to reduce to zero the parameter n in Table 3, Item 1 (we will refer to this
case as [T3.1]). The transformations u1 → u1, u2 → u2 + νt + µx2 enable to make zero
parameters C1 and C2 in the cases when f 1 and f 2 have the form f 1 = ϕ1+C1, f

2 = ϕ2+C2

where ϕ1 and ϕ2 are given functions of u1. Such transformations can be applied in the
cases [T3.10] and [T3.8] (in the last case it is necessary to change roles of u1 and u2).

Transformations u2 → exp(−nt)u2 and u2 → exp(−bt)u2 give rise to new n and b in
solutions 2 and 3 from Table 4 respectively. The transformation

u1 → u1 exp(−st), u2 → u2 +
sr

k
t

reduces to zero parameter s in non-linearities [T3.6].
Consider further the scale transformation

u1 → µu1, u2 → νu2, t → λt x →
√
λx. (50)

Under obvious conditions for the parameters defining the functions f1 and f2 transfor-
mations (50) enable the reduction of nonzero coefficients p and q to zero coefficients for
solutions 1, 8, and 9 from Table 4.

We see that using equivalence transformations it is possible to make ”cosmetic” im-
provements to the solutions found for fk. These transformations were not used system-
atically because they do not change the principal classes of solutions. Also in some cases
their use would complicate the presentation of the results in standard form and make
them less convenient for applications.
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7 Discussion

In this paper we have found all possible versions of systems of diffusion equations that
admit a nontrivial Lie symmetry. These results can be used to construct mathematical
models with required symmetry properties in for example, physics, biology, chemistry.

In the case when the matrix A is proportional to the unit matrix I equation (24) admits
nontrivial symmetries for all f 1, f 2 given in Tables 2-4. In other words in this case we
have obtained the richest spectrum of possible symmetries. If A is not proportional to I
the number of symmetries is sufficiently reduced by the requirement of commutativity of
A−1 with the chosen matrices B and F (43).

In the particular case when matrix A has the form Ib from (25) our results can be
compared with those of [12]. Our results are quite similar. However, a number of our
solutions, namely, seven of those presented in Table 4, Case 1 (which correspond to
symmetries ZN), solutions [T4.3] for b = k = q = 0, [T5.2] , [T3.11], [T3.12] and all
solutions [T4.4], [T4.5], [T4.7] are missing in [12]. In addition, [T2.17] are presented in
[12] incorrectly (see Table 5, item 9 here).

Consider the examples of reaction diffusion equations mentioned above in Section 1.

• The activator-inhibitor reaction equations [1] are given by

u̇1 − ∂2u1

∂x2
=

u2
1

u2

− bu1, u̇2 − a
∂2u2

∂x2
= u2

1 − u2

and these are a particular case of equation (24) with the non-linearities given in [T

2.5] with d = 2, k = 0, ϕ1 =
u2
1

u2
− b, ϕ2 =

u2
1

u2
− 1, and so admits the symmetry:

X = X0 + α

(
u1

∂

∂u1

+ 2u2
∂

∂u2

)
.

• The primitive predator-prey system can be defined by [1]

u̇1 −D
∂2u1

∂x2

= −u1u2, u̇2 − λD
∂2u2

∂x2
= u1u2.

This is a particular case of (24) with non-linearities [T2.1] where d = 1, k = 1, ϕ2 =
−ϕ1 = u2

u1
, and so it admits the symmetry:

X = X0 + α

(
D0 − 2u1

∂

∂u1

− 2u2
∂

∂u2

)
.

• The λ− ω reaction-diffusion system

u̇1 = D∆u1 + λ(R)u1 − ω(R)u2, u̇2 = D∆u2 + ω(R)u1 + λ(R)u2, (51)

where R2 = u2
1 + u2

2, and ∆ is the Laplacian operator has symmetries that were
analyzed in paper [2]. Again we recognize that this system is a particular case of
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(24) with non-linearities [T2.6] with n = 0. Hence it admits the five dimensional
Lie algebra generated by:

X = X0 + α

(
u1

∂

∂u2

− u2
∂

∂u1

)
(52)

which is in accordance with results of paper [2] for the case when functions λ and ω
are arbitrary. Moreover, using Table 3, Case [T3.2] we find that for the cases when

λ = κ1R
r, ω = κ2R

r (53)

equation (51) admits additional symmetry with respect to scaling transformations
given by the operator:

X = X0 + α

(
u1

∂

∂u2

− u2
∂

∂u1

)
+ νD5. (54)

• The nonlinear Schrödinger equation in m−dimensional space is given by:(
i
∂

∂t
− Σm

i=1

∂2

∂x2
i

)
ψ = F (ψ, ψ∗)ψ (55)

also is a particular case of (24). If we denote

u1 =
1

2
(ψ + ψ∗), u2 =

1

2i
(ψ − ψ∗) (56)

then (55) reduces to the form (24) with A = −σ2 and

f 1 =
1

2
(F ∗ +F )u2 +

1

2i
(F −F ∗)u1, f 2 =

1

2i
(F −F ∗)u2 − 1

2
(F +F ∗)u1. (57)

In other words, any solution given in Table 2 with matrices belonging to Classes I
(d = 0) and II, and solutions given in Tables 3-5 with matrices belonging to Class
II give rise to the non-linearity

F =
1

R2

(
u2f

1 − u1f
2 + i(u2f

2 + f 1u1)
)

(58)

for the nonlinear Schrödinger equation (55) that admits a nontrivial Lie symmetry.In
the cases [T3.7] with n = 0, [T3.2] for s = l = q = 0, r �= 4

m
and r = 4

m
, [T4.8] for

k1 = n1 = k0 = 0, p = q we recognize the well-known non-linearities [11]

F = F (ψ∗ψ), F = (ψ∗ψ)k, F = (ψ∗ψ)
2
m , F = ln(ψ∗ψ) (59)

which correspond to extended symmetries. Our analysis makes it possible to de-
scribe all other possible versions of the nonlinear Schrödinger equation with a non-
trivial symmetry. We plan to discuss these elsewhere.
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Higher symmetries of the linear and nonlinear Schrödinger equations where investigated
in [14], extended supersymmetries where studied in [15] The nonlinear Schrödinger equa-
tions and equations (24) for diagonal A with ad hoc required symmetry with respect to
the (extended) Galilei group were analyzed in [11] and [16]. We notice that the algorithm
used in the present paper reduce such an analyzis to routine and simple calculations.For
example, to find all systems (1) with arbitrary n which are invariant with respect to the
Galilei group it is sufficient to solve the system of homogeneous linear equations (31)
which is easy integrated for any given invertable matrix A .

In the present paper we have restricted ourselves to a complete description of all possible
non-linearities which generate Lie symmetry of equation (1). We have not analyzed non-
classical symmetries that may be found with using condition (13) nor have any symmetry
reductions been presented. These problems will be a subject of further investigations.
Finally we remark that some of the results of this paper have been presented in [17].
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