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Abstract

Irreducible hermitian representations of the extended Poincaré para-
superalgebra with non-trivial central charges are described. These rep-
resentations include the representations of the usual extended Poincaré
superalgebra as a particular case and can serve as a group–theoretical
foundation of parasupersymmetric quantum field theory, i.e., as a gen-
eral viewpoint to reformulate quantum field theory and quantum me-
chanics of identical particles on the general basis of paraquantization
and supersymmetry.

1 Introduction

Poincaré parasuperalgebra (PPSA) is an extension of the Poincaré algebra
which is other then Poincaré superalgebra but includes the last as a partic-
ular case [1,2]. It appears naturally when the parasupersymmetric quantum
mechanics [3] is being relativized and can serve as the group-theoretical base
of parasupersymmetric quantum field theory.

There are two approachers in modern physics which in some sense treat
bosons and fermions on equal rights. One of them is called supersymmetry
[4] Indeed all models of supersymmetry quantum field theory admit equiv-
alence transformations which mix fermionic and bosonic states. The other

1



approach is connected with parastatistics and paraquantization [5,6]. Para-
supersymmetric quantum field theory [2] is a kind of a syntesis of these two
approaches.

In [1,2] the irreducible representations (IRs) of the simplest N = 1
Poincaré parasuperalgebra were considered and some representations cor-
responding to time-like and light-time four-momenta were discussed. A com-
plete description of all nonequivalent IRs for time-like, light-like and space-
like four-momenta had been found in [7].

Representations of the extended Poincaré parasuperalgebra p(1, 3; N) (i.e.,
the Poincaré parasuperalgebra with an arbitrary number N of parasuper-
charges, which includes the external symmetry algebra) were described in [8]
and [9]. Moreover, the relations of representations of p(1, 3; N) with IRs of
the pseudeorthogonal algebras so(p, q) was established [9].

In the following we describe IRs of the extended Poincaré parasuperal-
gebra with an arbitrary number N of parasupercharges, internal symmetry
algebra and n (n ≤ N/2 for even N and n ≤ (N − 1)/2 for N odd) central
charges.

2 Extended Poincaré parasuperalgebra.

The Poincaré prasuperalgebra [1, 2, 9] is generated by ten generators Pµ, Jµν ,
µ, ν = 0, 1, 2, 3 of the Poincaré group, satisfying the commutation relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPσ − gµσPν),

[Jµν , Jρσ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ), (2.1)

and N parasuperchargers Qj
A,
(
Qj

A

)†
(A = 1, 2, j = 1, 2, ..., N), which satisfy

the following double commutation relations

[Qi
A, [Qj

B, Qk
C ]] = 4εABZijQk

C − 4εACZikQj
B,

[(Qi
A)

†
, [
(
Qj

B

)†
,
(
Qk

C

)†
]] = 4εABZ∗

ij

(
Qk

C

)†
− 4εACZ∗

ik

(
Qj

B

)†
,

[Qi
A, [Qj

B,
(
Qk

C

)†
]] = 4εABZij

(
Qk

C

)†
− 4Qj

B(σµ)ACP µ,

[(Qi
A)

†
, [Qj

B,
(
Qk

C

)†
]] = 4

(
Qk

C

)†
(σ∗µ)BAP µ − 4εABZ∗

ikQ
j
B

(2.2)

where σν are the Pauli matrices, (.)AC relate to matrix elements.
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Relations (2.1),(2.2) include operators Zij which we call the central charges.
For the case Zij = 0 these relations reduce to the form proposed in [1,2,8].

Like the case of Poincaré superalgebra the central charges are supposed to
satisfy the relations Z∗

ij = Zij and Zij = −Zji and commute with generators
of the PPSA.

The commutation relations between the generators of the Poincaré group
and the parasupercharges are:

[Jµν , Q
j
A] = − 1

2i
(σµν)A

BQj
B, [Pµ, Q

j
A] = 0,

[Jµν ,
(
Qj

A

)†
] = − 1

2i

(
σ∗µν

)B

A

(
Qj

B

)†
, [Pµ,

(
Qj

A

)†
] = 0 .

(2.3)

We stress that the extended PPSA is a direct (and natural) generalization
the Poincaré superalgebra). Indeed, the PSA also includes 10+4N elements

satisfying (2.1), (2.3), but instead of (2.2) supercharges Qj
A,
(
Qj

A

)†
satisfy

the following anticommutation relations

[Qi
A, Qj

B]+ = Qi
AQj

B + Qj
BQi

A = εABZij, [Qi
A,
(
Qj

B

)†
]+ = 2δij(σµ)ABP µ.

(2.4)
Relations (2.2) are mere consequence of (2.4), the converse is not true.

Like the Poincaré superalgebra the PPSA can be extended by adding the
generators Σα of the internal symmetry group,which satisfy the following
relations:

[Qi
A, Σα] = T i

αjQ
j
A, [Σα, Pµ] = [Σα, Jµµ] = 0, [Σα, Σσ] = fασ

ν Σnu (2.5)

were fk
lm are structure constants of the internal symmetry group, the con-

stants T i
lj are specified in the following. Thus, the PSA is a particular case

of the more general algebraic structure called PPSA, like the usual Fermi
statistics is a particular case of the parastatistics [6]. Moreover, in analogy

with the PSA, Pσ and Jµν are called even and Qj
A,
(
Qj

A

)†
are called odd

elements of the PPSA.

3 Wigner little parasuperalgebra

The extended Poincaré parasuperalgebra (2.1)-(2.3), (2.5) has two the main
Casimir operators [1,2, 8]

C1 = PµP
µ, C2 = PµP

µBνB
ν − (BµP

µ)2 (3.1)
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where

Bµ =
1

2
εµνρσJ

νρP σ + ΣN
i=1 (σµ)AB Q̄i

AQi
B.

We will use eigenvalues of C1,C2 to classify the IRs.
Like the case of the ordinary Poincaré group [10], IRs of the PPSA are

qualitatively different for the following cases
I. PµP

µ > 0, II. PµP
µ = 0, III. PµP

µ < 0.
For the cases I and II there exists the additional Casimir operator C3 =

P0/|P0| whose eigenvalues are ±1. Here we consider only such representations
which correspond to C1 > 0 and C3 > 0. This class of representations will
be denoted as I+.

As follows from (2.1)-(2.3) four–vector Bµ satisfies the relations

[Bµ, Pν ] = 0, [Bµ, Jνσ] = i(gµνBσ − gµσBν), (3.2)

[Bµ, Q
i
A] = 1

2
PµQ

i
A, [Bµ, Q̄

i
A] = −1

2
PµQ̄

i
A, [Bµ, Bν ] = iεµνρσP

ρBσ. (3.3)

Consider these relation in the momentum representation and rest frame
of reference P = (M, 0, 0, 0). For this particular choice of P we define the
three-vector jk by the identities

Bk = Wk + Xk = −MSk + Xk ≡ −Mjk, k = 1, 2, 3 (3.4)

The central charges Zij have to be equal to the unit matrix multiplied
by the numeric coefficients Zij. We will treat these coefficients as elements
of the N ×N antisymmetric matrix Z. Up to the unitary transformation

Z −→ Z̄ = UZU † (3.5)

any such matrix can be reduced to the following quasidiagonal form

Z̃ij = U i
kU

∗j
l Zkl, (3.6)

where

Z̃ij = εij ⊗D (N even); Z̃ij =

(
εij ⊗D 0
0 0

)
(N odd), (3.7)

where D is a diagonal matrix with the positive real eigenvalues Zm, m =
1, 2, ..., {N/2}, {N/2} is the integer part of N/2, εij is the unit antisymmetric
tensor.
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Relations (2.2) are invariant under the simultaneous transformation

Zij −→ Z̄ij = U i
kU

∗j
l Zkl, Qi

A −→ Q̃i
A = U j

kQ
k
A (3.8)

(UkL are elements of the unitary matrix U of (3.6)), where all nonzero Zij

are exhausted by the following ones

Z2m−1,2m = −Z2m,2m−1 = Zm. (3.9)

Denoting (Q̂j
A)† = ˆ̄Q

j

A and choosing a new basis

Q2m−1
1 = 1√

2
(Q̂2m−1

1 + Q̂2m
1 ), Q2m−1

2 = 1√
2
( ˆ̄Q

2m

2 − ˆ̄Q
2m−1

2 ),

Q2m
1 = 1√

2
(Q̂2m−1

2 + Q̂2m
2 ), Q2m

2 = 1√
2
( ˆ̄Q

2m

1 − ˆ̄Q
2m−1

1 )
(3.10)

we reduce relations (2.2), (2.7), (2.8) in the rest frame P = (M, 0, 0, 0) to the
form

[ja, jb] = iεabcjc, [ja, Q̂
j
A] = [ja,

ˆ̄Qj
A] = 0,

[Q̂2k−1
A , [ ˆ̄Q

2m−1

B , Q̂j
C ]] = δABδkm(2M − Zk)Q̂

j
C ,

[Q̂2k
A , [ ˆ̄Q

2m

B , Q̂j
C ]] = δABδkm(2M + Zm)Q̂j

C ,

[ ˆ̄Q
2k−1

A , [Q̂2m−1
B , ˆ̄Q

j

C ]] = δABδkm(2M − Zm) ˆ̄Q
j

C ,

[ ˆ̄Q
2k

A , [Q̂2m
B , ˆ̄Q

j

C ]] = δABδkm(2M + Zm) ˆ̄Q
j

C

(3.11)

the remaining double commutators of the parasupercharges are equal to zero.
Let all Zm < 2M then we find the general solution of relation (3.11) in

the form

Q̂2m−1
A = (−1)A−1

√
2M − Zm(S4N+1,8m−11+4A − iS4N+1,8m−10+4A),

Q̂2m
A = (−1)A−1

√
2M + Zm(S4N+1,8m−9+4A − iS4N+1,8m−8+4A)

(3.12)

where Sµν are generators of algebra so(4N + 1) satisfying the following rela-
tions

[Skl, Smn] = −i(gkmSln + glnSkm − gknSlm − glmSkm) . (3.13)

Here gkl = −δkl and δkl is the Kronecker symbol.
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Substituting (3.12) into (3.10) we obtain parasupercharges in the rest
frame

Q̃2m−1
A =

√
M − Zm

2
((−1)A−1S4N+1,8m−11+4A − iS4N+1,8m−10+4A)+

+
√

M + Zm

2
(S4N+1,8m−9+4A + i(−1)AS4N+1,8m−8+4A),

Q̃2m
A =

√
M − Zm

2
(−S4N+1,8m−7+4A + i(−1)A−1S4N+1,8m−6+4A)+

+
√

M + Zm

2
((−1)AS4N+1,8m−5+4A + iS4N+1,8m−4+4A).

(3.14)

The related vector of spin Sa has the form

S1 = (1/2)
∑N

i=1(−1)i−1(S2i,2i+3 + S2i−1,2i+4)⊕ j1,
S2 = (1/2)

∑N
i=1(−1)i−1(S2i+3,2i−1 + S2i,2i+4)⊕ j2,

S3 = (1/2)
∑N

i=1 S2i−1,2i ⊕ j3

(3.15)

where j3 are generators of the IRs D(j) of algebra so(3), commuting with
Sµν .

In accordance with the above, the IRs of the class I+ of the extended
Poincaré parasuperalgebra with central charges Zm < 2M are labelled by
the following sets of numbers (M, j, n1, n2, ..., n2N , Z1, Z2, ..., Z{n/2}) satisfy-
ing the relations n1 ≥ n2 ≥ ... ≥ n2N , Zm < 2M (all n1, n2, ... are either
integer or half integers ). The corresponding basis elements Pµ, Jµν and
parasupercharges (which can be obtained starting with (4.8) by means of the
Lorentz transformation) have the form

P0 = E, Pa = pa,
Jab = xapb − xbpa + εabcSc,
J0a = x0pa − i

2
{ ∂

∂pa
, E}+− εabcpbSc

E+M

Qj
1 = 1√

2M(E+M)
[(E + M + p3)Q̃

j
1 + (p1 − ip2)Q̃

j
2]

Qj
2 = 1√

2M(E+M)
[(p1 + ip2)Q̃

j
1 + (E + M − p3)Q̃

j
2]

j = 1, 2, ..., N

(3.16)

where xa = i ∂
∂pa

, E =
√

M2 + p2, and Q̃j
A, (j = 2m − 1, or j = 2m,A =

1, 2) are matrices given by relations (3.14).
IRs of the PPSA with central charges can be constructed also for the case

Zm = 2M . Moreover, in contrast with the PSA, there exist such IRs of the
PPSA which correspond to Zm > 2M for some m < {N/2}.
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Let us consider the most general case when

Zm < 2M, m = 1, 2, ..., p,
Zm = 2M, m = p + 1, p + 2, ..., s,
Zm > 2M, m = s + 1, s + 2, ..., {N

2
}

(3.17)

for some integers p, s, satisfying 0 ≤ p ≤ s ≤ {N/2}. Using again the basis
(3.10), we come to relations (3.11). For m ≤ p we have the old solutions
(3.12), (3.13). For p < m ≤ s relations (3.11) have only trivial solutions
for Q̂2m−1

A (all the double commutators for parasupercharges which are not
present in (3.11) should be equal to zero), and formulae (3.12) and (3.14) are
replaced by

Q̂2m−1
A = 0,

Q̂2m
A = (−1)A−12

√
M(S4N−2s,4m−5+2A − iS4N−2s,4m−4+2A)

(3.18)

and
Q̃2m−1

1 = 2
√

M(S4N−2s,4m−3 − iS4N−2s,4m−2),

Q̃2m−1
2 = 2

√
M(−S4N−2s,4m−1 − iS4N−2s,4m),

Q̃2m
1 = 2

√
M(−S4N−2s,4m−1 + iS4N−2s,4m),

Q̃2m
2 = 2

√
M(S4N−2s,4m−3 + iS4N−2s,4m−2),

m = p + 1, p + 2, ..., s

(3.19)

For s < m ≤ {N/2} it is convenient to search for solutions of (3.11) in
the form

Q̂2m−1
A = (−1)A−1

√
Zm − 2M(S4N−2s,8m+4A−11 − iS4N−2s,8m+4A−10),

Q̂2m
A = (−1)A−1

√
Zm + 2M(S4N−2s,8m+4A−9 − iS4N−2s,8m+4A−8)

which corresponds to the following parasupercharges in the rest frame

Q̃2m−1
A =

√
Zm

2
−M((−1)A−1S4N−2s+1,8m+4A−11 − iS4N−2s+1,8m+4A−10)+√

Zm

2
+ M(S4N−2s+1,8m+4A−9 + (−1)AS4N−2s+1,8m+4A−8),

Q̃2m
A =

√
Zm

2
−M(−S4N−2s+1,8m+4A−7 − (−1)AS4N−2s+1,8m+4A−6)+√

Zm

2
+ M((−1)AS4N−2s+1,8m+4A−5 + iS4N−2s+1,8m+4A−4),

m = s + 1, s + 2, ..., {N/2}.
(3.20)

In order relations (3.11) to be satisfied (and other double commutators
for Q̃j

A be equal zero), it is necessary and sufficient that S4N−2s+1,ν belong
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to the algebra so(2s, 4(N-s)+1), which is defined by relations (3.11) with
gµµ = −1, µ = 2s − 1, s < m ≤ {N/2}; gµµ = 1, µ = 2m or µ <
2s + 1; gµν = 0, µ 6= ν.

4 Internal symmetries

It was shown in [9] that the IRs of the extended PPSA with N supercharges
(but without central charges) can be extended by internal symmetry algebra
which is u(N) for C1 ≤ 0. If the central charges are nontrivial then the
internal symmetry algebra is less extended. Indeed, consider the first of
relations (2.2) for A=C=1, B=2:

[Qj
1, [Q

j
2, Q

k
1]] = 4ZijQk

1. (4.1)

Calculating commutators of the l.h.s. and r.h.s. of (4.1) with Σl and
using (2.5) we come to the following condition

T I
ljZ

jk = T k
ljZ

ji. (4.2)

In other words, the products of generators of the internal group with the
matrix of central charges should be a symmetric matrix.

Let us present the explicit description of the internal symmetry algebra
for representations of Class I+. We consider consequently the following cases:
a) all central charges are nontrivial and Zm 6= 0 for any m = 1, 2, ..., {N/2};
b) all central charges are nontrivial, but Zm = 0 for m = s+1, s+2, ..., {N/2};
c) the most general case including all versions (3.17) and also Zm = 0 for
some m.

For the case a) and N even the condition (4.2) means that T ij
l belong to

the algebra sp(N
2
). Indeed, the corresponding matrix Zij is antisymmetric

and invertible (see (3.7)) and so matrices T ij
l form a Lie algebra isomorphic

to sp(N
2
).

The N(N − 1)/2 basis elements of the related internal symmetry algebra
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can be chosen in the form

Akk = Z−1
k (−S8k−7,8k−6 − S8k−5,8k−4 + S8k−38k−2 + S8k−1,8k),

Bkk = Z−1
k (S8k−5,8k − S8k−4,8k−1 + S8k−7,8k−2 − S8k−6,8k−3)+

+i(S8k−5,8k−1 + S8k−4,8k + S8k−7,8k−3 + S8k−6,8k−2),
Ckk = (Bkk)

†,
Akn = (f−kn + f−nk)Σkn + (f+

kn + f+
nk)Σk+2,n+2,

Bkn = f−nkΣ̃kn + f−knΣ†
kn + f+

nkΣ̃k+2,n+2 − f+
nkΣ̃

†
k+2,n+2, n > k,

Ckn = (Bkn)†, n < k

(4.3)

where

f±kn = 1
Zn

√
2M±Zk

2M±ZN
, f±nk = 1

Zk

√
2M±Zn

2M±Zk
,

Σkn = S8k−7,8n−6 − S8k−6,8n−7 − S8k−3,8n−2 + S8k−2,8n−3−
−i(S8k−7,8n−7 + S8k−6,8n−6 + S8k−3,8n−3 + S8k−2,8n−2),

Σ̃kn = −S8k−7,8n−2 + S8k−6,8n−3 + S8k−3,8n−6 − S8k−2,8n−7−
−i(S8k−7,8n−3 + S8k−6,8n−2 + S8k−3,8n−7 + S8k−2,8n+6),
n 6= k, k, n = 1, 2, ..., N/2.

(4.4)

Matrices (4.3) commute with Poincar/’e group generators Pµ, Jµν and
satisfy the following relations

[Akk, Qj
A] = Z−1

k (δj,2k−1 − δj,2k)Q
j
A,

[Bkk, Qj
A] = 2Z−1

k δj2k−1Q
j
2k, [Ckk, Qj

A] = 2Z−1
k δj,2kQ

2k−1
A ,

[Akn, Qj
A] = δj,2k−1Z

−1
k Q2k−1

A − δj,2n−1Z
−1
n Q2k−1

A +
+δj,2kZ

−1
k Q2n

A − δj,2kZ
−1
n Q2k

A ,

[Bkn, Qj
A] = δj,2k−1Z

−1
k Q2n

A + δj,2n−1Z
−1
n Q2k

A ,

[Ckn, Qj
A] = δj,2kZ

−1
k Q2n−1

A + δj,2nZ
−1
n Q2k−1

A ,

(4.5)

[Amn, Akl] = Z−1
k δknAml − Z−1

m δmlAnk,
[Amn, Bkl] = Z−1

n (δnkBml + δnlBmk),
[Amn, Ckl] = [Cmn, Ckl] = 0,
[Bmn, Ckl] = Z−1

k (δnkAml + δmkAnl) + Z−1
k (δnlAmk + δmlAnk).

(4.6)

Commutation relations (4.5) characterize the Lie algebra which is isomor-
phic to sp(n), n = {N/2}.

For the case N odd the corresponding matrix Zij is equivalent to the
direct sum of the invertible and zero matrices and the condition (4.2) defines
the direct sum of algebras Sp(n)⊕ u(1), n = (N − 1)/2. The basis elements
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of the internal symmetry algebra sp(n) again have the form (4.3) (where
k, n = 1, 2, ..., (N − 1)/2) while the generator of u(1) is

Λ = S4N−3,4N−2 + S4N−1,4N .

For the case when 0 < Zm < 2M, m = 1, 2, ..., s and Zm = 0, s <
m ≤ {N/2} the corresponding internal symmetry algebra reduces to the
direct sum sp(s)⊕u(N −2s). The corresponding generators of algebra sp(s)
can again be chosen in the form (4.3) provided we change {N/2} by s in the
last line of (4.4). The basis elements of the related algebra u(N − 2s) can be
easily found using results of paper [9].

Finally, for the most complicated case 0 < Zm < 2M, m = 1, 2, ..., s; Zm =
2M, m = s+1, ..., p and Zm = 0, p < m ≤ {N/2} the internal symmetry
algebra reduces to sp(s) ⊕ u(n − s − p). The explicit expressions for the
corresponding basis elements can be easily found using relations (4.3), (4.4)
and the results of paper [9].

Thus we describe IRs of the extended Poincaré parasuperalgebra which
includes central charges and internal symmetry group. These representations
include IRs of the Poincare superalgebra as a particular case (which appears
when all central charges are less then 2M and the Gelfand-Zetlin numbers are
equal to n1 = n2 = · · · = n2N = 1/2. Essentually new moment in comparison
with the Poincaré superalgebra is the existence of IRs with central charges
whose value exeeds 2M .
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