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1 Introduction

Symmetries of differential equations present powerful tools for their study. In
many cases symmetries make it possible to reduce the considered problem to
a more simple one or even to find its exact solutions (refer to [1] for numerous
examples).

In recent papers [2,3] a new invariance algebra A of the free Dirac equa-
tion was found. This algebra whose basis elements are involutions like parity
transformations or special finite rotations, is isomorphic to the Lie algebra
gl(8, R). Moreover, as it was demonstrated in [2,3] rather extended subal-
gebras of A form invariance algebras of the Dirac equation for a charged
particle interacting with an external electromagnetic field.

In this paper we show that relativistic Hydrogen atom and the relativistic
Aharonov-Bohm-Coulomb (ABC) system (which is described by the Dirac
equation including a superposition of the Coulomb and Aharonov-Bohm po-
tentials) also admit symmetry algebras which are isomorphic to gl(8, R). In
addition we indicate that the above mentioned problems admit extended
N = 6 supersymmetry (SUSY).

These results can give a key for better understanding of ABC system
which is in a focus of interest of a number of investigators (refer, e.g., to [4,5]
and references cited therein). Moreover, we present a new origin of extended
SUSY and so give one more argument that this symmetry is realised in
realistic quantum mechanical systems.

2 Discrete symmetries of the Dirac equation

We start with the free Dirac equation

Lψ = 0, L = γµpµ −m, (2.1)

where pµ = i ∂
∂xµ , µ = 0, 1, 2, 3, γµ are the Dirac matrices.

It was demonstrated in paper [3] that equation (2.1) admits a 64 – di-
mensional algebra of involutive symmetries. This algebra can be constructed
in the following way.

First, we remind that a linear operator Q is a symmetry operator (SO) of
equation (2.1) if there exists such an operator αQ that

[Q,L] = αQL. (2.2)
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where [., .] is a commutator.
Well-known examples of SOs of the Dirac equation are parity and time re-

flection. Considering reflections of all independent variables x = (x0, x1, x2, x3):

θ0x = (−x0, x1, x2, x3) , θ1x = (x0,−x1, x2, x3) , θ2x = (x0, x1,−x2, x3) ,

θ3x = (x0, x1, x2,−x3) , θx = (−x0,−x1,−x2,−x3) .
(2.3)

we easily construct the corresponding SOs for (2.1):

Γµ = γ4γµθ̂µ, Γ4 = iγ4θ̂ (2.4)

where γ4 = iγ0γ1γ2γ3,
hatθµ, θ̂ are operators defined as follows:

θ̂µψ(x) = ψ (θµx) , θ̂ψ(x) = ψ(−x).

Adding to (2.3) two more antilinear SOs

Γ5 = iγ2c, Γ6 = Γ0Γ1Γ2Γ3Γ4Γ5 = γ2c (2.5)

(with c being the complex conjugation, cψ(x) = ψ∗(x)), we come to a basis
(Γ0, Γ1, · · · , Γ6) of the seven-dimension Clifford algebra. All linearly
independent products of SOs (2.3), (2.4), i.e.,

Γm, ΓmΓn, ΓkΓmΓn, Î , (2.6)

(k,m, n,= 0, 1, ...6, Î is the unit operator) form a basis of the 64-dimensional
invariance algebra isomorphic to gl(8, R) [3].

We notice that operators (2.5) include reflections Γµ,Γ4 and pure rota-
tions ΓµΓν as well.

It is evident that the Dirac equation with non-trivial potentials

Lψ = (γµπµ −m)ψ = 0, πµ = pµ − eAµ (2.7)

cannot admit all SOs (2.6) (for instance, neither Γ5 nor Γ6 are admissible).
In the next sections we present examples of quantum mechanical systems
which include interactions with external fields and admit symmetry algebras
isomorphic to (2.6).
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3 Symmetries of the Coulomb system

For the case when the external field is generated by a point charge, the
vector-potential can be reduced to the form

A1 = A2 = A3 = 0, A0 =
α

e|x|
, |x| =

√
x2

1 + x2
2 + x2

3. (3.1)

Symmetries of the Dirac equation (2.6) with the Coulomb potential (3.1)
are well-studied (refer, e.q., to [6,7]). It is generally accepted that the
maximal dynamical symmetry of system (2.6), (3.1) is described by alge-
bra so(2.4); in addition, equation (2.6), (3.1) admits hidden supersymmetry
generated by two supercharges [7].

New non-unitary symmetry of this equation w.r.t. algebra su(2) was
found recently [8].

Here we show that the Coulomb system (2.6), (3.1) admits more extended
symmetry algebras generated by discrete symmetries.

It is known since 1950 that the Dirac Hamiltonian

H = γ0γaPa + γ0m+
α

|x|
(3.2)

commutes with the Johnson-Lippman operator [9] which we write in the form

Q = mα
~σ · ~x
|x|

+ iD

(
~σ · ~p+ iγ4

α

|x|

)
(3.3)

where

D = γ0

(
~σ · ~J − 1

2

)
, ~σ =

i

2
~γ × ~γ, ~J = ~x× ~p+

1

2
~σ. (3.4)

Operators Q,D and H together with Q2 and D2 form a five dimensional
symmetry superalgebra of the Coulomb system, characterized by the follow-
ing commutation and anticommutation relations

[D,H] = [Q,H] = [D2, H] = [Q2, H] = [D,Q2] = [Q,D2] = 0,
{D,Q} = 0.

(3.5)

We notice that the squared operators D and Q can be represented as
follows

D2 = J2 +
1

4
, Q2 = D2

(
H2 +m2

)
− α2m2. (3.6)
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Denoting eigenvalues of the commuting operators D2, H2 and H by κ2, q2

and E correspondingly, we obtain from (3.6) the following algebraic relation

q2 = κ2E2 +
(
α2 − κ2

)
m2, κ = 1, 2, · · · , (3.7)

or

E2 =
q2

κ2
+

(
1 − α2

κ2

)
. (3.8)

In other words, the eigenvalues of the Hamiltonian of the relativistic Hy-
drogen atom can be found starting with eigenvalues of SOs Q (3.3) and D
(3.4).

Let us show that equation (2.6), (3.1) admits a more extended symmetry
superalgebra generated by the following six supercharges

Q1 = (1 + iΓ5Γ1Γ2)Q, Q̄1 = (1 − iΓ5Γ1Γ2)Q,

Q2 = i (Γ1 + Γ5) Γ2Γ3Q, Q̄2 = i (Γ1 − Γ5) Γ2Γ3Q,

Q3 = Γ5 (1 + iΓ1Γ3)Q, Q̄3 = Γ5 (1 − iΓ1Γ3)Q.

(3.9)

Indeed, using the relations

[Γ5, H] = [Γ5, D] = [Γa, H] = [Γa, D] = 0, a, b = 1, 2, 3,

{Γ5, H} = {Γa, Q} = {Γa,Γ5} = {Γ5, i} = 0, {Γa,Γb} = 2δab

we easily verify that operators (3.9) commute with Hamiltonian (3.2) and
satisfy the following anticommutation relations{

Qa, Q̄b

}
= 2δabĤ,

{Qa, Qb} =
{
Q̄a, Q̄b

}
= 0,

(3.10)

where Ĥ = Q2, a = 1, 2, 3. In addition, it follows from (3.10) that[
Ĥ,Qa

]
=
[
Ĥ, Q̄a

]
= 0. (3.11)

Relations (3.10), (3.11) define a superalgebra which is the symmetry alge-
bra of supersymmetric quantum mechanics [10] with six supercharges. Thus
symmetry algebra (3.9) extends well-known N = 2 SUSY of the Hydrogen
atom to N = 6 SUSY.
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For any q 6= 0 we define

Γ̂0 = iΓ1Γ2Γ3, Γ̂a =
1

2q

(
Qa + Q̄a

)
, Γ̂3+a =

1

2iq

(
Qa − Q̄a

)
. (3.12)

Operators (3.12) are SOs of the stationary Dirac equation

Hψ = Eψ (3.13)

whereH is Hamiltonian (3.2) whose eigenvalues E have the form (3.8). These
SOs form a basis of the seven-dimensional Clifford algebra, satisfying the
following anticommutation relations

{ΓA,ΓB} = 2gAB, A,B,= 0, 1, 2, ..., 6

where nonzero elements of tensor gAB are g00 = g11 = g22 = g33 = −g44 =
−g55 = −g66 = 1. All linearly independent products of SOs (3.12) are given
in (2.5) (where Γa have to be replaced by Γ̂a) and form a basis of algebra
gl(8, R).

Thus, the Coulomb system described by the Dirac equation (3.13) keeps
the symmetry of free Dirac equation w.r.t. algebra gl(8, R).

4 Symmetries of the Aharanov-Bohm-Coulomb

system

Let us consider equation (2.6) for the case when the external field is gener-
ated by a superposition the Coulomb potential and the potential of solenoid
directed along the third co-ordinate axis. The related four-vector Aµ can be
chosen in the following form

A1 =
ξ

e

x2

r2
, A2 = −ξ

e

x1

r2
, A3 = 0, A0 =

α

e

1

|x|
(4.1)

where r2 = x2
1 + x2

2.
Equation (2.6), (4.1) (and especially its reduced (1+2) – dimensional

form with µ = 0, 1, 2) has many intriguing physical applications [4,5]. Here
we study symmetry aspects of this problem.
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Using the well-known property of A1, A2 being locally a pure gauge, we
easily find the analogue of the Lippman-Johnson constant of motion (3.3) for
equation (2.6), (4.1):

Q = mα
~σ · ~x
|x|

+ iD̂(~σ · ~π + iγ4
α

|x|
), (4.2)

where

D = γ0(~σ · ~J +
1

2
+

ξ

r2
[σ3|x|2 − x3(~σ · ~x)]), (4.3)

Operators (3.2), (3.3) commute with the corresponding Dirac Hamilto-
nian

H = γ0γaπa + γ0m+
α

|x|
and so are SOs of equation (2.6), (4.1).

Additional (involutive) symmetries of this equation can be found in the
form

R12 = iγ1γ2θ̂1θ̂2, R31 = exp(iϕ)iγ3γ1θ̂3θ̂1,

R23 = exp(iϕ)iγ2γ3θ̂2θ̂3, R = iγ4γ0θ̂, Ĉ = exp(iϕ)iγ2c
(4.4)

where θ̂, θ̂1, θ̂2, θ̂3 and c are operators defined in Section 2, ϕ = 2 arctan x1

x2
.

Operators (4.4) commute with operator L of (2.6) and satisfy the follow-
ing (anti)commutation relations

[Ĉ,H] = [Ĉ,D] = [Rab, H] = [Rab, D] = [Rab, Ĉ] = [R,D] = [R,H] = 0,

{Ĉ, Q} = {Ĉ, i} = 0
(4.5)

Using (4.5) we can construct the analogues of the SOs (3.9) for the ABC
system

Q1 = (1 + ĈR12)Q, Q2 = (R + ĈR12)Q, Q3 = Ĉ(1 +R13)Q,

Q1 = (1 − ĈR12)Q, Q̄2 = (R− ĈR12)Q, Q̄3 = Ĉ(1 −R13)Q
(4.6)

Operators (4.6) satisfy relations (3.10) and so generate N = 6 SUSY for
the ABC system. In analogy with (3.12) it is possible to construct a basis
of algebra ql(8, R) starting with SOs (4.6). In other words, this algebra is a
symmetry algebra for the ABC system.
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5 Discussion

We had shown that both the Coulomb and ABC systems admit rather ex-
tended symmetry which is much wider than the well known so(2, 4) symme-
try of the relativistic Hydrogen atom. Here we discuss three aspects of this
observation.

1. One of goals of the present paper is to show that the gl(8, R) symmetry
of the free Dirac equation indicated in papers [2,3] is kept also for the cases
of the Coulomb and ABC systems. Using the technique proposed in [2,3]
this symmetry can be used to decouple the related Dirac equation and to
construct the corresponding complete sets of solutions.

2. It was demonstrated recently [1, 11] that Dirac and Schrődinger-Pauli
equations for a charged particle interacting with the magnetic field admit
extended SUSY provided the corresponding vector-potential has well defined
properties w.r.t. parity transformations. This result presents a strong in-
dication that extended SUSY is not a purely theoretical construction only,
but is a rather common symmetry of a wide class of quantum mechanical
systems.

In the present paper we show that extended SUSY is admitted by quan-
tum mechanical systems which include electric field also. In other words, we
indicate new origins of the extended SUSY in Nature.

3. A natural question arises, what kind of SUSY degeneration of energy
spectra corresponds to the above mentioned extended symmetries. Starting
with exact solutions ψEκm of equation (3.13) which are eigenfunctions of
the commuting operators H,D and J3 (refer, e.g., to book [1]) we recognize
that operators (3.9) transform solutions with a fixed E into solutions with
the same E, but change signs of κ and m and change relative phases of wave
functions with different m. Such a degeneracy of the Hamiltonian eigenstates
for the Hydrogen atom takes place indeed. We demonstrate that it admits
SUSY interpretation.

We notice that the degeneracy w.r.t. the sign of κ became observable if
we take into account the hyperfine splitting of the Hydrogen spectra. The
degeneracy w.r.t. the sign of m and relative phases is not observable, but it
can be in principle indicated in Coulomb systems perturbed by a magnetic
field.

This paper is supported by the Ukrainian DFFD foundation through
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