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Abstract
We describe irreducible representations of the extended Poincaré para-

superalgebra (PPSA) which includes an arbitrary number N of parasuper-
charges, n (n ≤ {N

2
}) central charges and internal symmetry group. We

also discuss wave equations invariant w.r.t. the PPSA and propose a parasu-
persymmetric generalization of the Wess-Zumino model for arbitrary p and
N.

1. Introduction
There are two approaches in modern physics which, in some sense, treat

bosons and fermions on equal rights. One of them is called supersymme-
try [1], [2] and presupposes using of equivalence transformations which mix
fermionic and bosonic states. The other approach is connected with paras-
tatistics and paraquantization [3], [4]. In these theories a fundamental role
is played by a so called paraquantization order p, and for the limiting case
p→ 0 parabosons are in some sence transformed to fermions and vice versa,
parafermions are transformed to bosons [5,6] (for other properties of paras-
tatistics see, e.q. [7], a more modern treatment was presented in [8]).

Both the approaches are unified in the theory called parasupersymmetric
quantum mechanics (PSSQM) which appeared in 1988 [9]. It awaken un-
doubted interest and stimulated a number of investigations, see [10] and ref-
erences cited therein. Parasupersymmetry was used in relativistic quantum
mechanics [11]. Parasuperpotentials admitting Lie and non–Lie symmetries
were investigated in [12], hidden SU(3) symmetry of equations of PSSQM
was established in [13].

An interesting problems of relativization of PSSQM was stated and par-
tially solved in paper [14], where the grounds of parasupersymmetric quan-
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tum field theory (PPSQFT) were formulated. We notice that in fact such a
theory was discussed earlier, and the concept of the Poincaré parasupergroup
(which is symmetry group of parasupersymmetric quantum field theory) was
suggested by Jarvis as far as in 1978 [15]. For modern trends in application
of parasupersymmetry in quantum field theory refer to [16].

In [14], [15] IRs of the simplest N = 1 Poincaré parasuperalgebra were
considered and some representations corresponding to time-like and light-like
four-momenta were discussed. All nonequivalent hermitian IRs for time-like,
light-like and space-like four-momenta had been described in [17].

Representations of the extended Poincaré parasuperalgebra p(1, 3;N)
(i.e., the Poincaré parasuperalgebra with an arbitrary number N of para-
supercharges, which includes the external symmetry algebra) were described
in [18] and [19]. Moreover, the relations of representations of p(1, 3;N) with
representations of the pseudoortogonal algebras so(p, q) was established and
widely exploited in paper [19].

But in papers [14]-[19] an important possibility was ignored which had
been succesfully used in supersymmetric quantum field theory, refer, e.g.., to
[20], [21].. This is to make an additional extension of the PPSA by intro-
duction of so called central charges which form a commutative centre of the
algebra. And it is the possibility which is discussed here.

The present paper continues and in some sense completes the series of
works [17-19] in which the group-theoretical foundations of PSSQFT were
created. We describe IRs of the extended Poincaré parasuperalgebra with an
arbitrary number N of parasupercharges, internal symmetry algebra and n
central charges (n ≤ N/2 for even N and n ≤ (N − 1)/2 for N odd).

The PPSA with the central charges is a direct generalization of the cor-
responding Poincaré superalgebra [22] and can be used, e.q., to construct
parasupersymmetric dynamical models describing parasupermultiplets with
variable masses. However, this generalization is by no means trivial. An in-
teresting new feature of the extended PPSA (in comparison with the Poincaré
superalgebra) is the existence of such IRs which correspond to values of cen-
tral charges larger then doubled mass.

The other specific feature of the present paper is that we formulate the
results in terms of IRs of pseudoorthogonal groups and in terms of parasu-
perfields and paragrassmanian variables as well. Finally, we present linear
and nonlinear models invariant w.r.t. the PPSA.
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2. Extended Poincaré Parasuperalgebra
The Poincaré prasuperalgebra [14, 15, 17-19] is generated by ten genera-

tors Pµ, Jµν , (µ, ν = 0, 1, 2, 3) of the Poincaré group, satisfying the commu-
tation relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPs − gµσPν),

[Jµν , Jρσ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ) (2.1)

and N parasupercharges Qj
A,
(
Qj

A

)†
(A = 1, 2; j = 1, 2, ..., N), which satisfy

the following double commutation relations

[Qi
A, [Q

j
B, Q

k
C ]] = 2εABZ

ijQk
C − 2εACZ

ikQj
B,

[(Qi
A)

†
, [
(
Qj

B

)†
,
(
Qk

C

)†
]] = 2εABZ

∗ij
(
Qk

C

)†
− 2εACZ

∗ik
(
Qj

B

)†
,

[Qi
A, [Q

j
B,
(
Qk

C

)†
]] = 2εABZ

ij
(
Qk

C

)†
− 4Qj

B(σµ)ACP
µδik,

[(Qi
A)

†
, [Qj

B,
(
Qk

C

)†
]] = 4

(
Qk

C

)†
(σµ)ABP

µδij − 2εACZ
∗ikQj

B

(2.2)

where σν are the Pauli matrices, εAB is the universal spinor ε11 = ε22 = 0,
ε12 = −ε21 = 1; (.)AC relate to matrix elements. Relations (2.1), (2.2) include
operators Zij which we call central charges.

Like the case of Poincaré superalgebra the central charges are supposed
to satisfy the relations (Zij)∗ = Zij and Zij = −Zji and to commute with
generators of the PPSA.

The parasupercharges are supposed to be Weyl spinors and so they should
satisfy the following commutation relations with generators of the Poincaré
group:

[Jµν , Q
j
A] = − 1

2i
(σµν)AB Q

j
B, [Pµ, Q

j
A] = 0,

[Jµν ,
(
Qj

A

)†
] = − 1

2i

(
σ∗µν

)
AB

(
Qj

B

)†
, [Pµ,

(
Qj

A

)†
] = 0

(2.3)

where σµν = i
2
[σµ, σν ].

We stress that the extended PPSA is a direct (and natural) generalization
of the Poincaré superalgebra (PSA). Indeed, the PSA also includes 10 + 4N

elements satisfying (2.1), (2.3), but instead of (2.2) supercharges Qj
A,
(
Qj

A

)†
satisfy the following anticommutation relations

[Qi
A, Q

j
B]+ = Qi

AQ
j
B +Qj

BQ
i
A = εABZ

ij,

[Qi
A,
(
Qj

B

)†
]+ = 2δij(σµ)ABP

µ.
(2.4)
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Relations (2.2) are a mere consequence of (2.4), the converse is not true. This
statement follows from the formal identity which is valid for arbitrary three
operators A,B,C

[A, [B,C]] = [[A,B]+, C]+ − [[A,C]+, B]+. (2.5)

Thus, the PSA is a particular case of the more general algebraic struc-
ture called PPSA, like the usual Fermi statistics is a particular case of the
parastatistics [6].

Like the Poincaré superalgebra the PPSA can be extended by adding
the generators Σl of the internal symmetry group which satisfy the following
relations:

[Qi
A,Σl] = T ij

l Q
j
A, [Σl, (Q

i
A)

†
] = T ∗ij

l

(
Qj

A

)†
[Σl,Σm] = fk

lmΣk,
(2.6)

where fk
lm are structure constants of the internal symmetry group. The con-

stants T I
lJ are specified in the following.

3. Wigner Little Parasuperalgebra
The extended Poincaré parasuperalgebra (2.1)-(2.3), (2.6) has two main

Casimir operators [19]

C1 = PµP
µ, C2 = PµP

µBνB
ν − (BµP

µ)2, (3.1)

where

Bµ = Wµ +Xµ, Wµ =
1

2
εµνρσJ

νρP σ, Xµ = (σµ)AB(Qi
A)†Qi

B.

Here Wµ is the familiar Pauli-Lubanski vector. We will use eigenvalues of
C1, C2 to classify IRs.

Like the case of the ordinary Poincaré group [23], IRs of the PPSA are
qualitatively different for the following cases

I. PµP
µ = M2 > 0, II. PµP

µ = 0, III. PµP
µ < 0.

For the cases I and II there exists the additional Casimir operator
C3 = P0/|P0| whose eigenvalues are ε = ±1. Here we consider only such
representations which correspond to C1 > 0 and C3 > 0. This class of repre-
sentations will be denoted as I+.

As follows from (2.1)-(2.3) four-vector Bµ satisfies the relations
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[Bµ, Pν ] = 0, [Bµ, Jνσ] = i(gµνBσ − gµσBν), (3.2)

[Bµ, QA] = 1
2
PµQA, [Bµ, Q̄A] = −1

2
PµQ̄A, [Bµ, Bν ] = iεµνρσP

ρBσ. (3.3)

Considering these relations in the rest frame P = (M, 0, 0, 0) we conclude
that the related three-vector

jk = −Bk

M
= Sk −

Xk

M
, k = 1, 2, 3 (3.4)

commutes with Qj
A, (Qj

A)† and satisfies the commutation relation which char-
acterize algebra so(3):

[ja, Q̂
j
A] = [ja,

ˆ̄Qj
A] = 0, [ja, jb] = iεabcjc. (3.5)

If the central charges are trivial (i.e., Zij ≡ 0) then relations (2.2) are
reduced in the rest frame to the following form

[Qi
A, [(Q

j
B)†, Qk

C ]] = 4MδABδ
ijQk

C

[(Qi
A)†, [QJ

B, (Q
k
C)†]] = 4MδABδ

ij(Qk
C)†.

(3.6)

The remaining double commutators are either equal to zero or can be reduced
to (3.6).

Let the central charges are nontrivial, then using the unitary transforma-
tion

Qi
A −→ Q̃j

A = U ijQj
A, Zij −→ Z̃ij = U ikU jlZkl,

Jµν −→ Jµν , Pµ −→ Pµ,
(3.7)

we can reduce the antisymmetric matrix Zij to the quasidiagonal represen-
tation such that all nonzero elements have the following form

Z̃2m−1,2m = −Z̃2m,2m−1 = Zm, (3.8)

where Zm, m = 1, 2, ..., {N
2
}, are real and non-negative values.

Denoting (Q̂i
A)† = ˆ̄Q

i

A and choosing a new basis

Q̃2m−1
1 = 1√

2
(Q̂2m−1

1 − ˆ̄Q2m
2 ), Q̃2m−1

2 = 1√
2
(Q̂2m

1 + ˆ̄Q2m−1
2 ),

Q̃2m
1 = 1√

2
(Q̂2m−1

1 + ˆ̄Q2m
2 ), Q̃2m

2 = 1√
2
(Q̂2m

1 − ˆ̄Q2m−1
2 )

(3.9)
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we reduce relations (2.2) in the rest frame P = (M, 0, 0, 0) to the form

[Q̂2k−1
A , [ ˆ̄Q2m−1

B , Q̂j
C ]] = 2δABδkm(2M − Zm)Q̂j

C ,

[ ˆ̄Q2k−1
A , [Q̂2m−1

B , ˆ̄Qj
C ]] = 2δABδkm(2M − Zm) ˆ̄Qj

C ,
(3.10a)

[Q̂2k
A , [

ˆ̄Q2m
B , Q̂j

C ]] = 2δABδkm(2M + Zm)Q̂j
C ,

[ ˆ̄Q2k
A , [Q̂

2m
B , ˆ̄Qj

C ]] = 2δABδkm(2M + Zm)Q̂j
C

(3.10b)

the remaining double commutators of the parasupercharges are equal to zero.
Thus description of IRs of the extended PPSA, belonging to Class I+, re-

duces to description of representations of the little Wigner parasuperalgebra
(LWPSA) defined by relations (3.5), (3.6) (or (3.5), (3.10)). In accordance
with (3.5) the LWPSA is a direct sum of algebra so(3) (realized by j1, j2 and
j3) and the algebra formed by parasupercharges.

4. Classification of IRs and Explicit Form of
Basis Elements

4.1 Various Types of Central Charges

It is well known that hermitian IRs of the extended Poincaré superalgebra
can be defined only in the case when values of supercharges do not exceed
2M [22]. We will see that in the case of PPSA such IRs exist for any real
values of Zm.

We specify the following cases
1. The central charges are trivial i.e., Zm = 0, m = 1, 2, ..., {N

2
}.

2. The central charges are nontrivial and are smaller then 2M .
3. The central charges are equal to 2M .
4. The central charges are nontrivial and their values exceed 2M .
5. The central charges are of mixed type, i.e.,

0 < Zi < 2M, i = 1, 2, ...,m1;
Zm1+j > 2M, j = 1, 2, ...,m2;

Zm1+m2+k = 2M, k = 1, 2, ...,m3;
Zm1+m2+m3+l = 0, l = 1, 2, ..., {N

2
} −m1 −m2 −m3.

(4.1)

Consider all these possibilities consequently. Of course Cases 1-4 are
particular versions of Case 5.

4.2 IRs with Trivial Central Charges

These representations are described in papers [17-19]. The related
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WLPSA can be enclosed into the direct sum of the orthogonal algebras

WLPSA ⊂ so(4N + 1)⊕ so(3) (4.2)

and so IRs of the PPSA are induced by IRs of so(4N+1) and so(3). They are
labeled by the sets of numbers (M, j, n1, n2, ..., n2N) where n1 ≥ n2 ≥ n3 ≥
... ≥ n2N ≥ 0 are both integers or half integers, j is an integer or half integer.
The explicit form of the corresponding basis elements Pµ, Jµν , Q

i
A, Q̄

j
A in the

momentum representation up to unitary equivalence can be chosen as [17-19]

P0 = εE, Pa = pa,
Jab = xapb − xbpa + εabcSc,

J0a = x0pa − iε
2
[ ∂
∂pa
, E]+ − εabcpbSc

E+M
.

(4.3a)

Qi
1 = 1√

2M(E+M)
[Q̃j

1(E +M + p3) + Q̃j
2(p1 − ip2)],

Qi
2 = 1√

2M(E+M)
[Q̃j

1(p1 + ip2) + Q̃j
2(E +M − p3)],

Q̄i
A = (Qi

A)†, i = 1, 2, ..., N

(4.3b)

where E =
√
M2 + p2, xa = i ∂

∂pa
; Sa and Q̃j

A, (a = 1, 2, 3; j = 1, 2, ..., N ;

A = 1, 2) are matrices given by the following relations

Q̃j
1 =

√
2M(SΛ, 4j−3+p − iSΛ, 4j−2+p),

Q̃j
2 =

√
2M(SΛ, 4j−1+p − iSΛ, 4j+p),

(4.4)

Sa = S(1)
a ⊕ ja,

S
(1)
1 =

1

2

s∑
i=1

(S4j+p, 4j−3+p + S4j−2+p, 4j−1+p),

S
(1)
2 =

1

2

s∑
i=1

(S4j+p, 4j−2+p + S4j−1+p, 4j−3+p),

S
(1)
3 =

1

2

s∑
i=1

(S4j+p, 4j−1+p + S4j−3+p, 4j−2+p).

(4.5)

Here p = 0 (we introduce this parameter for futher references), Λ = 4N + 1,
s = N , Smn are generators of algebra so(4N + 1) satisfying the following
relations

[Skl, Smn] = −i(gkmSln + glnSkm − gknSlm − glmSkm) (4.6)
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(where gkl = −δkl and δkl is the Kronecker symbol) and realizing IR
D(n1, n2, ..., n2N), ja are basis elements of algebra so(3), belonging to IR
D(j).

We see IRs of the PPSA belonging to Class I+ can be described in rather
straightforward way. For other classes of representations refer to [17-19].

4.3 IRs with 0 < Zm < 2M and Zm > 2M

Let all central charges are nontrivial and satisfy the condition Zm < 2M .
Then, using the analogy of (3.6) with (3.10), we find the general solutions of
relations (3.10) in the form

Q̂2m−1
1 =

√
2M − Zm(SΛ, 8m−7 − iSΛ, 8m−6),

Q̂2m−1
2 = −

√
2M − Zm(SΛ, 8m−5 − iSΛ, 8m−4),

Q̂2m
1 =

√
2M + Zm(SΛ, 8m−3 − iSΛ, 8m−2),

Q̂2m
2 = −

√
2M + Zm(SΛ, 8m−1 − iSΛ, 8m)

(4.7)

where Sij are generators of so(4N +1) satisfying relations (4.6), Λ = 4N +1,
m = 1, 2, ..., N

2
. Substituting (4.7) into (3.9) we obtain parasupercharges in

the rest frame

Q̃2m−1
1 =

√∣∣∣M − Zm

2

∣∣∣(SΛ, 8m−7 + iSΛ, 8m−6)+√
M + Zm

2
(SΛ, 8m−1 + iSΛ, 8m),

Q̃2m−1
2 =

√∣∣∣M − Zm

2

∣∣∣(SΛ, 8m−3 − iSΛ, 8m−2)−√
M + Zm

2
(SΛ, 8m−5 + iSΛ, 8m−4),

Q̃2m
1 = −

√∣∣∣M − Zm

2

∣∣∣(SΛ, 8m−7 − iSΛ, 8m−6)−√
M + Zm

2
(SΛ, 8m−1 + iSΛ, 8m),

Q̃2m
2 = −

√∣∣∣M − Zm

2

∣∣∣(SΛ, 8m−3 + iSΛ, 8m−2)+√
M + Zm

2
(SΛ, 8m−5 + iSΛ, 8m−4).

(4.8)

If N is odd then we again have N − 1 parasupercharges (4.8) and the addi-
tional parasupercharge whose components are

Q̃N
1 =

√
2M(SΛ, 4N−3 − iSΛ, 4N−2),

Q̃N
2 = −

√
2M(SΛ, 4N−1 − iSΛ, 4N).

(4.9)
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The related vector of spin Sa has the form

Sa = (S(2)
a + S̃a)⊕ ja, (4.10)

where ja are generators of the IRs D(j) of algebra so(3), commuting with
Sµν,

S
(2)
1 =

1

2

t∑
i=1

(S8i−7, 8i−4 + S8i−6, 8i−5 + S8i, 8i−3 + S8i−1, 8i−2),

S
(2)
2 =

1

2

t∑
i=1

(S8i−6, 8i−4 + S8i−5, 8i−7 + S8i, 8i−2 + S8i−3, 8i−1),

S
(2)
3 =

1

2

t∑
i=1

(S8i−7, 8i−6 + S8i−5, 8i−4 + S8i−3, 8i−2 + S8i−1, 8i),

t = 2{N
2
}.

(4.11)

For N even S̃a = 0 while for the case of odd N

S̃1 = 1
2
(S8N−7, 8N−2 + S8N−5, 8N + S8N−3, 8N−6 + S8N−1, 8N−4),

S̃2 = 1
2
(S8N−7, 8N−3 + S8N−5, 8N−1 + S8N−2, 8N−6 + S8N, 8N−4),

S̃3 = 1
2
(S8N−7, 8N−6 + S8N−5, 8N−4 + S8N−2, 8N−3 + S8N, 8N−1),

(4.12)

In accordance with the above, the IRs of Class I+ of the extended Poincaré
parasuperalgebra with central charges Zm < 2M are induced by IRs of alge-
bra (4.2) and so are labeled by the sets of numbers (M, j, n1, n2, ..., n2N , Z1,
Z2, ..., Z{N

2
}) satisfying the relations n1 ≥ n2 ≥ ... ≥ n2N , Zm < 2M (all

n1, n2, ... are either integer or half integer). The corresponding basis ele-
ments Pµ, Jµν are given by relations (4.3) (where Sa, a = 1, 2, 3, have the
form (4.10)) and the corresponding parasupercharges (which can be obtained
starting with (4.7) by means of the Lorentz transformation) have form (4.3),
where Q̃j

A are matrices given by relations (4.8), (4.9).
In the case Zm > 2M it is convenient to search for solutions of relations

(3.10) in the form

Q̂2j−1
1 =

√
Zj − 2M(SΛ, 8j−7 − iSΛ, 8j−6),

Q̂2j−1
2 = −

√
Zj − 2M(SΛ, 8j−5 − iSΛ, 8j−4)

(4.13)

and use the old representation (4.7) for parasupercharges with even numbers.
As a result we again come to the representations (4.8), (4.9) and (4.10) for
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parasupercharges and spin vector respectively. Using the technique developed
in [17-19] it is possible to show that the corresponding LWPSA is induced
by the following algebras

A2k = so(2N, 2N + 1)⊕ so(3), N = 2k,
A2k+1 = so(2N − 4, 2N + 5)⊕ so(3), N = 2k + 1.

(4.14)

Thus the related matrices Sµν should belong to the pseudoorthogonal algebra
so(2N, 2N + 1) if N is even and to algebra so(2N − 4, 2N + 5) if N is odd.
These algebras are characterized by commutation relations (4.6) where

gµν =


0, µ 6= ν
−1, µ = ν = 8m− 4, 8m− 5, 8m− 6, 8m− 7
+1, µ = ν = 8m, 8m− 1, 8m− 2, 8m− 3.

(4.15)

Thus in contrast with the PSA, there exist hermitian IRs of the PPSA
corresponding to larger then 2M central charges. The related basis elements
of the PPSA have the form (4.3) where Sµν are matrices belonging to an IR
of the pseudoorthogonal algebra so(2N, 2N + 1) if N is even and algebra
so(2N − 4, 2N + 5) if N is odd.

4.4 The Case Zm = 2M

In the case Zm = 2M the expressions in the l.h.s. of (3.10a) are reduced
to zero. As a result for N even we obtain instead of (4.7) and (4.8)

Q̂2m−1
A = 0,

Q̂2m
A = (−1)A−1

√
2M(SΛ, 4m−5+2A − iSΛ, 4m−4+2A)

and
Q̃2m−1

1 =
√
M(SΛ, 4m−1 + iSΛ, 4m),

Q̃2m−1
2 =

√
M(SΛ, 4m−3 − iSΛ, 4m−2),

Q̃2m
1 = −

√
M(SΛ, 4m−1 + iSΛ, 4m),

Q̃2m
1 =

√
M(SΛ, 4m−3 − iSΛ, 4m−2).

(4.16)

Here Λ = 2N+1, m = 1, 2, ..., N
2
, Sµν , (µ, ν = 1, 2, ...2N+1) are matrices

satisfying (4.6) and belonging to IR D(n1, n2, ..., nN) of algebra so(2N + 1).
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If N is odd then we again have N − 1 parasupercharges (4.16) (where
Λ = 2N + 3) and the additional parasupercharge Q̃N

A , where

Q̃N
1 =

√
2M(SΛ, 2N−1 − iSΛ, 2N),

Q̃N
2 = −

√
2M(SΛ, 2N+1 − iSΛ, 2N+2).

(4.17)

The corresponding spin operators have the form

Sa = (S(3)
a + S̃a)⊕ ja, (4.18)

where

S
(3)
1 =

1

2

f∑
k=1

(S4k+p, 4k−3+p + S4k−2+p, 4k−1+p),

S
(3)
2 =

1

2

f∑
k=1

(S4k+p, 4k−2+p + S4k−1+p, 4k−3+p),

S
(3)
3 =

1

2

f∑
k=1

(S4k+p, 4k−1+p + S4k−3+p, 4k−2+p),

(4.19)

f = {N
2
}, p = 0, S̃a = 0 for N even and S̃a are given by formulae (4.12) for

N odd.
The corresponding basis elements of the PPSA in arbitrary frame of refer-

ence are given by relations (4.3) where Q̃j
A and Sa are defined in (4.16)-(4.19).

4.5 Central Charges of Mixed Type

This case is the most complicated. However, for any particular interval of
values of Zm enumerated in (4.1) we can construct the basis elements of the
PPSA in complete analogy with the treatment given in subsections 4.2-4.4.
As a result we find 2(m1 +m2) parasupercharges of the form (4.8), 2m3 para-
supercharges of the form (4.16) and 2(N −m1−m2−m3) parasupercharges
of the form (4.4), where

Λ = 4N + 1− 2m3. (4.20)

The related symbols Skl used in (4.3), (4.4), (4.8) and (4.16) denote basis
elements of the Lie algebra of pseudoorthogonal group SO(4N − 2m3 −
2m2 + 1, 2m2).

The corresponding vector of spin has the form

Sa = (S(1)
a + S(2)

a + S(3)
a )⊕ ja,
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where S(1)
a , S(2)

a and S(3)
a are given by relations (4.5), (4.11) and (4.19) re-

spectively, where p = 8(m1 +m2), s = N−2m1−2m2, t = m1 +m2, f = m3.
Finally, the related basis elements of the PPSA in an arbitrary frame of refer-
ence again are given by relations (4.3) where Q̃j

A and Sa are matrices defined
in the present section.

Thus in the case of central charges of mixed type the LWPSA can be
enclosed into the Lie algebra

A = so(2m2, 4N − 2m3 − 2m2 + 1)⊕ so(3). (4.21)

which induces IRs of the PPSA.

5. Internal Symmetries
5.1 General Analysis

Let us demonstrate that the space of IR of the extended PPSA is a carrier
space for the internal symmetry group, and construct explicitly the related
group generators.

If central charges are trivial then commutation relations (2.1)- (2.3) are
transparently invariant w.r.t. unitary transformations

Qj
A −→ U jkQk

A, Jµν −→ Jµν , Pµ −→ Pµ,

U jk(U ik)† = δij
(5.1)

and so the corresponding PPSA admits the internal symmetry group U(N).
If central charges are nontrivial then the internal symmetry group is less

extended. Indeed, consider the first of relations (2.2) for A = C = 1, B = 2:

[Qi
1, [Q

j
2, Q

k
1]] = 2ZijQk

1. (5.2)

Calculating commutators of the l.h.s and r.h.s. of (5.2) with Σl and using
(2.6) we come to the following condition

T ij
l Z

jk = T kj
l Zji = (T ij

l Z
jk)†. (5.3)

In other words, a product of a generator of the internal symmetry group
with the matrix of central charges should be a symmetric and hermitian
matrix.

12



In the case of N even and all Zm 6= 0 relation (5.3) specifies algebra
sp({N

2
}). For N odd or for Zm of combined type (4.1) the matrix Zkl is

equivalent to the direct sum of the invertible antisymmetric matrix and the
zero matrix and the related conditions (5.1), (5.3) specify the direct sum of
algebras sp(m1 +m2 +m3)⊕ u(N − 2(m1 +m2 +m3)).

Thus the structure of internal symmetries for the PPSA is clear and is
analogous to the case of PSA [22]. We shall find generators of the internal
symmetry algebra in the explicit form and show that this algebra is a sub-
algebra of (4.21). We will consider successively all the cases enumerated in
Subsection 4.1.

5.2 Internal Symmetries for Trivial Central Charges

If Zkl ≡ 0 then IRs of the PPSA are induced by algebra (4.2). To find the
internal symmetry algebra it is sufficient to define the maximal subalgebra
of (4.2), whose generators Σab satisfy the condition

[Σab, Sc] = 0 (5.4)

where Sc is operator of spin (4.5). Indeed, condition (5.4) selects matrices
which commute with generators Pµ, Jµν (4.3) of the Poincaré group. A
complete set of such matrices can be chosen in the following form

Σab = 1
2
(S4a−2+p, 4b−3+p + S4a+p, 4b−1+p − S4a−3+p, 4b−2+p − S4a−1+p, 4b+p)

− i
2
(S4a−3+p, 4b−3+p + S4a−2+p, 4b−2+p + S4a−1+p, 4b−1+p + S4a+p, 4b+p)

(5.5)
where a, b = 1, 2, ..., N , p = 0, Sµν = −Sνµ, Sµν ⊂ so(4N + 1).

Operators (5.5) satisfy (5.4) and fulfill the following relations

[Σab, Q̃c
A] = δacQ̃c

A, (5.6)

[Σab, Σcd] = δadΣbc − δbcΣad (5.7)

and so form a basis of the internal symmetry algebra u(N).

5.3 Internal Symmetries for Zm 6= 2M

If 0 < Zm < 2M and N is even then IRs again are induced by algebra
(4.2). The internal symmetry algebra is a subalgebra of (4.2) whose basis

13



elements are Akn, Bkn = Bnk and Ckn = Cnk where

Akn = f−n
2f−

k

a(k, n) +
f+

k

2f+
n
a(k + 1

2
, n+ 1

2
) + M(Zk−Zn)

2f−
k

f+
n ZnZk

a(k, n+ 1
2
),

Bkn = Ukn + Unk,

Ukn = f−n
2f−

k

b(k, n) + 1
2

f+
k

f+
n
b(k + 1

2
, n+ 1

2
) + M(Zk−Zn)

2f−
k

f+
n ZkZn

b(k, n+ 1
2
),

Ckn = V kn + V nk,

V kn = 1
2

f−n
f−

k

b†(k, n) +
f+

k

f+
n
b†(k + 1

2
, n+ 1

2
) + M(Zk−Zn)

2f−
k

f+
n ZkZn

b†(k + 1
2
, n),

f±m =

√∣∣∣∣MZm

± 1

2

∣∣∣∣,
a(k, n) = S8n−6, 8k−7 + S8k−6, 8n−7 + S8n−5, 8k−4 + S8k−5, 8n−4

+i(S8n−5, 8k−5 + S8n−4, 8k−4 + S8n−7, 8k−7 + S8n−6, 8k−6),

b(k, n) = S8n−4, 8k−7 + S8k−6, 8n−5 + i(S8n−5, 8k−7 + S8n−4, 8k−6).

(5.8)

Here k, n = 1, 2, ..., {N
2
}, Sµν ⊂ so(4N +1). Formulae (5.8) define N(N−1)

2

linearly independent matrices Akn, Bkn and Ckn which satisfy the following
commutation relations

[Akn, Q̃2j−1
A ] = δkj

√
Zk

Zn

Q̃2n−1
A ,

[Akn, Q̃2j
A ] = −δnj

√
Zn

Zk

Q̃2k
A , [Akn, Sa] = 0,

[Bkn, Q̃2j−1
A ] = δkj

√
Zk

Zn

Q̃2n
A + δkn

√
Zn

Zk

Q̃2k
A ,

[Bkn, Q̃2j
A ] = 0, [Bkn, Sa] = 0,

[Ckn, Q̃2j] = δkj

√
Zk

Zn

Q̃2n−1
A + δkn

√
Zn

Zk

Q̃2k−1
A ,

[Ckn, Q̃2j−1
A ] = 0, [Ckn, Sa] = 0

(5.9)
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and
[Akl, Bmn] = δlmBkn + δlnBkm,

[Akl, Cmn] = −δkmC ln − δknC lm,

[Bmn, Ckl] = δnkAlm + δkmAln + δlmAkn + δlnAkm,

[Bkl, Bnm] = [Ckl, Cmn] = 0.

(5.10)

Relations (5.10) specify algebra sp(N
2
). In accordance with (5.9) this is

the internal symmetry algebra for representations of Class I+ provided N is
even and 0 < Zm < 2M .

For the case of N odd the internal symmetry algebra is sp(N−1
2

) ⊕ u(1).
The basis elements of sp(N−1

2
) are again given by relations (5.8) where k, n =

1, 2, ...N−1
2

and the generator of u(1) is

Λ = S4N−3 4N−2 + S4N−1, 4N . (5.11)

Formulae (5.8), (5.11) present basis elements of the internal symmetry
algebra for the case Zm > 2M also. In accordance with (4.14) the related
matrices Sµν belong to so(2N, 2N+1) if N is even and to so(2N−4, 2N+5)
if N is odd.

5.4 Internal Symmetries for Zm = 2M

If all Zm = 2M then in accordance with Subsection 4.4 IRs of the PPSA
are induced by the algebra AN , moreover

A2n = so(2N + 1)⊕ so(3), N = 2k,

A2k+1 = so(2N + 3)⊕ so(3), N = 2k + 1.
(5.12)

The related internal symmetry algebra is a subalgebra of (5.12) whose
basis elements can be chosen in the form

Akn = −1
2
(S4k−3, 4n−2 + S4n−3, 4k−2 + S4k, 4n−1 + S4n, 4k−1)

+ i
2
(S4k−3, 4n−3 + S4k−2, 4n−2 + S4k−1, 4n−1 + S4k, 4n),

Bkn = 1
2
(S4k−3, 4n + S4n−3, 4k + S4k−1, 4n−2 + S4n−1, 4k−2)

+ i
2
(S4k−3, 4n−1 + S4k−2, 4n + S4n−3, 4k−1 + S4n−2, 4k),

Ckn = (Bkn)†.

(5.13)
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Here k, n = 1, 2, ..., {N
2
}, Sµν ⊂ so(2N+1) for N even and Sµν ⊂ so(2N+

3) if N is odd. Matrices (5.13) satisfy commutation relation (5.10) and so
form a basis of algebra sp({N

2
}). They also satisfy conditions (5.9) with

operators (4.16), (4.18) and so form the internal symmetry algebra. For the
case of odd N the internal symmetry algebra is sp(N−1

2
)⊕ u(1) and includes

additional generator (5.11).

5.5 Internal Symmetries in General Case

Let central charges are of mixed type described by formula (4.1). Then
IRs of the PPSA are induced by algebra (4.21). The corresponding internal
symmetry algebra (ISA) is

ISA = sp(m1 +m2 +m3)⊕ u(N − 2m1 − 2m2 − 2m3). (5.14)

The basis elements of u(N − 2m1 − 2m2 − 2m3) can be chosen in the
form (5.5) where p = 8(m1 + m2 + m3) and Sµν are matrices belonging to
so(2m2, 4N − 2m2− 2m3 + 1). The basis elements of sp(m1 +m2 +m3) can
be divided to three sets. The first set includes (m1 + m2)(2m1 + 2m2 + 1)
elements defined by relations (5.8) where k, n = 1, 2, ...,m1 +m2. The second
set includes m3(2m3 + 1) elements defined by relations (5.13) where k, n =
1, 2, ...,m3. The last (third) set includes 4m3(m1 + m2) elements given by
the following formulae

Ak p+j = −f+
k

2
a(k, j) +

f−
k

2
a(k − 1

2
, j),

Ap+j k = (Ak p+j)†,

Bk p+j = Bp+j k =
f+

k

2
b(k, j)− f−

k

2
b(k − 1

2
, j),

Ck p+j = Cp+j k =
f+

k

2
b†(k, j)− f−

k

2
b(k, j − 1),

(5.15)

where k = 1, 2, ...,m1 + m2, j = 1, 2, ...,m3, p = m1 + m2, f
+
k and f−k are

coefficients defined in (5.8) and

a(k, j) = S8k−3, 8p+4i−2 + S8p+4i−3, 2k−2 − S8k−1, 8p+4i − S8p+4i−1, 8k

−i(S8k−3, 8p+4i−3 + S8k−2, 8p+4i−2 + S8k−1, 8p+4i−1 + S8k, 8p+4i),

b(k, j) = S8k−3, 8p+4i − S8k−2, 8p+4i−1 + S8p+4i−3, 8k − S8p+4i−2, 8k−1

+i(S8k−3, 8p+4i−1 + S8k−2, 8p+4i + S8p+4i−3, 8k−1 + S8p+4i−2, 8k).
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Thus we present explicitly basis elements of the ISA for all possible types
of central charges.

6. Paragrassmanian Variables

6.1. The Case N=1
The description of IRs of the PPSA presented here and in [17-19] is

seemed to be rather convenient in as much as it has been done explicitly
in terms of basis elements of IRs of familiar pseudoorthogonal Lie alge-
bras so(p, q). However, bearing in mind possible applications to generalize
(para)supersymmetric quantum field theories, we consider here a formulation
of such IRs in terms of paragrassmanian variables.

We start with the simplest case N = 1, when there exist the only (four-
component) parasupercharge and central charges are obviously absent . Then
in the rest frame parasupercharges QA can be expressed via parafermionic
creation operators a+

A and annihilation operators aA :

QA =
√

2M aA, (QA)† =
√

2M (aA)+ (6.1)

Operators aA and a+
A satisfy the double commutation relations3

[[aA, aB], aC ] = 0,
[[a+

C , aB], aA] = −2δACaB.
(6.2)

There exist an infinite (but contable) number of non-equivalent fields
satisfying (6.2), which can be enumerated by integer positive number p (called
the order of paraquantization). For each p the operators aA can be defined
using the Green ansatz [5]

aA =
p∑

α=1

b
(α)
A (6.3)

where b
(α)
A are usual fermionic annihilation operators satisfying the following

relations
[b

(α)
A , b

+(α)
B ]+ = δAB, [b

(α)
A , b

(α)
B ]+ = 0,

[b
(α)
A , b

+(β)
B ] = [b

(α)
A , b

(β)
B ] = 0, α 6= β.

(6.4)

3It is worth to note that the relations (6.2) can be written in the form [aA, a†A]+ =
p+2pNA−2N2

A; [aA, a†A] = p−2NA. where NA is the operator of number of parafermions,
and we can use the Dirac’s contour representation [24] for describing these relations.
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In addition it is supposed that there exist a non-degenerated vacuum state
|0 > which is annihilated by any operator b

(α)
A :

b
(α)
A |0 >= 0 for all A and α. (6.5)

Operators b
+(α)
A are defined in the domain which is dense in the Hilbert

space <(p) spanned on the set of vectors P (b+)|0 >, where P are polinomyals

in creation operators b
+(α)
A .

Using (6.3) we can realize the representation of operators aA and a†A in
the space <(p). In addition to (6.2) we impose the following conditions:

aA|0 >= 0, (6.6)

aA a
+
B|0 >= pδAB|0 > (6.7)

It was shown by Greenberg and Messiah [6] that all irreducible represen-
tations of relations (6.2) in the Hilbert space with one cyclic vacuum which
satisfy (6.6), must satisfy (6.7) with some positive p and are defined (up to
unitary equivalence) by the conditions (6.6) and (6.7). Each such represen-
tation can be obtained using Green ansatz (6.3).

Operators b
(α)
A and b

†(α)
A can be realized also in terms of grassmanian

variables

b
(α)
A =

∂

∂θ
(α)
A

, b
+(α)
A = θ

(α)
A (6.8)

which satisfy

(
θ

(α)
A

)2
= 0,

∂

∂θ
(α)
A

θ
(σ)
B + θ

(σ)
B

∂

∂θ
(α)
A

= δασδAB.

Then paragrassmanian variables θA are defined via the Green ansatz (6.3):

aA =
∂

∂θA

=
p∑

α=1

∂

∂θ
(α)
A

, a+
A = θA =

p∑
α=1

θ
(α)
A . (6.9)

Using representation (6.1), (6.9) we can express basis elements (4.3) of
IR of the PPSA via parafermionic creation and annihilation operators, or
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alternatively via paragrassmatian variables. Indeed, in accordance with (6.3),
(6.9) and (4.4) for N = 1

S51 = 1
2

(
a1 + a+

1

)
= 1

2

(
∂

∂θ1
+ θ1

)
, S52 = 1

2i

(
a1 − a+

1

)
= 1

2i

(
∂

∂θ1
− θ1

)
,

S53 = 1
2

(
a2 + a+

2

)
= 1

2

(
∂

∂θ2
+ θ2

)
, S54 = 1

2i

(
a2 − a+

2

)
= 1

2i

(
∂

∂θ2
− θ2

)
.

(6.10)
All the other basis elements of so(5) used in (4.3) can be found using (4.6):

Skl = −i [S5k, S5l] . (6.11)

Formulae (4.3), (6.10), (6.11) present a realization of IRs of the PPSA
(characterizing by N = 1 and arbitrary p) in terms of paragrassmanian
variables.

Consider in details the simplest example with a nontrivial parasuper-
symmetric context, i.e., N = 1, p = 2. The related fermionic creation and
annihilation operators can be realized in terms of the Dirac matrices γ(α)

µ

bα1 = 1
2
(iγ

(α)
1 − γ

(α)
2 ), bα2 = 1

2
(γ

(α)
0 − γ

(α)
3 ), α = 1, 2 (6.12)

where γ(1)
µ and γ(2)

µ are commuting matrices satisfying the Clifford-Dirac al-
gebra [

γ(1)
µ , γ(2)

ν

]
= 0, γ(α)

µ γ(α)
ν + γ(α)

ν γ(α)
µ = 2gµν . (6.13)

Supposing that these matrices are irrducible and using Shur’s lemma we
conclude that they are of dimension 16× 16.

The corresponding relations (6.10) reduce to the form

S54 =
1

2

(
γ

(1)
0 + γ

(2)
0

)
= β0, S5a =

i

2

(
γ(1)

a + γ(2)
a

)
= iβa, a = 1, 2, 3.

(6.14)
The other basis elements of algebra so(5) are

Sab = i [βa, βb] , S4a = − [β0, βa] , a, b = 1, 2, 3. (6.15)

In view of (6.13) it is clear that matrices (6.14), (6.15) satisfy relations
(4.6). Moreover, they satisfy also the Duffin-Kemmer algebra

βµβνβλ + βλβνβµ = gλνβµ + gµνβλ. (6.16)
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Representation (6.14) of algebra (6.16) is reducible and equivalent to the
direct sum of representations realized by 10×10, 5×5 and 1×1 matrices. The
condition of the existence of non-degenerated vacuum state for the related
operators (6.3), (6.12) reduces this reporesentation to 10× 10 one, as will be
shown in the following.

In accordance with (6.3), (6.7), (6.12) the related parafermionic annihi-
lation and creation operators can be represented as

a1 = ∂
∂θ1

= iβ1 − β2, a2 = ∂
∂θ2

= β0 − β3,

a+
1 = θ1 = iβ1 + β2, a+

2 = θ2 = β0 + β3.
(6.17)

Supposing that there exist the non-degenared vacuum state |0 > which
is annihilated by a1 and a2 we can consrtuct a basis

|0 >, a+
A|0 >, a+

A a+
B|0 >, a+2

1 a+
2 |0 >= −a+

2 a
+2
1 |0 >,

a+
1 a

+2
2 |0 >= −a+2

2 a†1|0 >, a+2
1 a+2

2 |0 >

which is actually 10-dimensional. Thus the related matrices βµ are indeed
reduced to 10× 10 ones.

Formulae (6.17) present a realization of parafermionic creation and an-
nihilation operators for p = 2 and the related paragrassmanian variables in
terms of 10×10 Duffin-Kemmer matrices. Inverting these formulae we obtain
the realization of these matrices in terms of paragrassmanian variables, refer
to (6.10), (6.14).

6.2. Paragrassmanian Variables for arbitrary N and nontrivial
Central Charges

Now let us consider the PPSA with arbitrary N and nontrivial central
charges Zk < 2M . In this case we need a set of N parafermionic creation
and annihilation operators which will be defined as

a+j
A =

p∑
α=1

b
+(α)j
A , aj

A =
p∑

α=1

b
(α)j
A (6.18)

where b
+(α)j
A and b

(α)j
A are fermionic creation and annihilation operators (index

j labels a sort of fermions) satisfying the following relations

[b
(α)j
A , b

+(α)j
B ]+ = δABδij, [b

(α)j
A , b

(α)j
B ]+ = 0,

[b
(α)j
A , b

+(β)j
B ] = [b

(α)j
A , b

(β)j
B ] = 0, α 6= β.

(6.19)
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In analogy with (6.4)-(6.9) we conclude that for any fixed j operators

b
+(α)j
A can be realized as Grassmanian variables such that

b
(α)j
A =

∂

∂θ
(α)j
A

, b
+(α)j
A = θ

(α)j
A (6.20)

(variables with non-coinsiding values of j should anticommute).
Like the case N = 1 we define parafermionic creation and annihilation

operators and the related paragrassmanian variables using the Green anzsatz

a+j
A = θj

A =
p∑

α1

b
+(α)j
A , aj

A =
∂

∂θj
A

=
p∑

α1

b
j(α)
A . (6.21)

Such defined operators satisfy the following relations

[[(a+
C)2k−1, aj

B], a2k−1
A ] = −2δACδkma

j
B,

[[(a+)2m, aj
B], a2k

A ] = −2δACδkma
j
B.

(6.22)

We again suppose that operators a+j
A , aj

A are defined in the Hilbert space
with one cyclic vacuum, i.e.,

aj
A|0 >= 0, aj

Aa
+i
B |0 >= pδABδij|0 > . (6.23)

Consider now parasupercharges (3.9) which we represent as

Q̂2k−1
A =

√
2M − Zk a

2k−1
A , Q̂2k−1

A =
√

2M − Zk (a+
A)2k−1

Q̂2k
A =

√
2M + Zk a

2k
A , Q̂2k

A =
√

2M + Zk (a+
A)2k

(6.24)

or, alternatively, with using paragrassmanian variables

Q̂2k−1
A =

√
2M − Zk

∂

∂θ2k−1
A

, Q̂2k−1
A =

√
2M − Zk θ

2k−1
A

Q̂2k
A =

√
2M + Zk

∂
∂θ2k

A
, Q̂2k

A =
√

2M + Zk θ
2k
A .

(6.25)

Relations (4.3)-(4.5), (3.9), (6.24), (6.25) present a realization of all ba-
sis elements of the extended PPSA with arbitrary N and nontrivial central
charges Zm < 2M in terms of parafermionic creation and annihilation oper-
ators and paragrassmanian variables.
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Let us present a special realization of the extended PPSA with arbitrary
N and trivial central charges which was called covariant [17, 19]. In this
realization generators of the Poincaré group and parasupercharges have the
following form

Pµ = pµ, Jµν = xµpν − xνpµ + Sµν , (6.26)

Qj
1 = S4N+1 4j−3 − iS4N+1 4j−2,

Qj
2 = −S4N+1 4j−1 + iS4N+1 4j,

Q̄j
1 = (S4N+1 4j−3 − iS4N+1 4j−2)(p3 − p0)
+(S4N+1 4j−1 + iS4N+1 4j)(p1 − ip2),

Q̄j
2 = −(S4N+1 4j−1 + iS4N+1 4j)(p3 + p0)
+(S4N+1 4j−3 − iS4N+1 4j−2)(p1 + ip2).

(6.27)

Here Sµν are numerical matrices which commute with the orbital part of Jµν :

Sab = εabcS
(1)
c , S0a = iS(1)

a , a, b, c = 1, 2, 3, (6.28)

and S(1)
a are matrices defined in (4.5).

It was shown in [19] that realization (6.26)-(6.28) is equivalent to (4.3).
Like it was done above, matrices Sµν and parasupercharges Qj

A, Q̄
j
A can be

represented in terms of paragrassmanian variables

Sµν =
1

2
(σµν)AB

[
θj

A,
∂

∂θj
B

]
,

Qj
A = ∂

∂θj
A

, Q̄j
A = (σµ)ABθ

j
BP

µ.
(6.29)

where σ0a = σa, σab = 1
2
(σaσb − σbσa) , a, b 6= 0.

Representation (6.27), (6.28) admits an important generalization to the
case of complex Grassmanian variables. Namely, we can set

Sµν = 1
2

∑N
j=1

(
(σµν)AB

[
θj

A,
∂

∂θj
B

]
+ (σ†µν)AB

[
(θj

A)†, ∂

∂(θj
B)†

])
. (6.30)

Qj
A =

∂

∂θj
A

+ (σµ)AB(θj
B)†P µ,

(
Qj

A

)†
=

∂

∂(θj
A)†

+ θj
B(σµ)BAP

µ, (6.31)
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where and the conjugated variables generate zero double commutators with
non-conjugated ones:

[[
∂

∂θj
A

,θk
B

]
, (θi

C)†
]

=


 ∂

∂
(
θj

A

)† ,θk
B

 , (θi
C)

 = 0.

In analogous way starting with representations with non-trivial charges
(4.3)-(4.5), (3.9), (6.24), (6.25) we obtain the following realization for para-
supercharges

Qi
A =

√
m

∂

∂θi
A

+
1√
m

(σµ)AB(θi
B)†P µ +

1√
m
ẐijεABθ

j
B,

(Qi
A)† =

√
m

∂

∂(θi
A)†

+
1√
m
θi

B(σµ)ABP
µ +

1√
m
ẐijεAB(θj

B)†
(6.32)

where Ẑij is the matrix whose elements are given in (3.8). The corresponding
generators of the Poincaré group are still given by relations (6.26), (6.30)

These are realizations (6.26))-(6.32) which will be used in Section 8 to
generate parasupersymmetric motion equations. We notice that in contrast
with representation considered in Sections 3-5 representations (6.26), (6.30)-
(6.32) are reducible.

7. Invariant Wave Equations
7.1. Linear Models
One of possible application of presented representations of the PPSA is

search for the related invariant equations, i.e., equations which are invariant
w.r.t. both the Lorentz and parasupersymmetry transformations. To make
such search it is possible to use well developed theory of relativistic wave
equations (for survey refer, e.g., to [25]) and also newledge of the spin content
of parasupermultiplets [17], [19].

Here we present examples of such invariant wave equations.
Let us start with the simplest model compatible with PPSA (which is

reduced in this case to PSA), i.e., with the famous Wess-Zumino (WZ) model
[2]. It includes one spinor field ϕ and two spinor fields A+and A−which satisfy
the following equations

σµp
µϕ = 0, pνp

νA+ = 0, A− = 0. (7.1)
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The system (7.1) can be rewritten as a single equation

Lψ = [SµνS
µν(p0 − 2Sapa) + (Σ + 1) pνp

ν + (Σ− 1)κ]ψ = 0 (7.2)

where ψ =column(ϕ1, ϕ2, A+, A−), Sµν are matrices defined in (6.28) which
in our case are reduced to the form

Soa =
i

2
εabcSbc = iSa, Sa =

1

4

(
i

2
εabcγbγc + γ0γa

)
, (7.3)

and

Σ =
1

2
(γ1γ2 − γ0γ3) . (7.4)

In addition, we choose such realization of the Dirac matrices γµ that γ5 =
γ0γ1γ2γ3 is diagonal and (γ5)11 = (γ5)11 = 1.

Equation (7.2) is invariant w.r.t. the algebra whose basis elements are
given in (6.26) - (6.28). Indeed, in our case Q1 = γ0− γ3, Q1 = γ1 + iγ2, so
it is easy verified that [Pµ, L]ψ = [Jµν , L]ψ = [QA, L]ψ = 0. We notice that
Σ commutes with all operators (6.26).

Equations (7.1) coressponds to the simplest case p = 1. To find invariant
equations for p = 2 we define a tensor product T of the WZ multiplet M =
(ϕ1, ϕ2, ϕ3 = A+, ϕ4 = 0) and a constant multiplet C = (c1, c2, c3, c4 = 0),
i.e.,

T = (ϕ1c1, ϕ2c2, ..., ϕ4c4). (7.5)

Both M and C are carier spaces of representations of the PPSA for p = 1.
We denote the corresponding supercharges as

Q
(α)
1 = γ

(α)
0 − γ

(α)
3 , Q2 = γ

(α)
1 + iγ

(α)
2 , α = 1, 2,

Q̄
(α)
1 =

(
γ

(α)
0 − γ

(α)
3

)
(p3 − p0) +

(
γ

(α)
1 + iγ

(α)
2

)
(p1 − ip2),

Q̄
(α)
2 = −

(
γ

(α)
1 + iγ

(α)
2

)
(p3 + p0) +

(
γ

(α)
0 − γ

(α)
3

)
(p1 + ip2)

(7.6)

where α = 1 and α = 2 relate to M and C respectively, {γ(1)
µ } and {γ(2)

µ }
are commuting sets of Dirac matrices satisfying (6.12). The corresponding
generators of the Poincaré group are given by relations (6.26), where

S0a =
1

2
εabcSbc =

1

4

2∑
α=1

(
iεabcγ

(α)
b γ(α)

c +
[
γ

(α)
0 , γ(α)

a

])
. (7.7)
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It can be easy shown T is a carier space of representation of the PPSA with
p = 2. The corresponding basis elements of the PPSA are given by (6.26)
(7.7) and by the following relation

QA = Q
(1)
A +Q

(2)
A , QA = Q

(1)
A +Q

(2)
A (7.8)

where Q
(1)
A , Q

(2)
A , Q

(1)
A and Q

(2)
A are operators given in (7.6). This repre-

sentation is reducibe, refer to (6.14)-(6.16). To select the ten-dimensional
irreducible representation we have to restrict ourselves to symmetric part of
parasupermultiplet (7.5), i.e.,

T S = (T1, T2, ..., T10) = (ϕ1c1, ϕ2c2, ϕ1c2 + ϕ2c1, ϕ1c3 + ϕ3c1,
ϕ2c3 + ϕ3c2, ϕ3c3, ϕ2c4 + ϕ4c2, ϕ4c1 + ϕ1c4, ϕ3c4 + ϕ4c3, ϕ4c4).

(7.9)
A linear transformation T4 → T̃4 = c3T4 − c1T6, T5 → T̃5 = c3T5 − c2T6;
Tk → T̃k = Tk, k 6= 4, 5 reduces (7.9) to the form

T̃ S = (T̃1, T̃2, ..., T̃10) = (ϕ1c1, ϕ2c2, ϕ1c2 + ϕ2c1, ϕ1c
2
3, ϕ2c

2
3, ϕ3c3,

ϕ2c4 + ϕ4c2, ϕ4c1 + ϕ1c4, ϕ3c4 + ϕ4c3, ϕ4c4).
(7.10)

In addition, we extend (7.9) to 11-dimensional multiplet

T SE = (T̃0, T̃1, T̃2, ..., T̃10) (7.11)

where T̃0 = c4ϕ4 and temporary set T̃0 = 0. In other words, we reduce the
16×16 dimensional representation of the related Duffin-Kemmer matrices
(6.14) to the direct sum of 10×10 and 1×1 (trivial) representations.

It follows from the definition of T SE that T̃1, T̃2, ... satisfy the equations:

Σµp
µψ = 0

σµp
µχ = 0,

pµp
µT̃6 = 0,

T̃0 = T̃7 = T̃8 = T̃9 = T̃10 = 0

(7.12)

where ψ =column(T̃0, T̃1, T̃2, T̃3), χ =column(T̃4, T̃5), Σ0 is the 4×4 unit ma-
trix,

Σ1 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 ,Σ2 =


0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

 ,Σ3 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0
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Formulae (7.12) present the simplest system of relativistic wave equations
which admits p = 2 parasupersymmetry. It includes the Maxwell equation for
vector T̃a = Ha−iEa which satisfies the usual divergenceless condition paT̃a =
0, Weil equation for spinor χ and D’alembert equation for complex scalar T̃6.
Invariance of this system w.r.t. the PPSA is obvious by construction. The
related basis elements of the PPSA are given by (6.26) - (6.28) where

S(1)
a =

1

2
(iεabcβbβc + [β0, βa]) , S5µ = βµ =

(
0

β̂µ

)

β̂µ are the 10× 10 Duffin-Kemmer matrices whose nonzero elements are

2β̂0 = −ie1,7 + ie1,10 + e2,7 + e2.10 + ie3,8 + ie3,9 −
√

2e4,10 + i
√

2e5,7

−e6,8 − e6,9 + ie7,1 + e7,2 −−i
√

2e7,5 − ie8,3 − e8,6 − ie9,3 − e9,6

−ie10,1 + e10,2 −
√

2e10,4,

2β̂1 = ie1,8 − ie1,9 + e2,8 + e2,9 + ie3,7 + ie3,10 +
√

2e4,9 − i
√

2e5,8

+e6,7 + e6,10 + ie7,3 − e7,6 + ie8,1 − e8,2 − i
√

2e8,5 − ie9,1

−e9,2 +
√

2e9,4 + ie10,3 − e10,6,

2β̂2 = −e1,8 − ie1,9 + ie2,7 − ie2,9 − e3,7 + e3,10 + i
√

2e4,9 −
√

2e5,8

+ie6,7 − ie6,10 + e7,3 + ie7,6 + e8,1 + ie8,2 +
√

2e8,5 + e9,1 − ie9,2

+i
√

2e9,4 − e10,3 − ie10,6,

2β̂3 = −ie1,7 − ie1,10 + e2,7 − e2.10 + ie3,8 − ie3,9 −
√

2e4,10 − i
√

2e5,7

−e6,8 − e6,9 − ie7,1 − e7,2 − i
√

2e7,5 + ie8,3 + e8,6 − ie9,3

−e9,6 − ie10,1 + e10,2 +
√

2e10,4.

Here ek,l denotes the unit element plased on row with number k and line with
number l.

Wave equations for p = 2 parasupermultiplet were first proposed in [14].
They differ from our formulation (7.10) by absence of zero divergence condi-
tion for T̃a and so are not relativistic-invariant.

In analogous manner, considering the tensor product of the multiplet
(7.10) with a constant WZ supermultiplet and making reduction to symmet-
ric states, we obtain wave equations for p = 3 parasupermultiplet, which
includes non-trivial vector-spinor.Ψc

B (B = 1, 2, c = 1, 2, 3), vector ψ = col-
umn (0,ψ1, ψ2, ψ3), Weil spinor χ, scalar ϕ and , in addition, one vector, three
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spinor and five scalar fields which are identically zero.The related system of
equations has the following form

(σµp
µ)AB Ψc

B = 0, (p0+Sapa)bcΨ
c
B= 0, paΨ

a
B = 0, (7.13)

Σµp
µψ = 0, σµp

µχ = 0, pµp
µϕ = 0 (7.14)

were Sa are spin matrices for s = 1 whose elements are (Sa)bc = iεabc.
Equation (7.13) coinsides with equation for massless field of spin 3

2
pro-

posed in [25]. Wave function Ψc
B satisfies the Weil equation by spinor index

B and Maxwell equation by vector index c.
Continuing this procedure we can obtain equations for paramultiplets

with p = 4, , 5, etc. Moreover, in analogous way it is possible to derive equa-
tions for massive parasupermultiplets. Thus, starting with the WZ equations

σµp
µψ +mψ = 0, pµp

µA+ = mA∗
−, A− +mA∗

+ = 0

we obtain equations for p = 2 parasupermultiplet

Σµp
µψ = mψ∗

σµp
µχ = −mχ,

pµp
µT̃6 = mT̃ ∗

9 ,

T̃0 = T̃ ∗, T̃7 + T̃8 = λT̃ ∗
6 ;λ = c1+c2

c3
, T̃10 = 0.

(7.15)

In contrast with the analogous system proposed in [14] equations (7.13)
are relativistic invariant. The first of equations (7.13) is equivalent to spin-
one equation in the Dirac form [25].

7.2. Wess-Zumino-Weinberg M odel for arbitrary p, N and Z
Here we present a formal construction of nonlinear models which general-

ize both the WZ and Weinberg [26] approaches to the case of parasuperfield
with arbitrary p, N and Z.

We start with the case N = 1 and choose the realization of the PPSA in
terms of paragrassmanian variables (6.26), (6.30), (6.31) (the related index
j takes the only value j = 1 and will be temporary omitted). We define
the corresponding representation space as a parasuperfield [27] Φ(x, θ, (θ)

†
)

depending on spatial variables xµ and paragrassmanian variables θ, (θ)†.
This space is reducible w.r.t. PPSA in as much as it is possible to impose on
Φ(x, θ, (θ)

†
) one of the following invariant conditions

DAΦ(x, θ, (θ)†) = 0 (7.16)
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or
DAΦ(x, θ, (θ)†) = 0 (7.17)

where

DA =
∂

∂θA

− (σµ)AB(θB)†P µ,

DA =
∂

∂(θA)†
− θB(σµ)ABP

µ
(7.18)

are covariant derivatives.
Operators εABDADB = D1D2 − D2D1 (and εABDADB) commute with

any element of the PPSA and so relations (7.17), (7.18) do are invariant. To
obtain a clear interpretation of (7.16) it is convenient to apply the transfor-
mation

Φ → Φ+ = exp(−G)Φ,
DA → D′

A = exp(G)DA exp(−G) = ∂
∂θA

.
(7.19)

where G = 1
2
(σµ)AB[(θA)† , θB]P µ.

In accordance with (7.19) relation (7.16) reduces to ∂
∂θA

Φ+ = 0, i.e., Φ+

does not depend on θ.
We notice that transformation inverse to (7.19) reduces DA to the follow-

ing form
D′

A = exp(−G)]DA exp(G) = θ
†
A. (7.20)

Using these definitions we can present invariant non-linear equation as(
[D

′

1, D
′

2]
)p

exp(−2G)Φ∗
+(x, θ) = mΦ+ + gΦ2

+(x, θ) (7.21)

where m is mass and g is interaction constant.
For p = 1 and p = 2 we recover supersymmetric Wess-Zumino model [2]

and the model proposed in [14] respectively.
The Lagrangian which corresponds to equation (7.21) has the following

form

L = (Φ∗
+exp(−2G)Φ+)θp

1θp
2(θ†1)p(θ†2)p +

(
m

2
Φ2

+ +
g

3
Φ3

+

)
θp
1θp

2

+ (h.c.)

The proposed model admits a stright forward generalization to the case
of arbitrary N and nontrivial central charges. The related parasupercharges
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are defined in (6.32) while covariant derivatives are

Di
A = m

∂

∂θi
A

− (σµ)AB(θi
B)†P µ − ẐijεABθ

j
A,

D
i

A = m
∂

∂(θi
A)†

− θi
B(σµ)ABP

µ − εABẐ
ij(θj

A)†.
(7.22)

Imposing the invariant conditions(
εABDj

AD
j
B

)p
Φ = 0

(no sum over j) on the related parasuperfield Φ = Φ
(
θi

B,
(
θj

A

)†
, x
)

and

applying transformation (7.19) where

G =
1

2m

 N∑
j=1

(σµ)AB[
(
θj

A

)†
, θj

B]P µ −
N∑

i,j=1

ẐijεAB

[
θi

A,
∂

∂(θj
B)†

] (7.23)

we obtain the field Φ+ which does not depend on θj
A. The corresponding

invariant equation again can be written in the form (7.21) where G has a
more complicated form (7.23).

Equation (7.23) can be treated as a parasupersymmetric analogue of the
Weinberg equation [26] for particle with arbitrary spin. Indeed, (7.23) in-
cludes only physical components present in the irreducible parasuprfield (no
auxilary fields are involved), and is a partial differential equation of order
2(2s + 1) where s is the maximal spin value for the parasupermultiplet. In
addition, operator exp(−2G) in the r.h.s. of (7.22) is a direct generalization
of the related Weinberg construction and transforms Jµν to J

†
µν .

8. Discussion
We present a description of IRs of the extended PPSA which includes

ten generators of the Poincaré group, an arbitrary number N of parasuper-
charges, n central charges (n ≤ {N

2
}), and also internal symmetry algebra

which is sp(n) ⊕ u(N − 2n). Such rather complicated algebraic structure
admits an explicit description in terms of generators of the little Wigner
parasuperalgebra which is equivalent to the direct sum of algebras so(3) and
so(p, q) were p = 4N−2m2−2m3 +1, q = 2m2; m1, m2 and m3 are numbers
of central charges defined in (4.1).
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In this way we complete investigations of IRs of the PPSA started in
[17-19]. In particular, we obtain a parasupersymmetric analogue of known
IRs of the PSA [22] which appear in our analysis as particular cases. Thus
we present a new view point on PSA which is only the simplest link in the
infinite series of the Poincaré parasuperalgebras.

A specific feature of our approach is that the basis elements of related
internal symmetry algebra are given explicitly both in terms of matrices
belonging to (pseudo)orthogonal algebras and in terms of paragrassmanian
variables. In particular, such formulation can be useful for PSA and super-
symmetric quantum field theory.

In addition, the extended PPSA admits such IRs which do not have ana-
logues in the case of (extended) PSA. They are the representations which
correspond to central charges larger then doubled mass considered in Sub-
section 4.3, 5.3 in the above, and representations corresponding to negative
eigenvalues of the Casimir operators C3 = P0

|P0| or C2 = P µPµ, described in

[17-19].
We notice that realizations in terms of paragrassmanian variables which

are presented in Section 6 for the case 0 < Zm < 2M only, admit stright
forward extensions to the limiting cases Zm ≡ 0 and Zm = 2M (in the last
case operators a2k−1

A and a+2k−1
A are zero in as much as, in accordance with

(4.16), it corresponds to Q̂2k−1
A = 0). A natural question arises whether it is

possible to formulate the analogous results for the case Zm > 2M.
The possibility to describe the considered classes of IRs of the extended

PPSA using parafermionic creation and annihilation operators or paragrass-
manian variables is a simple consequence of the well known fact that or-
thogonal algebras so(n) are isomorphic to algebras (7.5) [28]. In the case
Zm > 2M representations of the PPSA are induced by pseudoorthogonal al-
gebras (4.14) whose hermitian representations are infinite-dimensional. Such
algebras cannot be realized via finite numbers of fermionic creation and an-
nihilation operators, however, it is possible to construct the corresponding
representations in terms of (para)bosonic creation and annihilation operators
[7].

We also present linear and nonlinear models invariant w.r.t the PPSA.
The generalized parasupersymmetric WZ-Weinberg model is rather stright
forward and simple extension of the famous WZ model [2]. However, it can
lead to undezired complications which are typical to the Weinberg approach
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and are connected with presence of higher derivatives. Thus it is interesting
to search for other models which admit this specific combination of symme-
tries, i.e., relativistic invariance and parasupersymmetry.

We are indebted to referees and especially to the adjudicator for helpfull
suggestions which caused essential improvement of Sections 6 and 7. One of
us (AGN) wish to thank the Royal Society for their financial assistance for
this research.
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J.Phys. A 32 1115.

[8] J. Niederle 2000 Bose-Fermi Similiarity In: Proceedings of the Inter-
national Symposium ”Quantum Theory and Symmetries, Eds: H.-D.
Doebner et al, World Scientific P. 372

[9] V. A. Rubakov and V. P. Spiridonov 1988 Mod. Phys. Lett. A 3 1337.

[10] J.Beckers and N.Debergh 1990 Nucl.Phys.B 340 767; J.Beckers and
N.Debergh 1991 J.Math.Phys. 32 1808; S. Durand and L. Vinet 1990 J.
Phys. A 23 3661; A. A. Andrianov, M. V. Ioffe, V. P. Spiridonov and
L. Vinet 1991 Phys Lett. B 272 297.

31



[11] G.P. Korchemsky 1991 Phys. Lett. B 267 497.

[12] J. Beckers, N. Debergh and A.G. Nikitin 1992 Mod. Phys. Lett. A 7
1609.

[13] J. Beckers, N. Debergh and A. G. Nikitin 1993 J. Phys. A 26 L853.

[14] J. Beckers, N. Debergh 1993 J. Mod. Phys. A 8 5041.

[15] P. D. Jarvis, 1978 Australian J. Phys. 31, 461 .

[16] M. A. Jafarizadeh, H. Fakhri, S. K. Moayedi 1999 Phys. Rev. D 60
084026.

[17] A. G. Nikitin and V. V. Tretynyk 1995 J. Phys. A 28, 1665.

[18] A.G.Nikitin 1998 In: 5th Wigner Symposium. Editors. P.Kasperovitz
and D.Gram. World Scientific 227.

[19] J. Niederle and A. G. Nikitin 1999 J. Phys. A 32, 5141.

[20] A. Hindawi, B. A. Ovrut and D. Waldram 1997 Phys. Lett. B 392 85.

[21] N. Dragon, E. Ivanov and U. Threis 1999 Nucl. Phys. B 538 411.

[22] S. Ferrara, C.A. Savoy, B. Zumino 1981 Phys. Lett. B 100 393.

[23] E. P. Wigner 1939 Ann. Math. 40 149.

[24] S. Jing and Ch.A. Nelson, 1999 J.Phys. A 32 401.

[25] W.I.Fushchich and A.G. Nikitin 1994 , Symmetries of equations of quan-
tum mechanics (Allerton Press, N.Y.).

[26] S. Weinberg 1964 Phys. Rev. 133 1318.

[27] G. F. Del’Antonio, O. W. Greenderg and E.C.G. Sudarshan 1964 Group
Theoretical Concepts and Methods in Elementary Particle Physics. Lec-
tures at the Istanbul Summer School of Theoretical Physics (1962). Ed-
itor F. Gürsey-N.Y.:Gordon and Breach.

[28] C. Ryan and E. C. C. Sudarshan 1962 Nucl. Phys. 36 177

32


