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Abstract

A constructive algorithm is proposed for the investigation of symmetries of par-
tial differential equations. The algorithm is used to present classical Lie symmetries
of systems of two non-linear reaction diffusion equations.
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1 Introduction

Mathematical models which ultimately involve the analysis of coupled systems of nonlinear
diffusion equations are often discussed in the literature. The Schrodinger equation in
m-~dimensional space is an obvious example from mathematical physics whilst activator-
inhibitor reactions [1], predator-prey systems, A — w reaction systems [2] are common
examples from mathematical biology. These systems are very complex in nature and
admit fundamental particular solutions (for example, travelling waves and, spiral waves)
which have a clear group-theoretical interpretation and which can be obtained using the
classical Lie approach. The existence of such solutions suggests an important role for
both the classical and non-classical symmetry analysis of systems of reaction diffusion
equations. However, to the best of our knowledge, a comprehensive group analysis has
not been undertaken previously although analyses of some special cases do exist.
In this paper we discuss symmetries of equations in the general form

ou 0%u
E—Aza—x?—f(u)zo (1)

i

where u € R", f € R", (z,t) € R™ x R and A is a n X n constant non-singular matrix.
Actually we restrict ourselves to the case n = 2 but all results present in Section 2 and
the main part of results of Section 3 are valid for arbitrary n.

We note that equation (1) with m =n =1, f = 0 was the subject of a group analysis
by Sophus Lie [3]. In addition, classical Lie symmetries of equation (1) with, n =m = 1,
were investigated by Ovsiannikov [4] whose results were completed by Dorodnitsyn [5]
and then generalized to the case m = 2,3 by Dorodnitsyn, Kniazeva and Svirishchevski
[6]. The related conditional (nonclassical) symmetries were described by Fushchych and
Serov [7] and Clarkson and Mansfield [8]. The classical symmetries are summarized in
Table 1.

Table 1: Symmetries of the scalar diffusion equation with source

f(u) Infinitesimals Generator, X

arbitrary Xo

0 Xo + vGo + uDo + Mg + oul + o2

1 X0+1/G1—|—;LD1+)\Al+0(u—t)a%—l—¢0%

U X0+I/G0+MD2+04A2+01L8%+1#1%
u,n#1 Xo+ pDs

e Xo+ puDy
f=ulnu Xo +rve' (Z — Jaul) + peful

Here Greek letters denote arbitrary parameters and are the translation, Xo; Galilei,
Go (@ = 0,1); scale, D, (u = 0,1,...,4) and conformal, A, (¢ = 0,1,2) generators
respectively, where :

X = Oi% + ga%, Gy = tﬁ% — %A:cu% + %5,1115{%, ADO = Zt% + :(;8%,
Dy = Dy 22, Dy = Do + 2tu, Dy =Dy— 2ul, (2)
Dy=Do—22, A, =3D,—1(®+2t)(1 - ut)ul.
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In addition, 6, is the Kronecker symbol and 4, (n = 0, 1) is an arbitrary solution of the
linear diffusion equation (% — %) U = Ny,

A systematic investigation of the symmetries of the general equation (1) with m > 1
and n > 1 has so far not been considered in detail although partial results are available
in [10], [11], [9], [2]. In recent paper [12] Lie symmetries of a subclass of systems (1) for
n = 2 and arbitrary m were investigated. In this subclass the matrix A was diagonal
but not a multiple of the unit matrix. We shall demonstrate that the results [12] are
incomplete.

It is the aim here to undertake such an investigation for the most general case of an
arbitrary 2 x 2 matrix A. In this way we present a complete description of Lie symme-
tries of all possible systems (1) including the cases of the unit matrix A. This latter case
corresponds to the most rich of symmetries with many interesting applications. In par-
ticular, we find all nonlinear Schrodinger equations admitting nontrivial Lie symmetries
since these equations can also be represented in the form (1) with an antidiagonal matrix
A, as is demonstrated in Section 7. Moreover, we find new symmetries of (1) also in the
subclass studied in [12].

The additional main aim of this paper is to present the novel use of a rather conventional
algorithm for investigation of symmetries of a special class of partial differential equations
which includes (1) as a particular case. More precisely we will show that the classical Lie
approach (refer, for example, [13],[11]) when applied to systems (1) admits a rather simple
formulation in terms of commutator algebra which may also be applied to extended classes
of partial differential equations. Furthermore the algorithm may be used to determine
non-classical (or, conditional) symmetries of (1). It will be shown that for n > 1 there
is a proliferation of symmetries, including for the case when f(u) is linear which do not
have origins in symmetries of Table 1 for the one dimensional scalar diffusion equation
with source.

2 An Algorithm for the Determining equations of
symmetries for the system (1)

We require form-invariance of the system of reaction diffusion equations (1) with respect
to the one-parameter group of transformations:

t—t'(t,x,e), r— 2'(t,x,¢e), uw—u'(t 2 e), (3)

where ¢ is a group parameter. In other words, we require that u'(¢',2',¢) satisfies the
same equation as u(t,x):

) 0?

1 / r_ <
L'u' = f(u'), L_at’ A Sy (4)

From the infinitesimal transformations:
t—t' =t+At=1t+en, Ty — T =14 + Az = x4 + £°,

Uy — U = Uy + Aty = ug + €7,
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we obtain the following representation for the operator L':

L = [1+5( Of;+§“ aa)]L{l_g( §t+§“aaa)} + O(e?). (6)

Using the classical Lie algorithm it is possible to find the determining equations for
the functions n, ¢, and 7, which specify the generator X of the symmetry group:

o .9 ,0
X =5 " "

where a summation from 1 to m and from 1 to n is assumed over repeated indices a and
b respectively. This system will not be reproduced here but we note that three of the
equations are:

on o PP
Ou, 0 oup 0 OuOuy 0 (8)

So from (8) n and £* are functions of ¢ and z, and, 7 is linear in u,. Thus:
7 = —m%uy — w* 9)

where 7% and w?® are functions of ¢ and z = (1, o, ... Ty ).
From (4) it is possible to deduce all the remaining determining equations. Indeed,
substituting (5), (9) into (6), using (1) and neglecting the terms of order £? we find that:

o ., 0
”afrf .

0
Q,Llu— Lw=mnf+ / (—ﬂ“bub —w?), Q= + 7 (10)
ou,
and 7 is a matrix whose elements 7% are defined by the relation (9).
To guarantee that equation (10) is compatible with (1) and does not impose new
nontrivial conditions for v in addition to (1) it is necessary to suppose that the commutator

(@, L] admits the representation:
@, L] = AL + o(t, z) (11)

where A and ¢ are n X n matrices dependent on (¢, z,).
Substituting (11) into (10) the following determining equations for f are obtained:

k

AR _ kbY gb L kb g ok (o aby O
( ™) f' + "’ — (Lw) (W*+ ub)@ua

(12)

Thus, to find all non-linearities f* generating Lie symmetries for equation (1) it is
necessary to solve the operator equation (11) for L, @ given in (4), (10) and determine
the corresponding matrices A, m, ¢ and functions 1 and £. In the second step the non-
linearities f* may be found by solving the system of first order equations (12) with their
known coefficients.

Equation (11) is a straightforward generalization of the invariance condition for the
linear system of diffusion equations (1) with f(u) = 0, so that [@Q,L] = AL, which
may readily be solved. By means of this ”linearization” the problem of investigating



A. G. Nikitin and R. J. Wiltshire: Systems of reaction diffusion equations 6

symmetries of systems of nonlinear diffusion equations is reduced to the rather simple
application of elements of matrix calculus in order to classify non-equivalent solutions of
the determining equations.

We notice that this approach is valid for the extended class of equations Lu = f(u)
where L is a linear differential operator with constant coefficients and where u € R™. We
note also that calculations of the non-classical (conditional) symmetries for the system
(1) may be reduced to the solution of the determining equations (12) where now A, 7, ¢,
1 and £ are defined as solutions of the following relationship:

@, L] = AL + o(t, x) + pu(t, 2)Q, (13)

and where p(t, x) is an unknown function of the independent variables.

3 The Symmetry Operators and their Simplification

We now determine the general solutions for matrices A, ¢, 7 and also the functions &, n,
7 which satisfy (12), (11).

Evaluating the commutator in (11) and equating the coefficients for linearly indepen-
dent differential operators we obtain the five determining equations:

Al + &) = =M+ [A7]),  1.=0, n=A, (14)

£ —2Am, — AL =0, = Am,, — 7. (15)

Here the dots denotes derivatives with respect to £ and subscripts denote derivatives with
respect to the spatial variables, so for example, 1, = 8871.
From (14) A is proportional to the unit matrix, A = A and from (14) [A, 7] = 0.

Indeed, choosing a = b we obtain
T— ATlrA = (260 - NI (16)

The trace of the left hand side of (16) is equal to zero, and so 2§ — X = 0 and Ar—7A = 0.

Equations (14)—(15) contain matrices which commute, and so they may easily be inte-
grated using, for example, the method of characteristics. The general solution of (14)—(15)
1s:

¢r = Clably, + da + ¢°, n = —2d,
o %A‘l(gﬁ + §%2%) + O, A = —2dI, (17)
o= %d —C - %A‘l(%ﬁ + §x)

where d, g* are arbitrary functions of ¢ and C' is a t-dependent matrix commuting with A.

By considering the z-dependence of functions (17) it is convenient to represent still
unknown functions w,, occurring in (12), as:

We = wir? + Wiz, + wh 4 p® (18)
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where w§, Wi, wd are functions of ¢, and p? is a function of ¢t and x. Without loss of

generality we suppose that all terms in the right hand side of (18) are linearly independent.
Then comparing with (12), (17) the functions p* have to satisfy:

(Lp)* = NPp® + &5 + &%y + &5 (19)

where \* are constants and &%, £, €5 are functions of t.
The final step is to substitute (17), (19) into (12) and equate coefficients for all different
powers of z,. As a result we obtain the system of equations:

Aty i anty — dayte (at+et- wgg—fi) | (20)
A - eyl o (g -k SD)
20k — Mo — (k4 d5kb)u + (Wl + Oy b)gii — Of —2mARGE 4 b (22)
g_;l:j b \kbb (23)

Thus, the general form of symmetry group generators for equation (1) is given by
relations (7), (17),(18) where d, g%, C%, wk wh w3, u® are functions of ¢ to be specified
using equations (20)-(23). These results are valid for equation (1) with arbitrary n x n
constant nonsingular matrix A.

In the following we restrict ourselves to the case of 2 x 2 matrix A. The related equation
(1) is reduced to the form:

éﬂ_zéqym+wm::f
875 1 0$2 1 2 )

Z A21u + A22U2) _ f2 (24)

where A!, Au, A?! and A?? are elements of matrix A , f! and f? are functions of u;, us to
be specified.

First we present all non-equivalent matrices A which have to be considered in the
analysis. The ad hoc non-equivalent versions of equation (24) correspond to the following
matrices A:

10 1 0 b —c 10
pa=(30) mas(00)e wan (P ) man (10

(25)

wherea, b, ¢ and e are arbitrary parameters, a # 0, 1. All 2 x 2 matrices can be reduced to
one of the forms (25) using linear and scale transformations of the dependent variables.
Moreover, without loss of generality it is possible to set ¢ =1 and e = 1.

The analysis of symmetries of systems of nonlinear diffusion equations present in paper
[12] was restricted to the case when matrix A had the form Ib. We consider here the most
general case, that is, all possible forms of matrix the A given by relations (25).We present
now an outline of the approach used to solve the system (20)-(23)and begin by noticing
that:
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e Except the functions 1, depending on ¢, x and the constant matrix A~ all quantities
in the determining equations belong to one of two classes. Either the quantities
depend of u but are independent of ¢, or, alternatively, the quantities depend of ¢
but are independent of w. This enables us to separate variable and so decouple the
equations.

e To simplify calculations it is convenient to use the equivalence transformations
u® — (ul)a — )\abub + O_a’ fa N (f/)fl — /\abfb (26)

where A% is an invertable constant matrix and o are constants. Such transforma-
tions leave equation (1) form invariant and so make it possible to reduce A~! (and
other matrices used in the analysis) to canonical forms (25).

e Many solutions of (20)-(23) are such that f is linear in u. Such possibilities are
considered separately.

An important a priori simplification of the determining equations can be obtained by
considering the compatibility of (20)-(23).

Lemma 1.Let equations (20), (22)be compatible and f* are nonlinear in u. Then, up
to equivalence transformations (26), the functions d and w§ have to satisfy one of the
following relations

d=0, wy=0, &f=py—&+pd, or d=pd, wy=wj=0 (27)

where 1 # 0,11 and vy are constants, at least one of constants v, is nonzero and nontrivial
Wy are linearly independent of d.

The proof of Lemma 1 depends on the analysis of the consequences of differentiating
equation (20) first, with respect to u. and then with respect to wu, and further consid-
ering the conditions for consistency of the resulting system. Details of this analysis are
straightforward and are omitted here.

An analogous result, with a similar proof is valid for equation (21) which generates the

following restrictions:

Ga=0, wi’=0, *=wvw—¢* or Jo = Vs, wi’=w? =0. (28)
These conditions are compatible with (20), (21) only when:

d = dst + dj, 9" = g5t + gy, w? = Pwl, (29)

d = dy exp(vt) + ds, g" = g7 exp(vt) + g5, w? = b2 (30)

where v, 1%, g¢, di, k =1...4 are constant.
Let p® are trivial then substituting these into (20)—(22) we find that

w2
baua )
[—2(dst + d)6™ + CH]f* + (2ds6p + CF)ub =

32
= wf — 2mA*?02 — (Wi — Cabub)afk (32)

oua”’

(A1) f, = (A1)t dy /-0 orfand g A0, (31)
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ofk
wj (M5k2 - 8—u2> =0, (33)
or alternatively, the system which includes (33) and the two following equations
—1\kb( sb b iy, OfF
(A ) (f —|—M’U/ ) = (A ) ubaua7 H /&07 dl /&0 or g /&07 (34>
[(2d; exp(put) + dy)6F0 + C*] fo + (%,udl exp(vt)oF + CF Yyt = (35)
d)g — 2Ak2,2 — (w§ — C’abub)g%.

Thus, the investigation of symmetries for systems of diffusion equations depends on
solving the determining equations (31)-(33) and (34), (35), (33). These include arbitrary
parameters dy,, i, arbitrary functions of ¢, i.e., w,w$, and an arbitrary matrix C* which
commutes with A and also depend on ¢t. The form of C' is given as follows.

Lemma 2. A necessary condition of compatibility of system (31)-(33) is that the matrix
function C® has the form

Cab — (bOFab + ¢1Bab + V(éab . Fab) (36)
where F% B are constants and ¢y, ¢1 are functions of t satisfying the conditions

Fak:Bkb o Bakab — aBab + ﬁFab,

) ; 37
Po = kogo + k11 + k2, ¢1 = nogo + nid1 + na. (37)
Here o, B, v, ko, k1, ko, ng, n1 and no are arbitrary constants.
Proof is straightforward but rather cumbersome, so we present its sketch only.
An arbitrary 2 x 2 matrix C' whose elements are C® can be expanded as
C= 00[ + 010'1 + 020'2 + 030'3 (38)

where

(e (e (D) (0w

Cy, C1, Cy and Cj are functions of t. Let k (1 < k < 4) of these functions be linearly
independent, then equating in (32) the coefficients for these functions we obtain k systems
of equations for f¢.

Considering the case k = 4 it is possible to convince ourselves that the related overde-
termined systems are incompatible. For k = 3 the compatibility condition for (32) reduces
to the form (36). Then equating coefficients for independent functions ¢ and ¢; in (32)
we come to systems of equations for f* which are compatible provided relations (36) and
(37) are satisfied.

Substituting (27), (28) into (32) we obtain

do | FFO(F5 4 kout) — F“*’Ubg—ﬁ i noBkbub] + ¢y [BE(F* + nyut)—
—B“bubgfi X lekbub} Ty [(5kb _ FRYRb (g Fab)ub%} + (g B (40)

s By — 2dst + di) £+ Lyt = — 0 + 2mbp ARGR + g2t
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This equation has to be imposed together with (31) provided ¢g§ /40 or d3 /~0. Moreover,
different combinations of values of these parameters correspond to different systems of
determining equations. We specify the following five cases:

d3 =0, ¢2=0, ¢o £0, wi=wl=0, wi=const, ny=ky=0,
ds=0, g2 =0, ¢p=0, ws=wP=0, wd=const,ng=ky=0,
ds =0, g% ~0, wi=w?=0, wd=_const,

ds ~0, w?=w?=0, w= const,

w2A0, w?#£0.

In this way the system of equations (31)-(33) may be solved explicitly using the method
of characteristics to determine f* and their corresponding symmetries. A similar approach
can be used for the alternative system (34) and (35) and for the case when p® are not
trivial. In the last case very strong restriction are imposed on f* by relation (23) which
has only few solutions.

4 Non-linearities and symmetries

We will not give the detailed calculations but present the general solution of relations
(20)-(23). In the following tables we present the results of the symmetry analysis for the
case where f* is non-linear in .

First we present the list of non-linearities of the most general form which are defined
up to arbitrary functions. To make this we specify matrices B which commute with A
(25) according to the following categories:

I.B:(1 O), A_lz(l QQI) if d # 1; A='is arbitrary if d = 1;

0 d 0
(00 L (1 0
o n= (90 o (10

(10 L (10
s (10 (10,

Table 2. Non-linearities with arbitrary functions
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Nonlinear Type of |  Argu- Conditions Symmetries, Zy
No terms matrix | ments of for para- for A=! AkB
B (41) ©1, P2 meters & Zg for A7' = kB
L fr=uy, I Uz kE#0 Iy =25 =
f2=uite, 1 = Xo +vD
k=0, Zn — Xo + B,
d;éO ZE:ZN—i-O'aGa
k:d:O, ZN:XO‘{’aula;:l
Y1 Fconst
k=d=0, 7n = X,
Y1 ="n +04U13%1+1Lna%1
2. L =e" (prus + pouy), 11 Re % k#0 In=2p =
f2=e (poua_pruy) = Xo+vD,
3. F1 = ot b | we™ k%0 In =25 = Xo +vD;
f? = (prInuy + @p) uy™! gpll;_(:(?nst | In=Xo+ VU18%2
k=0, ZN=X0+VU13%2
pr=n it 5
4. £ =Mt g, IIla w k#£ 0 Zn = Xo + vD;
J2 =" (prus + )
5. ff=wui(nlnuy + ¢1), I Z—% n#0 Zn = Xo + pe™B,
2 =us(ninuy + ¢3) Zp = Zn + G,
6. 1= prus + puy 11, Re= % n#0 Zn = Xo + pe™B,
+2 (AR +0) (dus —us), | d#0 Zp = Zn + .G,
f? = paua_prus n=0 Zn = Xo + 1B,
+2 (AIn R+ ) (dus + uy) Zp = ZN + AGo
7.1 = (g1 — nb)uy + pau, 11, R n+0 Zn = Xo + pe™ B,
f? = paus — 1wy d=0 Zp = Zy + vuGa
n=0 Zn = Xo + uB,
Zrp = Zn + MG
8. 1= prug + nus, 11T | 2 —Inwy n#0 Zn = Xy + pe™B,
f? = @rus + uyp2 Ty = Zn + .Gl
s <1+g—j) n=0 Zn = Xo+ uB,
Zg =Zn+ MGy
)
9. = pu; — suy, Illa Uy s=0,n#0 ZN:i(_OV;MulB_w
2 = puy — nuy s#0,n=0 ZN:XO%—UUQE)%Q
—l—ueStula%Q
h— s =0 ZN:X0~|—VUQ8%2

el
+,LLU16—u2
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Table 2. Continued

12

10. 1= o, Illa Uy o1 #0 Zn = Xy + pe™B,
f? = prua + pawn + p1=0 | Zy=Xo+pB+1n
11. ff=pu I, | nus +nuy k#0 Zn = Xo + vDs
f2_902u1k d=0
12. 1= orug + Suqus, I, uy —nlnu; | n#0,s=0 Zn = Xo+ \Ys
f? = @2+ suy d=0 s£0,n#£0 Zn = Xo + \Y;3
13. fl=ckug,, Illa nui + 2ug kE#0 Zn = Xo+ \Ds
1?2 = er(py — npiuy) k=0,n+#0 Zn = Xo+ \Y,
b= nuy + ¢, Zy = Xo+
14. 1, iku2+cp1u1+<p2 I11b nu? + 2uy k#0 et <Ulaiu2 N %)
15. ft=n, Illa Uy © #const Iy = Xo+ \Y;
f?=kus+ ¢ +¢ka%2
fr=(n—rju+ ¢, Zn = Xo+
16 PR I11h U R
17 = uyp1 + nug Inwuy, I, Us n=+#0 Zn = Xo+ AYs
2= d=0
18. | fy=efip* a=1,2 any Wi ly — Wally k ~0 Iy =2 =Xo+vDy
10. fr =1 + suq, any — kuy k A0, Iy = 75 = X,
f* =2+ sup Al +erty () (52 + k)
A=xl Uup s=0,A=xl ZN:XO—i—zpoaiuz
20 fl=91, = any Uy, U Iy =2 = Xo
Here R = m@ = arctan(Z—f), the Greek letters in the right column denote arbi-

trary coefficients whilst D,,, G% and G%, X4, Ya, B are various types of dilatation, Galilei

and special transformation generators as follows:

Dy =24 +azl, Di=Do— 3B, Dy=Dy+% (5%

D3 =Dy — <au1 nu1%> , Dy= Dgy— 2wa%,

Go=t5- a — lxa(A 1)"%;,%, G, =en 82 %nxa(A_l)"bub%),

Xo= a2 + ool + v, 2, el =yl (42)
le:ntula;iz—i_uaa;iz Y _ulau +n8u2 Ytg’—eﬁ <u18u +n8§2>’
Y4:nu18u2 8u1 Yy = ekt (ulau +%8%2>,Y6:e ula—m,

B = Babuba—a
where B are elements of the corresponding matrices (41) In addition, %
arbitrary solutions of equations Av(z) = 0 and (& —
Laplace operator.

In the following Tables 3 and 4 we use triplets of matrices (F', B , A
B forming two-dimensional Lie algebra and commuting with A (25).

(z) and ¢y are

)1/)0 = 0 respectively were A is the

~1) with F and
We classify such
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triplets according to the categories:

—bc Z) (43)

(10 (00 L (10
mr=(50) m=(00) A= (1)

where a,b, ¢ and d are real parameters (a # 0, 0% + ¢® # 0).

Table 3. Non-linearities which generate dilatation symmetry

Conditions Symmetries, Zy Matrices (43)
No Non-linear terms for for, A=! # kF and generator
parameters & Zp forA=' = kF parameters
q#0,—1, > 4
ZN:X0+MF+VD5 I.k==
1 1 _ q T ; 0, =0 ) ) m’
f (guiuh +n)u p;j_?nn: . Zp=7n+0,Gs + ANA d:—%
q=-—1, Zn = Xo +pF +vDs [ ped
= (i~ )y | p=n=0 fk, | DRom
r= Zp = ZN +0,Ga + AA '
(]7&0,—1,7”7&0 ZN:XO+VF+/JJD57 ]7k:T+Q7
q—{_r%O?% ZE:ZN+UaGa d__g
p=n=0g#0 | D S0riE La=1,
g=—1,r #0,-1 Do oz, k=r
ZE = ZN+UaGa
q=9=0, ZN:Xoj-VF I,d=0,
5 1 =e?R(gu, s=1=0, ZN:X0+VF—|—[LD5A, Hb,k:%,
_pu2>+su2_lu17 T:% ZE:ZN+0aGa+)\A :_g7n:
f? = e’ R"(gus r#%,r#(), Zn =Xo+VF + uDs, 11bk =,
+puy) — suy — lug, s=101=0 Zp=2Zn+ 0,G, =-—4n=
s - 11b k=,
R? — w2 4 2 [ =-21, Zn = Xo+VF + pDe, n— —sg
1 2 S#O,T%O ZE:ZN+0aGa :_g7
B - s—01#0, Zn = Xo+ v + uDy. | Ila k=g,
Q_arCtan<m> g#0,r=0 Zp = Zn + 0,Gq n=-—I
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- Table 3. Continued 1 _
3 fl :puq"’_leqq r=—q= %, ZN :X0+VF+MD5, I]Ib,d: 17
—sut, s=10 Ip=Zn+ a,G, +2\A k=2
£2 = e (puy —q=r#2 Zy = Xo +vF +pDs | I1Ib,d=1,
+gul>u{ §= O,T’ 7é 0 ZE = ZN + OéaGa k=r
Zy = Xo+vE + uD T11b, =g,
_ r N=AogTV HLe, —
s(u2 qul) q#0,s#0 Zp = Zn + auG nd:_sg,
q
d+k#1, B .
i) p=pd, k0,40, v Ao tvl I11a
s=n#0,p#0 Do
f? = uf (pus + quf) k+#0,s=0, Zn = Xy +VF ITad—0
—l—ﬁul q = 0,]) 7A 0 +MD5 + )\Uga;; ’
k#0,q=0, A
g 72_%, 2 :DXO J;}ZF [lla,d=0
s=nlk—1)#0 THEs AT
d+k #£0,1, B -
k#0,q#0, iNB)_?Jf ITla
s=n#0,p=0 fte U 9uq,
fr=pui™,
- 111
5 12 = pufusy k#0,n#0, Zn = Xo+VvF + uDg B @
p#0 d=1—-k
—knuy Inuy
k #0,n # 0, Zn = Xo+ VvF IIl]a,
p=0 +1Dg + Yoz d=1—k
6 1= qu™ et + suy, r#0,—1;k#0, Zn=Xo+vDy I,d=0,
f? = pujettz — p#0,g#0 +uYs n=—p
p:o,’r‘:—l, ZN:X0+VD7 [,d—o,
q#O,SZO, +Y+1/~Ji r=-14
k;éO |12 9) 09u; n:%
k#oj ZN:Xo—l—l/ula;zl I
o 2 9
s=r=20 +M<D0_E6_m
2| fh=pet T 4 by, q=h=0, Zy = Xo+vD, I,d=0
fP=ge Tt tq k#0,n#0 +ogur ’
q=0, Zy=Xo+vDs+ 4oz | 1,d=0
k#0,h#0
p:q:O7 ZN:XO+~VD2 I7d:07
h=0k#0 +our 50 + Yoz n=0
n:q:g:()’ ZN:XQ+~VD9 Illa
p#0 g 52 + Yoz
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Table 3. Continued 2
A=A
1 __ eug—l—kul’ _
8 flf: qe%z-i-km +p k#0 —XO‘I’VDma I,a#1
‘H/J( )<8u1 _ka—uQ>
A=A
:X0+VD11 IIa;éIé—b’
9 C
+¢( )<8u1 _ka—uQ>
=0 ZNn = Zg = Xo I11b,
— —|—I/D12+"Lp< >8u1 67&0
fU=p(up+nul)e
1
_I—m 87&0’_17
9 f = 23+1 p#onéo ZN:X0+VD13 Illa
+(q—2npu1) ’
2\s+1
X (ug + nuy)®tz
fi = gui™! k=-1,g=0 ZN:ZEa:XO Ik=-1
00t | p£0.g#0) oz a=0
2 =P 1T4q)u p g ey <D5+2ptau2> =
Zn =2 = Xo
kE=—-1,p#0, +”<D5+2ptaw> I.k=-1
+¢08u2
kE#£0, -1, Zn =24 = Xo 111b,d =1
g=r +VD1+¢06%2
fr=g(uz + suy)™, . IN=72&
R A = Aot vhu La#1
+p +o(x )<a_u1_58%2>
Ila,I1b,
k#0,-1; Zy = Zg = Xo c#0
s = —H/D15+77/J( >6U1 11710,b =1
c#0
. Zn = Zg
= qn{uz + sy P S
’ () (s — 558
Ila,I1b,
k=—1,
s =0 ZN—ZE—XO C#O,
N +vDi7 + Y(x >8u1 I11b, k= —1,
b=1,
c#0
13 fl=gu' £0,k 40 In =2 = %o I
f‘2 qu]f-‘rd g ) ‘I—V(DO_%F)_’_QIDO%
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Table 4. Further non-linearities with arbitrary parameters

Fi = uF +vB,jw #0

. . Symmetries,
Non-linear Matrix Conditions Zy for A=V £ Kk F,
No Class for parameters 1
terms (43) and matrices F, eZp for A= =k
¢ &Zp forA™! = kF,
1 = A A
f - 6>O’A7é0’k1 7&07 ZN:XU—i-)\e”*t]:l—l—Ve”*tfg
| (kolnw Lo A=kl +e—k) B | 0iCa (n=n,)
+hy In g d=0 Fy =k F+(n_ — ko)B, ‘E = 2N T Oala \ =Ny,
+q)u1, ny = B 4§ Zp = 2N+ 04Ga (n=n_)
f2 = _ _ N :X0+V€k°tula;:zl
(noInuy F1=mo =0, ko 70 ey 52
+n1 ln7«52 k’l =nNg="n1 =0 ZN :Xg—i-i/}pa;:;—i—yekotulaiul
A =0k #0, Zn=Xo
i )u ko+n,=n 7é 0 +>\6(n1+k°)tf1 + VFQ,
bt Fi=kF +mB, Zp = Zn + 04Ga (n 2 0)
Fo=koB — k F}; Zg=2ZNn+ 0,G, (ko #0)
ko =ny =n, Zn = Xo + ae™u 5
k‘l = Ny = O, +)\€ntu28;227

ZE = ZN +UaGa

ko = ny = n,

n0:0,k:17é0

ZN = XO + )\entula%
+ue”t(k1tu18%1 + u28_u2)

5:O,A7$O,ko—|—n1:2n
fl :2]€1F+ (n1 —ko)B,

Zn = Xo+vX; ‘|“A,UX27
ZE = ZN + UaGa

.FQ - tfl + 2B
Zn =X kituq 22—
§:A:O, N 0+V[1g’18u1
Fi=kF — kB Fulkiin g, — kotag,;),

ZE - ZN + UaGa

ki=n;=0,q=np,
ko =n9g=n,a=1
Fi=F+B

_ 0 g
ZN = XQ + VU28U2 + pug us
nt o) o)
+>\€ <U18—u1 + Uga—m s

ZE = ZN + UaGa
Jd

ki =n; =0,p=0,
ko =no=n,q #0,
a=1F =F+B

_ g ply, O
Zn = Xo+vuy Bu, T HE Ulg,
nt (, 9 9
+Ae <u1 g T U250 ) 5

ZE = ZN + UaGa

ko =k =mn, =0,
n07§0

ZN = XO + l/UQa%
+/L(U18iul -+ notu%—m)

§d=—w?2n="ky+m

Zn = Xo+vX3+ pXy
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flzqul s 9
’ d#0,1,2;k=0 Zn = Xo+vB+ 1,
2 _ d III ) Ty Sy ) M Hug
f +ST’:f2++kPUI ¢ SZO?”%quTl:B ZE:ZN+UaGa
d+#£0,2;n =0, ZNZXO‘F%B%Q
s =0, +v (B—dk:t%),
fl:B ZE:ZN+UaGa
d40,1,2:k =0, S
s=15.F1=B 1B + Yo,
ZEZZN+UaGa
d=21=0,570 | Zy = Xo+ Vs + sl
n=2(q+p) Zy = Xo+ Yy
d=2,k=s=0, +uB + Yoz,
Fi=1B Zp = Zn+0,G,
d=2,p=—q, ZN:XO—{'VY'S—FQ#O@;:Q
n=s=0 —i—u(é—tha%z)
]C_S_O ZN:X0+VB
I11b d=2 F B —i—geqtulg% +¢0§;
E = 4N+ 0,Gq
= kui Inuy + pu, 7 =k=¢q=0, In = Xy + Y
f? =buy +nlny, p#0 +iho g0
=p=0,b=k ZN:X0+VY10+¢I;3%Q
q=p=0, ZN:Xog—Vyn
b#k,b#0 + Vb 5.2 .
ZN:X0+V6 5 -
k=0,nb=#0 Guz
7 (b g — g
:p: s ZN:XO;_wOB%%
k #o,n#0 —I—u;kt(ku)l(a—m +;a—w)
N =Xo+ VYo
f1:k0U11HU1+/<31u1U2, I, k?17é0>5:0 +#<ﬂ/12+eﬂ%ta%2>
f2:nolnu1+n1u2 d=20 ]{317&0,5>0 ZN:X0+V}/1J§+M§/1§
k;17£0,(5:—w2<0 ZN:X0+VY14+M}/15
L= pub + quy, I, p#0,kg #q, Zn = Xo+ vF + 50,
2 9 Ouq
fzngQ d:% /{:7&0,1,}"1:]7 ZE:ZN+UaGa
S = nuyInuy, I n+#0,p#0, Zy = Xo + pui 5=
2 = nus Inuy + puy d=0 Fi=B+F +1/<B—ptu18%2>
a=1 +e™ <u18%1 + u%%) ,
Zy = Zn + 0.G,
fl:pu’f“7 Il]a, ZN:Xo-i—VUza;zZ
f? = pufug + suy d= k70,570 +M€Stula%2
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=
(k:ou1 - TZ()UQ) InR
+0 (k1w — nyug)
+puy — qua,

2=
(/{ZQUQ + TL()Ul) In R
+0 (n1u1 + k’ﬂtg)
+quy + pusg

fl = (k?() 1HU1+
q) u1 + kius,

1=
(nouy + kousg) Inuy
—i—klZ—% + puy
+ (1 + q) up

Ila

111,
d:

5> 0,A#0,k #0,

",E‘l = k‘lF + (n+ — k‘o) B,

fg = le—i-(TL, — ko)B,
ny = ko-i-Tm +46

Zn = Xy
+ A HEF + vt F,
Zp =N+ O_aém
Zy = Zg (ki #0%)

A=0,k #0
ko—i—nl :7’L7£0,2
Fi=kF+nbB,
Fo =koB — k1 F;

k?l :0,7107&02
Fi1=noB + koF,

(ko # 07)
fgzan—noB;
(n1 #07)

Zy = Xo + pe™F
+uf2,

Zp = Zn + 0,Ga,

Zp =2y + 4G4,

1{31:71,020,
]’COZ’I’“:TL,

Fi=vF+uB
(v #07)

Zy = Xo+ ae™Fy,
ZE = ZN + UaGa

§—np—=0,A%£0,
kl#oaflzpa
n = (ko +ni)

Zn = Xo + pe™ (ky tF
+B) +ve"F,
ZE‘ = ZN + O'aGa

0=k =0,
k0:n17
n07é0,.7:1:B

ZN = XO —|— ,uenlt(F
+notB) + ve™'B,

~

75 = Zn + 0,G4

5=0,AZ0,
ko—’-ﬂl =2n
F1 =2k F
—i—(m —ko)B,
FQ - t./fl —|— 2B

Zny = Xo+vX) + /lX27
ZE = ZN + UaGa

ko =k =n; =0,
ng #0,F =B

ZN = X() -+ vB
+1 (F + noté) ,
45 = Iy +0,G,

ko =ng=mn; =0,

kl%(—)a]_—l:F

ZN = XO + vF
+u (B + k1tﬁ>
Zp=ZN+ UaGa

S=A=0,
n0k1 < 0,
Fi=kF —kyB

ZN = XOA+ u(le - k[}B)
+V[]€1tF + (1 - ]{th)B],
ZE = ZN + O'aGa

0= —w? ko+n =2n

Zn = Xo+vX3+puXy
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In Table 4 columns 4 and 5 refer to the both non-linearities specified as Cases 8 and
9. However, the conditions marked by * are related to Case 8 only and the symmetries
marked by ** correspond only to Case 9. In addition, x =constant, A = kgni; — noky,
0= (ko —n1)? + king, Fo F“bubau VB = F“buba and:

) 0? 0\ [0 0 N\ (b \_. [ tn
(&‘A“a—xgﬂwn)‘”(wn)’ <&_A“8_x$><0)_”<0)

and n is an arbitrary parameter (including the case n = 0). The generators D,,, A, G, éa, X,,Ys
when not specified in (42) are given by:

A=122 4 ta, 50 — a2 (A V)b 2 — 2t (ulau + Up 5 ) +nt*F,

Ds = Do — 2(u152 + uag), Dg= Do+ 2tnF — 2B,

D7 = Do + 2(3t - ‘)Ulaiul - %8;22 Dg = Do + 2n“1£1 + Zztaul +3 kau2

Dy = Do — 2htug 5= — 352,

Dio = Do = 2% — it (5 +20) (3 — k3% )

Dux = Do = 23 — it (2 +2t(ck+0)) (2 — ki)

Dys = Do — 28u2 —2(Z 4 2t) 2 (44)
D13 =Dy — ul% + 2U23—w> ﬂa%l - éula%Q7

(k+1) z2 0 0
D14 = D5 + Ifs(a 1) <2t + —> <8_u1 - 38_u2> s
Dys = D5 — M0 (2p 4 22 2,
m?
Dy = D5 + 5(a ) [215 (g +ps(a—1))+ q—] <aiu1 - 36%2 ;
D17—D0+2<u13 + Uz 2) -2 <2t(bq pe) + g% ) Far
(nt

X = exp (nt) <2klﬁ+(n1 — k0)3> , Xo=1tX1+2exp )B

X5 = exp(nt) | ki cos(wt) F+ (A — ko) cos(wt) — wsin(wt)) B,

Xy = exp(nt) |k sin(wt)E + (A — ko) sin(wt) 4+ w cos(wt)) B |

Y, = exp(nt) “18%2 — % (%6%2 — %)) . Y= exp(nt)(ula%z) — 8%1),
Yo = uig,; au + ”tauZ Y10 = exp(kt) (“13 + ”taiz) ;

Y1, = exp(kt)u; -2 7 + ﬁaiw Yis = exp(Aot) (klula%lJr—"l;ko 8%2) ,

v = exp () (ks + (e — ko) 525 )

Ar = §(k0+n1):|:\/_ Ao = —(ko-l-m),

Y14 = exp (Aot) k1 cos(wt)ul8 + (Mo — ko) cos(wt) — wsin(wt)) =21 ,

Ousg
Yis = exp (Aot) |k1 sm(wt)ul6 + (Mo — ko) sin(wt) 4+ w cos(wt)) 8%2 :
5 Linear Systems

Consider now the linear case when f! and f? have the form, f¢ = A®u;, + \,. In contrast
to the one-dimensional cases we find non trivial possibilities corresponding to the non-
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commutation of the matrices A and A where we specify A in formulae (25).

Table 5: Symmetries for linear systems

Form of Type o .
No L and f2 of A (25) Conditions Symmetries
X5 + )\uli
1 1 f2 0 I Oua
f f @ ‘|‘V’nga;22 +Mu26iu1
Ib X5 +,UU28;:2
17 X5+)\<u18iu2_u28;21>
111 X5 + )\Ula;;
1 XO +w/\8u
9 ;2 ig% Ib +a(D0+2u18%1)
+>\ (ul 9 + U,gaiw)
= au; + bus, Xo—i-w{a%a
3 9 Ib 0>0 5 9
f7=cuy + dusy Yy (ulﬁ_ul + UQa_uz>
a_ 0
= auq + busy, ) ) Xo + Vi gar
4 17 —
2 = cuy + duy (a—d)*+(b+c)*#0 +U “1a%+u2a%z>
a_ 0
fl = auy + buo, 9 2 Xo + wAa_ua
’ f? = cuy + dusy i B4 la—d#£0 +v U1a%+uw%z>

In this table the following notation has been employed:

(5:bc—l(a—d)2,
X5 X0+V(Uld +U28 >+)\D0+w1\8u
+ (t2 o 4 maaT — ixz(A hya “ba%a — Ft (ula%l + u28%2> + tQA“bubai> )

Uq

Note that symbols Xy and Dy has been defined in (42) and (25) and further ¢, is an
arbitrary solution of the homogeneous equation:

0 0? ,
(-3 ) - w0k

6 Equivalence transformations

The solutions of the determining equations presented in Tables 2-5 are defined up to
the equivalence transformations (26) which do not change the shape of equations (1) for
arbitrary f*. However for some particular f* it is possible to indicate more extended
groups of equivalence transformations which include (26) as a subgroup. Here we discuss
such transformations.

The most extended equivalence groups appear for the case of linear f* presented in
Table 5. Let the related solutions have the following general form

fk — Akbub (45>
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where A* is a matrix which commutes with (A=!)*". So there exist an additional equiv-
alence transformation

A 0
Uy — €XPp (—t/\’:bub8
U

ua> = exp (—t[\ab> up (46)

Cc

where A% is a matrix which commutes with A% and A®. The transformed equation has
the form (45) where f'* = <Akb — Akb) w,. In particular we can choose A" = A* and

reduce the related f* to zero.
For A diagonal there exist also the following equivalence transformation

uy — uy exp(—kt), Uy — Ug + N, (47)
t2
uy — u; — tug + §p, Uy — Ug — 1P, (48)
pt?
U1—>U1+77 Uy — U + pt (49)

moreover, (48) is valid only for the case when A is proportional to the unit matrix.
Solutions present in Table 5 are defined up to equivalence transformations (26), (46) -
(49).
Using the transformation

qn
u; — exp(nt)uy, Uy — exp <——) Us
r

it is possible to reduce to zero the parameter n in Table 3, Item 1 (we will refer to this
case as [T3.1]). The transformations u; — wuy,us — uy + vt + px? enable to make zero
parameters C; and Cy in the cases when f! and f? have the form f! = p,+C, f? = ©o+Cy
where 1 and ¢y are given functions of u;. Such transformations can be applied in the
cases [T3.10] and [T3.8] (in the last case it is necessary to change roles of u; and us).

Transformations uy — exp(—nt)us and uy — exp(—bt)usy give rise to new n and b in
solutions 2 and 3 from Table 4 respectively. The transformation

sr
uy; — uy exp(—st), Uy — Uy + ?t

reduces to zero parameter s in non-linearities [T3.6].
Consider further the scale transformation

Uy — pa, Uy — Vo, t— Mt T — V. (50)

Under obvious conditions for the parameters defining the functions f; and f; transfor-
mations (50) enable the reduction of nonzero coefficients p and ¢ to zero coefficients for
solutions 1, 8, and 9 from Table 4.

We see that using equivalence transformations it is possible to make ”cosmetic” im-
provements to the solutions found for f*. These transformations were not used system-
atically because they do not change the principal classes of solutions. Also in some cases
their use would complicate the presentation of the results in standard form and make
them less convenient for applications.
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7 Discussion

In this paper we have found all possible versions of systems of diffusion equations that
admit a nontrivial Lie symmetry. These results can be used to construct mathematical
models with required symmetry properties in for example, physics, biology, chemistry.

In the case when the matrix A is proportional to the unit matrix I equation (24) admits
nontrivial symmetries for all f!, f? given in Tables 2-4. In other words in this case we
have obtained the richest spectrum of possible symmetries. If A is not proportional to [
the number of symmetries is sufficiently reduced by the requirement of commutativity of
A~! with the chosen matrices B and F(43).

In the particular case when matrix A has the form Ib from (25) our results can be
compared with those of [12]. Our results are quite similar. However, a number of our
solutions, namely, seven of those presented in Table 4, Case 1 (which correspond to
symmetries Zy), solutions [T4.3] for b = k = ¢ = 0, [T5.2] , [T3.11], [T3.12] and all
solutions [T4.4], [T4.5], [T4.7] are missing in [12]. In addition, [T2.17] are presented in
[12] incorrectly (see Table 5, item 9 here).

Consider the examples of reaction diffusion equations mentioned above in Section 1.

e The activator-inhibitor reaction equations [1] are given by

2 2 2
O%uy  uf . 0“1y
— — buy, U9 — @

0r2  uy 0x?

7.111— :u%—UQ

and these are a particular case of equation (24) with the non-linearities given in [T
u U2

2.5 withd =2k =0,p, = —3 —b, 2 = 2 — 1, and so admits the symmetry:

u u

0 0
X—X0+()z <UI8—1L1+2U28—U2) .

e The primitive predator-prey system can be defined by [1]

62U1 82u2
=— 1o — AD
812 “12; 2 812

u — D

= U1U2.

This is a particular case of (24) with non-linearities [T2.1] where d = 1,k = 1, ps =

—¢1 = 2, and so it admits the symmetry:

0 0
X —X0+Oé (DO —2U18—u1 —2U26—u2> .

e The A\ — w reaction-diffusion system
’lll = DA’LLl + )\(R)Ul — W(R)’UQ, ug = DAUQ + w(R)u1 + )\(R)UQ, (51)

where R? = u? 4+ u3, and A is the Laplacian operator has symmetries that were
analyzed in paper [2]. Again we recognize that this system is a particular case of
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(24) with non-linearities [T2.6] with n = 0. Hence it admits the five dimensional
Lie algebra generated by:

X:Xo—i-oz(uli—ui) (52)

EMQ 2 (‘9u1

which is in accordance with results of paper [2] for the case when functions A and w
are arbitrary. Moreover, using Table 3, Case [T3.2] we find that for the cases when

A=Kk R, w=rR (53)

equation (51) admits additional symmetry with respect to scaling transformations
given by the operator:

0 0
X = X() + « (ulg—uQ — U28—U1) + VD5. (54)

e The nonlinear Schrodinger equation in m—dimensional space is given by:

(' O wp 7 ) b = F(6,0")0 (55)

i _ym &
ot T =lox?

also is a particular case of (24). If we denote

=S+ E), = (- ) (50)

then (55) reduces to the form (24) with A = —o5 and

o 1

1 1
L= (F*+F —(F - F*

1
(F — F")us — §(F + F*)uy. (57)
In other words, any solution given in Table 2 with matrices belonging to Classes [
(d =0) and II, and solutions given in Tables 3-5 with matrices belonging to Class
11 give rise to the non-linearity

F= % (uaf' —urf? +iuaf? + flu')) (58)

for the nonlinear Schrodinger equation (55) that admits a nontrivial Lie symmetry.In
the cases [T3.7) with n =0, [T3.2] for s=1=¢=0,7# = and r = =, [T4.8] for
ki =ny = ko =0, p = q we recognize the well-known non-linearities [11]

F=F@Wy), F=@%F, F=@¥)n, F=h@y) (59)

which correspond to extended symmetries. Our analysis makes it possible to de-
scribe all other possible versions of the nonlinear Schrodinger equation with a non-
trivial symmetry. We plan to discuss these elsewhere.
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Higher symmetries of the linear and nonlinear Schrodinger equations where investigated
in [14], extended supersymmetries where studied in [15] The nonlinear Schrodinger equa-
tions and equations (24) for diagonal A with ad hoc required symmetry with respect to
the (extended) Galilei group were analyzed in [11] and [16]. We notice that the algorithm
used in the present paper reduce such an analyzis to routine and simple calculations.For
example, to find all systems (1) with arbitrary n which are invariant with respect to the
Galilei group it is sufficient to solve the system of homogeneous linear equations (31)
which is easy integrated for any given invertable matrix A .

In the present paper we have restricted ourselves to a complete description of all possible
non-linearities which generate Lie symmetry of equation (1). We have not analyzed non-
classical symmetries that may be found with using condition (13) nor have any symmetry
reductions been presented. These problems will be a subject of further investigations.
Finally we remark that some of the results of this paper have been presented in [17].
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