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I. INTRODUCTION

A beautiful and rich concept of supersymmetry (SUSY) has been intro-
duced by several authors in various contexts (see, e.g.,ref.1 but also refs2

where the idea of SUSY was formulated in somewhat rudimentary form).
Since that time it plays more and more important role in physics and math-
ematics in general and in modern particle physics and quantum mechanics3

in particular. This is due to the fact that SUSY presents a powerful tool for
transforming bosons to fermions and vice versa, for formulating theories with
non-trivial unification of space-time and internal symmetries, for formulat-
ing string theories and their most powerful dualities (refer, e.g., to Refs.4−6),
for understanding the relations between spectra of different Hamiltonians as
well as for explaining degeneracy of their spectra, for constructing exactly
or quasi-exactly solvable systems, for justifying formulations of initial and
boundary problems, etc., etc.; see, e.g., surveys4,7,8.

In this work we shall concentrate on quantum mechanical systems since
they provide a ground for testing the principal question: whether SUSY is
realized in Nature or not, free of the complexities of field theories. Examples
of such systems (like interaction of spin 1/2 particle with the Coulomb or
constant and homogeneous magnetic field) which admit exact N = 2 SUSY
are well known 9,10 (see also Refs. 7,8 and references therein). Here we search
for problems with extended (N > 2) SUSY.

In this connection, let us remind that the quantum mechanical models
which include N > 2 supercharges were investigated, e.g., in Refs.11 , and ex-
amples of quantum mechanical systems with extended SUSY where discussed
in Refs.12−16. In papers17 the so called ”generalized SUSY” was proposed; it
includes extended SUSY as a particular case.

It was pointed out in Refs.12−14 that some quantum mechanical models
are invariant w.r.t. reducible representations of SUSY algebra; we will refer
to the related symmetry as ”reducible SUSY”.

Of course it is interesting to search for physical systems which admit
exact (especially extended, reducible, or generalized) SUSY. First, they brink
additional indications that SUSY is indeed the symmetry of Nature, and
secondly, for such systems we have standard methods for their analysis at
our disposal.

In fact it will be shown in the present paper that the extended, reduced
and generalized SUSYs are common in many problems of standard nonrel-
ativistic quantum mechanics. For example, we prove that the well studied
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system of spin 1/2 particle interacting with a constant and homogeneous
magnetic field, which can be described by the Schrödinger-Pauli equation,
admits N = 4 SUSY and N = 2 reducible SUSY as well.

In Section II we show that the extended, reducible, and generalized SUSY
appear naturally in a wide class of problems of standard one-dimensional
SUSY quantum mechanics. In Section III we consider the quantum mechan-
ical system of a spin 1/2 particle interacting with a constant and homo-
geneous magnetic field (III.1) and prove that it has N = 4 extended SUSY
(III.2). The reducible SUSY and so(3, 3) symmetry of this model is discussed
in Section III.3.

In Section IV we search for extended and reducible SUSY of the
Schrödinger-Pauli equation for a particle interacting with a static inhomo-
geneous magnetic field. We find a wide class of systems admitting these
supersymmetries and discuss briefly their physical consequences.

II. ADDITIONAL EXTENDED AND REDUCIBLE SUSY OF
SUPERSYMMETRIC QUANTUM MECHANICS

Supersymmetric quantum mechanical systems are described by the
Schrödinger equation with a matrix potential3

Ĥψ ==
1

2

(
p2 +W 2 + σ3W

′)ψ = Eψ, (2.1)

where p = −i ∂
∂x
, W = W (x) is a superpotential, W ′ = ∂W

∂x
, and σ3 is the

Pauli matrix of the form σ3 =

(
1 0
0 −1

)
.

It is well known that equation (2.1) admits specific symmetries (super-
charges)

Q1 =
1√
2

(σ1p+ σ2p) , Q2 =
1√
2

(σ2p− σ1W ) (2.2)

which satisfy the following superalgebra

{Qa, Qb} = 2δabĤ, [Qa, Ĥ] = 0, (2.3)

where a, b = 1, 2; [.,.] and {.,.} denote a commutator and anticommutator
respectively.

Let us demonstrate that in addition to the transparent N = 2 SUSY,
equation (2.1) admits N = 3 extended SUSY provided the corresponding
superpotential W (x) is an even function of x (cf. ref. 12).
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Proposition 1. Let W (−x) = W (x) , then there exist the third super-
charge

Q3 = iσ1RQ1 (2.4)

satisfying relations (2.3) for a = 1, 2, 3 together with operators (2.2). Here
R is defined by

Rψ(x) = ψ(−x). (2.5)

Proof. The proof of this proposition can be done by a simple direct
calculation taking into account the relations

[σ1R,Q2] = {σ1R,Q1} = 0, (σ1R)2 = 1.

Thus even the simplest SUSY model (2.1) can admit the extended SUSY
generated by three supercharges.

Another interesting possibility is connected with the fact that the repre-
sentation of superalgebra (2.2), (2.3) can be reducible. This happens for the
systems described by equation (2.1) with odd superpotentials (cf. refs. 12,13).

Proposition 2 . Let W (−x) = −W (x), then the superalgebra (2.2),
(2.3) is reducible.

Proof. For W (x) odd there exists the invariant operator, namely

I = σ3R, (2.6)

which commutes with any element of algebra (2.3). Using the mapping I →
I ′ = UIU †, where

U = R+ − iσ2R, R± =
1

2
(1±R), (2.7)

the operator (2.6) is transformed to the diagonal matrix

I ′3 = σ3. (2.8)

The corresponding transformed supercharges Q′
q = UQaU

† and the Hamil-

tonian Ĥ ′ = UĤU † commute with σ3 and thus are diagonal too:

Q′
a =

(
qα
+ 0
0 qα

−

)
, Ĥ ′ =

(
Ĥ+ 0

0 Ĥ−

)
, α = 1, 2. (2.9)

Here

q1
± = iRP ±W, q2

± = ±p− iRW, Ĥ± =
1

2

(
p2 +W 2 ±W ′R

)
. (2.10)
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Thus supercharges Q′
α are expressed as a direct sum of qα

+ and qα
− . Q.e.d.

Propositions 1 and 2 indicate how to find extended and reducible SUSY
of realistic three-dimensional systems by first determining and then applying
the appropriate involutive discrete symmetries (e.g., parities) of the system.

It is easy to see that the above obtained extended and reducible supersym-
metries are equivalent to generalized ones17, i.e., supersymmetries satisfying
the relations

Q2 = Ĥ, {Ia, Q} = 0, I2
a = 1, IaIb = ±IbIa, a = 1, 2, ... (2.11)

where involutions Ia either all commute or all anticommute.
Indeed, for even superpotentials there exist anticommuting involutions

I1 = σ3 and I2 = σ1R which together with Q = Q1 satisfy relations (2.11). In
the case of odd superpotentials, relations (2.11) are satisfied by supercharge
Q equal to Q1 and commuting involutions I1 = σ3 and I2 = R (compare with
Refs. 17).

In the systems analyzed later on we shall find their extended and re-
ducible SUSY too. However, in contradistinction to the systems studied in
the present section, the existence of these SUSYs will not imply the existence
of the corresponding generalized SUSY.

III. SPIN 1/2 PARTICLE IN CONSTANT, HOMOGENEOUS
MAGNETIC FIELD

III.1 Degeneracy of the spectrum of energy

Consider a quantum mechanical system consisting of a spin 1/2 charged
particle interacting with a constant and homogeneous magnetic field. In a
non-relativistic approximation this system is described by the Schrödinger-
Pauli equation

2mEψ = Ĥψ, Ĥ = π2 − 1

2
egσ ·H, (3.1)

where

πa = −i ∂
∂xa

− eAa, a = 1, 2, 3, σ = (σ1, σ2, σ3) , g = 2, (3.2a)

and

A1 = eHx2, A2 = A3 = 0, eH = iπ × π = e(0, 0, H). (3.2b)
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Here σa are the Pauli matrices, and H is a constant characterizing the
strength of the magnetic field H.

The problem (3.1) is exactly solvable18 . The corresponding eigenvalues
E (Landau levels) are given by

2mE = 2neH + p2
3, n = 0, 1, 2, · · · . (3.3)

For any n 6= 0 there exist two independent eigenfunctions (see, e.g., ref.
19 )

ψ1,p1,p3 = exp(ip1x1 + ip3x3)exp(−y2/2)

(
Hn(y)
Hn−1(y)

)
,

ψ2,p1,p3 = exp(ip1x1 + ip3x3)exp(−y2/2)

(
Hn(y)

−Hn−1(y)

) (3.4)

with Hn being Hermite polynomials, H−1 = 0, and

y =
√
eHx2 −

p1√
eH

. (3.5)

For n = 0 the eigenfunctions ψ1,p1,p2 and ψ2,p1,p2 coincide. For n > 0 any
energy level is two-fold degenerate due to N = 2 SUSY of equation (3.1).
Moreover, there exists the infinite degeneration of any energy level due to
independence of E on p1

18 .
In spite of the fact that symmetries and supersymmetries of equation

(3.1) have been studied quite intensively (see, e.g., Refs. 6−8,20,21), we shall
find a new additional (extended) SUSY for this equation.

Starting with (3.4) and taking into account the quadratic dependence of
energy E on p3 and independence of E on p1, we can write, for instance, six
additional solutions corresponding to the same energy (3.3), namely

ψ3,p1,p3 = ψ1,−p1,p3 , ψ4,p1,p3 = ψ1,−p1,−p3 ,
ψ5,p1,p3 = ψ1,p1,−p3 , ψ6,p1,p3 = ψ2,−p1,p3 ,
ψ7,p1,p3 = ψ2,−p1,−p3 , ψ8,p1,p3 = ψ2,p1,−p3 .

(3.6)

A bit surprisingly, the corresponding eight-fold degeneration of energy
levels can be interpreted as caused by N = 4 extended SUSY of system
(3.1).

III.2. Extended SUSY
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It is well known that whenever the gyromagnetic ratio g of the particle
is equal to 2, equation (3.1) admits N = 2 SUSY10 . Here we demonstrate
that this SUSY is reducible and that there exists a more extended, namely,
N = 4 SUSY for (3.1) in addition.

The standard supercharge for equation (3.1) has the form7

Q1 = σ · π , Q2
1 = Ĥ. (3.7)

The remaining three additional supercharges can be constructed using the
fact that (3.1) is invariant w.r.t. the following three discrete transformations:

ψ → R3ψ, ψ → CR1ψ, ψ → CR2ψ, (3.8)

where Ra(a = 1, 2, 3) are the space reflection transformations

Raψ(x) = σaθaψ(x), θaψ(x) = ψ(rax). (3.9a)

Here

r1x = (−x1, x2, x3), r2x = (x1,−x2, x3), r3x = (x1, x2,−x3), (3.9b)

and C = iσ2c, where c is the operator of complex conjugation

cψ(x) = ψ∗(x). (3.10)

Note that operators defined in (3.8)-(3.10) satisfy the following relations

{Ra,σ · π} = {Ra, C} = {CR1,σ · π} = {CR2,σ · π} = 0,
R2

a = −C2 = 1, a = 1, 2, 3.
(3.11)

Thus, using (3.7), (3.11) we can see that the operators

Q1 = σ · π, Q2 = iR3σ · π, Q3 = CR1σ · π, Q4 = CR2σ · π (3.12)

fulfill the following relations

{Qk, Ql} = 2gklĤ,
[
Qk, Ĥ

]
= 0, (3.13)

where k, l = 1, 2, 3, 4, g11 = g22 = −g33 = −g44 = 1; gkl = 0, k 6= l. In other
words, operators (3.12) are supercharges generating the N = 4 extended
SUSY of equation (3.1).
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We notice that choosing the basis

Q̂1 = 1√
2
(Q1 +Q3) , Q̂2 = 1√

2
(Q2 +Q4) ,

Q̂+
1 = 1√

2
(Q1 −Q3) , Q̂+

2 = 1√
2
(Q2 −Q4) ,

(3.14)

it is possible to represent the commutation and anticommutation relations
(3.13) in a more familiar form{

Q̂α, Q̂β

}
= 0,

{
Q̂α, Q̂

+
β

}
= 2δαβĤ,[

Q̂α, Ĥ
]

= 0, α, β = 1, 2.

Thus we have proved that the well-known N = 2 SUSY of equation (3.1)
can be extended to N = 4 SUSY taking into account involutive symmetries
(3.8). Acting by supercharges (3.12) on standard solutions (3.4) we obtain
the set of eight linearly independent solutions (3.4), (3.6). The interpretation
of the corresponding eight-fold degeneracy is given in the next section.

III.3. Internal symmetries and reducible SUSY

A direct consequence of the N = 4 SUSY is a specific four-fold degenera-
tion of the corresponding non-ground states11. However, we have found that
system (3.1) has eight-fold degeneracy. Let us demonstrate that this is due
to the existence a special internal symmetry algebra. This algebra appears
as follows.

First, for any non-zero eigenvalue E of Hamiltonian (3.1) we can choose
the following set of symmetry operators:

S6k =
1

2
√
E
Qk, S65 =

1

2
R3, Smn = [S6m, S6n] . (3.15)

Here Qk and R3 are operators defined in (3.9), (3.12), k = 1, 2, 3, 4 and
m,n = 1, 2, 3, 4, 5.

However, there exists an additional symmetry operator, namely, the op-
erator

I1 = i (σ1π2 − σ2π1) p3R3, (3.16)

which commutes with any of the operators (3.15).
Thus, taking into account that operators S6n form the Clifford algebra

{2S6n, 2S6m} = 2gmn (3.17)
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with nonzero components of gmn being g11 = g22 = −g33 = −g44 = g55 = 1,
we can easily find that symmetry operators (3.15) and (3.16) satisfy the
following commutation relations

[Skl, Smn] = gklSln + glnSkl − gknSlm − glmSkn, (3.18a)

[Skl, I1] = 0 (3.18b)

(with k, l,m, n = 1, 2, 3, 4, 5, 6 and g66 = −1), i.e., form the central extension
of Lie algebra so(3,3) by I1

22. Its invariant operators are given by

C1 = 1
2
SklS

kl == 15
4
, C2 = 1

2
SklS

lnSnfS
fk == 315

16
,

C3 = 1
6!
εmnrslkS

mnSrsSlk = 1
8
R1R2, C4 = I1.

(3.19)

Using (3.11), (3.12) it is easy to show that eigenvalues of operators C3 and
C4 are ±1

8
and ±p3

√
2neH respectively. Four possible combinations of these

eigenvalues specify four orthogonal subspaces of solutions of equation (3.1) for
p3 and n different from zero. Thus operators (3.15) realize the direct sum of
finite- dimensional irreducible representations of so(3, 3) , namely, the direct
sum of irreducible representations 2D

(
1
2

1
2

1
2

)
⊕ 2D

(
1
2

1
2
− 1

2

)
of the algebra

so(3, 3) 23. The corresponding representation space is 16-dimensional over
R, so effectively we have the eight-fold degeneracy over the field of complex
numbers.

Restricting ourselves to linear symmetries (i.e., to those including no the
antiunitary operator of complex conjugation) N = 4 SUSY is reduced to N =
2 SUSY which is generated by supercharges Q1 and Q2 specified in (3.12).
However, this SUSY is reducible since there exist two linear symmetries for
(3.1), namely C3 and C4 (3.19), which are involutive up to constant factors
and commute with supercharges Q1 and Q2:

[C3, Qa] = [I1, Qa] = 0, [I1, C3] = 0, a = 1, 2. (3.20)

Analogously as in the Proof of Proposition 2 we can diagonalize C3 and C4

and reduce any of supercharges Q1, Q2 to a direct sum of four supercharges.
This yields four invariant subspaces Φ(α)(α = 1, 2, 3, 4) of supercharges Q1

and Q2 with basis elements Φ
(α)
1 ,Φ

(α)
2 , where

Φ
(1)
1 = ψ1,p1,p3 + ψ1,−p1,p3 + iψ1,p1,−p3 + iψ1,−p1,−p3 ,

Φ
(1)
2 = ψ2,p1,p3 + ψ2,−p1,p3 − iψ2,p1,−p3 − iψ2,−p1,−p3 ;

(3.21)
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Φ
(2)
1 = ψ1,p1,−p3 + ψ1,−p1,−p3 + iψ1,p1,p3 + iψ1,−p1,p3 ,

Φ
(2)
2 = ψ2,p1,−p3 + ψ2,−p1,−p3 − iψ2,p1,p3 − iψ2,−p1,p3 ;

(3.22)

Φ
(3)
1 = −ψ1,p1,p3 + ψ1,−p1,p3 − iψ1,p1,−p3 + iψ1,−p1,−p3 ,

Φ
(3)
2 = −ψ2,p1,p3 + ψ2,−p1,p3 + iψ2,p1,−p3 − iψ2,−p1,−p3 ;

(3.23)

Φ
(4)
1 = −ψ1,p1,−p3 + ψ1,−p1,−p3 − iψ1,p1,p3 − iψ1,−p1,p3 ,

Φ
(4)
1 = −ψ2,p1,−p3 + ψ2,−p1,−p3 + iψ2,p1,p3 − iψ1,−p1,p3 ,

(3.24)

where ψ1,p1,p2 and ψ2,p1,p2 are functions defined in (3.4).
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IV. SPIN 1/2 PARTICLE IN AN ARBITRARY EXTERNAL
MAGNETIC FIELD

IV.1. Extended SUSY

In this section we shall show that the system of spin 1/2 particle inter-
acting with various magnetic fields has extended SUSY too, provided the
external field has definite parity properties. Starting with reflections (3.9b)
we find that the corresponding parity properties of vector-function A(x)
(3.2b) are of the form

A(r1x) = −r1A(x), A(r2x) = −r2A(x), A(r3x) = r3A(x). (4.1)

Relations (4.1) are satisfied by a large class of potentials which includes
(3.2b) as a particular case. For all such potentials the corresponding equation
(3.1) is invariant w.r.t. involutions (3.8) and so admits the extended SUSY
generated by supercharges (3.12). Moreover, equation (3.1) for g = 2 and an
arbitrary uniform magnetic field , i.e., the field

A1 = A1(x1, x2), A2 = A2(x1, x2), A3 = 0, (4.2)

admits all internal symmetries described in Section III.2 provided A(x) sat-
isfies relations (4.1).

Other systems with extended SUSY can be found by extending reflec-
tions (3.9b) to the eight-dimensional group of involutions, i.e., by adding the
transformations

r12x = (−x1,−x2, x3), r31x = (−x1, x2,−x3),
r23x = (x1,−x2,−x3), r123x = (−x1,−x2,−x3), Ix = x

(4.3)

to reflections (3.9b).
We notice that ra(a = 1, 2, 3) and r123 are reflections while rab(a, b =

1, 2, 3) are rotations.
Let us suppose that the vector potential A(x) has definite parities w.r.t.

a subset of transformations (3.9b), (4.3). All possible transformations for
the vector-potential with definite parities w.r.t. (9.3b) and (6.3), which are
compatible with the Lorentz gauge p ·A = 0 are given by the formulae

A(rabx) = rabA(x), a, b = 1, 2, 3, (4.4a)

A(x) = raA(x), (4.4b)
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A(r123x) = −A(x) (4.4c)

and
A(rabx) = −rabA(x), (4.5a)

A(rax) = −raA(x), (4.5b)

A(r123x) = A(x). (4.5c)

It is easy to see that whenever A(x) transforms according one of relations
(4.4a)-(4.4c) or (4.5a)-(4.5c) (for fixed values of indices a, b) the equation (3.1)
remains invariant w.r.t. this transformation provided ψ(x) co-transforms
accordingly, i.e., via relations

ψ(x) → iRaRbψ(x) ≡ Rabψ(x), (4.6a)

ψ(x) → Raψ(x), (4.6b)

ψ(x) → R1R2R3ψ(x) ≡ Rψ(x) (4.6c)

or
ψ(x) → iσ2cRaψ(x) ≡ CRabψ(x), (4.7a)

ψ(x) → iσ2cRaψ(x) ≡ CRaψ(x), (4.7b)

ψ(x) → iσ2cRψ(x) ≡ CRψ(x) (4.7c)

respectively. Here Ra and c are operators introduced in (3.9), (3.10).
Transformations (4.6b)-(4.7c) are involutions anticommuting with σ ·π ,

so yielding N = 2 SUSY with supercharges given by

Q1 = σ · π, Q2 = iR̂σ · π, (4.8)

where R̂ denotes the relevant operators (4.6b)-(4.7c) (i.e., for the symmetry
(4.4b) the operator R̂ = Ra, for (4.4c) the operator R̂ = R, etc.).

More complicated cases, in which the vector A(x) has definite trans-
formation properties w.r.t. combined parities, can be discussed analogously.
First, using the group properties of involutions (3.9b), (4.3) it is easy to show
that whenever A(x) has definite parities w.r.t. two of these involutions, it
has the definite parity w.r.t. their product. Requiring definite parities w.r.t.
various triplets of involutions enumerated in (3.9b), (4.3), we receive the
cases which are either equivalent to those with definite the transformation
properties w.r.t. doublets of parities or w.r.t. all eight involutions (3.9b),
(4.3).
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If A(x) satisfies two compatible relations from (4.4), (4.5) simultaneously
then equation (3.1) with g = 2 admits N = 2 or N = 3 SUSY. All these
nonequivalent possibilities are enumerated in the Appendix. Here we consider
only one example, namely when the vector-potential has the property

A(r1x) = r1A(x), A(r2x) = r2A(x), (4.9)

but has no definite parity w.r.t. reflection r3. The related supercharges are
of the form

Q1 = σ · π, Q2 = iR1σ · π, Q3 = iR2σ · π. (4.10)

They satisfy relations (2.3) (where Ĥ is Hamiltonian (3.1), a, b = 1, 2, 3) and
thus generate the symmetry algebra equal to N = 3 SUSY for the system.
This SUSY causes a four-fold degeneration of the corresponding (non-ground)
energy levels, since for any nonzero E it yields the four-dimensional repre-
sentation D

(
1
2

1
2

)
⊕D

(
1
2
− 1

2

)
of Lie algebra so(4) generated by

S4a =
1

2
√
E
Qa, Sab = −i [S4a, S4b] . (4.11)

The most extended, N = 4 and N = 5 SUSY appears in the cases for
which the vector-potential has definite parities w.r.t. all involutions (3.9b),
(4.3). In addition to (4.1) there are three more possible transformation prop-
erties of A(x):

A(rax) = A(x), a = 1, 2, 3, (4.12

A(rax) = A(x), A(rbx) = A(x), A(rcx) = −A(x),
a 6= b, b 6= c, c 6= a, c is fixed,

(4.13)

and
A(rax) = −A(x), a = 1, 2, 3. (4.14)

They allow to construct the corresponding supercharges, namely

Q1 = iR1σ · π, Q2 = iR2σ · π, Q3 = iR3σ · π, Q4 = σ · π; (4.15)

Q0 = CRcσ · π, Q1 = σ · π, Q2 = iRaσ · π, Q3 = iRbσ · π; (4.16)

and

Q1 = CR1σ · π, Q2 = CR2R1σ · π, Q3 = CR3σ · π,
Q4 = CRσ · σ, Q5 = σ · π (4.17)
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for the cases (4.12), (4.13) and (4.14) respectively.
Operators (4.15) and Hamiltonian (3.1) satisfy relations (2.3) for a, b =

1, 2, 3, 4 and thus generate N = 4 extended SUSY. The corresponding inter-
nal symmetries reduce to the algebra so(5) whose basis elements (constructed
analogously to (4.11)) generate the four-dimensional irreducible representa-
tion D(1

2
1
2

1
2
). Thus for the system (3.1), (3.2a) we can expect a four-fold

degeneracy of non-ground energy levels whenever the vector-potential of an
external field satisfies the relations (4.12).

Operators (4.16) and (4.17) satisfy relations (3.13) for g00 = −g11 =
−g22 = −g33 = 1 and −g11 = −g22 = −g33 = g44 = g55 = 1 respectively and
thus generate N = 4 and N = 5 SUSY .

IV.2. Reducible SUSY

In this subsection the involutions (4.6), (4.7) are used to find out reducible
SUSY for the systems described by the equation (3.1) with g = 2 and vector-
potential A(x).

First let us assume that the parity properties of the vector-potential are
specified by relations (4.12), (4.13). Then the corresponding equation (3.1)
admits N = 4 SUSY. Moreover, there exist the involutions

I = R23 (4.18)

and
I(c) = CRab, a, b 6= c. (4.19)

commuting with pairs of supercharges Q1, Q2 from (4.15a) and Q0, Q1 from
(4.16) respectively, so that the corresponding N = 2 SUSY is reducible.

If parities of the vector-potential are specified by relations (4.14) then
there exists the involution

I = R23 (4.20)

which commutes with a triplet of supercharges, namely with supercharges
Q1, Q2 and Q3 of (4.16). Consequently the related equation (3.1) admits
N = 3 reducible SUSY.

If the vector-potential satisfies all relations (4.1) then there exists the
involution

I = R12 (4.21)

commuting with all four supercharges (3.12) and so the corresponding system
has N = 4 reducible SUSY.
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Indeed, diagonalizing involutions (4.18)-(4.21), the corresponding super-
charges are transformed to block diagonal forms. For instance, for involutions
(4.18) and supercharges (4.15) we obtain

I → UIU † = σ3, Qa → UQaU
† = 1

2
(1 + σ3)Q

+
a + 1

2
(1− σ3)Q

−
a ,

a = 1, 2
(4.22)

where

U =
1√
2

(1 + σ3I) , U † =
1√
2

(1− σ3I) , (4.23)

and

Q+
1 = (π1 − iπ2) θ23 + π3, Q+

2 = (iπ1 + π2) θ1 + iπ3θ123, (4.24)

Q−
1 = (−π1 − iπ2) θ23 − π3, Q+

2 = (iπ1 − π2) θ1 − iπ3θ123 (4.25)

with θab = θaθb, θ123 = θ1θ2θ3, and operators θa defined in (3.9a).
The operators (4.23) together with

Ĥ = Ĥ+ = π2 − 2e [H3 + (iH2 −H1) θ23] , (4.26)

form superalgebra (2.3), while operators (4.24) satisfy (2.3) with the Hamil-
tonian of the form

Ĥ = Ĥ− = π2 + 2e [H3 − (H1 + iH2) θ23] . (4.27)

Here H1, H2 and H3 denote the components of the magnetic field strength.
The supercharges generating reducible SUSY for other systems described

by (3.1) can be diagonalized in a similar way. The explicit form of the
corresponding transformation operators is given in the Appendix..

Let us note that supercharges (4.23), (4.24) depend on three variables
x1, x2, x3 and have a very peculiar property: they include neither fermionic
variables nor matrices.

V. DISCUSSION

In this article we have described an approach for systematical study
of quantum mechanical systems whose symmetry group includes extended
SUSY and whose degeneracy of energy spectra is of SUSY nature.
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In Section 4, requiring definite parity properties of the vector-potential,
we find a number of quantum mechanical systems with N = 3, N = 4 and
N = 5 SUSY.

It is necessary to stress, that there exist a lot of realistic physical systems
whose parities satisfy required relations (4.1), (4.12)-(4.14). In addition to
the vector-potential of the constant magnetic field, given by relations (3.2b),
we present here as examples the potential of an infinite straight conductor
with the constant current I directed along the third co-ordinate axis

A1 = A2 = 0, A3 = − I

4π
ln

(
x2

1 + x2
2

)
, (5.1)

superpositions of potential (5.1) which are generated by two or four infinite
straight conductors shifted by distance 2b (two neibour currents have opposite
directions),

A1 = A2 = 0, A3 = − I

4π
ln

[
(x1 − b)2 + x2

2

(x1 + b)2 + x2
2

]
, (5.2)

or
A1 = A2 = 0,

A3 = − I
4π

ln

{
[(x1+b)2+(x2+b)2][(x1−b)2+(x2−b)2]
[(x+b)2+(x2−b)2][(x1−b)2+(x2+b)2]

}
,

(5.3)

and the magnetic octopole potential16

A1 = a2m
4π

x1(x2−x2
2)

x7 , A2 = −a2m
4π

x2(x2−x2
1)

x7 , A3 = 0,
x2 = x2

1 + x2
2 + x2

3.
(5.4)

Parities of potentials (5.1), (5.2), (5.3) and (5.4) are given by relations
(4.1), (4.13), (4.14) and (4.12) respectively.

Moreover, analyzing various superpositions of magnetic dipole and
straight conductor potentials, it is possible to generate models of physical
systems with any parity properties enumerated in (A.1)-(A.3), (A.8)-(A.12).

The other examples of potentials having well defined parity properties and
yielding extended SUSY are those of Aharonov-Bohm and magnetic dipole
potentials.

The very existence of such systems presents a strong indication that the
extended SUSY is indeed realized in Nature. Moreover, knowledge of ex-
tended SUSY for systems described by the Schrödinger-Pauli equation en-
ables us to predict the specific degeneracy of the corresponding energy levels.
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This degeneracy can be removed by adding a small symmetry-breaking term
corresponding, e.g., to interaction with a week external electric field and thus
experimentally verified.

We did not discuss the question whether the found extended SUSY is ex-
act or broken. To this end it is necessary to analyze degeneracy of the ground
state of the considered systems. For two-dimensional quantum mechanical
systems such analysis was made in Ref. 25.

Our approach to extended SUSY can be compared with that using gen-
eralized SUSY17 whenever all supercharges of the considered systems do not
include complex conjugation and can be constructed starting with involu-
tions satisfying (2.11). Since for some of our systems the corresponding
supercharges include the antiunitary operator of complex conjugation, the
above mentioned correspondence does not exist (in this case (2.11) does not
necessary hold). Consequently, our approach covers more general situations
then the approach proposed in Ref. 17.

It is well known that N = 3 SUSY can always be extended to that of
N = 426 for the systems in which SUSY is realized by Grassmanian variables.
Our paper shows that such an extension of odd N SUSY to even one is not
guaranteed in general.

Analogously to the above mentioned cases with time-independent mag-
netic fields, it is possible to search for systems with extended SUSY described
by the Schrödinger-Pauli equation with a time- dependent magnetic field.
The case with N = 2 SUSY was discussed in paper 27.

We notice that our approach can be extended to the relativistic Dirac
equation with a similar result (for particular examples see Refs13,14). How-
ever, Dirac’s equation admits an extended SUSY also for the cases with
external electric fields and scalar potentials15.

Another intriguing problem is to generalize the above results for particles
with spin s > 1/2. This can be done, e.g., in the framework of the week
SUSY approach28 .
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COMBINED PARITIES, SUPERCHARGES AND EXACT
REDUCTIONS

Here explicit forms of supercharges are presented for the cases when A(x)
satisfies all possible combinations of relations (4.6), (4.7).

First we consider systems with N = 2 SUSY. They correspond to the
following parity properties of the electromagnetic field:

A(rax) = raA(x), A(rbcx) = rbcA(x), (A.1)

A(rax) = −raA(x), A(rbcx) = rbcA(x), (A.2)

and
A(rax) = −raA(x), A(rbcx) = −rbcA(x), (A.3)

where b, c 6= a and a is fixed.
The related supercharges have the form

Q1 = σ · π, Q2 = iRaσ · π (A.4)

for parities (A.1), and

Q1 = σ · π, Q2 = CRaσ · π (A.5)

for the cases when A(x) satisfies (A.2) or (A.3).
In all these cases the corresponding N = 2 SUSY is reducible. The

involution I1 = Rbc, commutes with supercharges (A.4) and (A.5) provided
relations (A.1) or (A.2) are satisfied, while for the parities (2.3) an involution
commuting with supercharges (A.5) have the form I2 = CRbc. Particular
cases of these involutions are expressed in the formulae (4.18)-(4.21).

The operators diagonalizing I1 are

U = 1
2
(1− iσ2) (1 + iσ2θ12) , for a = 3;
U = 1√

2
(1 + σ3I1) for a 6= 3,

(A.6)

whereas the expressions for the operators diagonalizing I2 are given by

U = U1 = 1
2
(1− iσ2) (1 + iσ2θ23) for a = 1;

U = U2 = 1
2
(1 + C) (1− iσ1θ31) for a = 2,

U = U3 = 1√
2
(1 + σ3I3) for a = 3

(A.7)
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Now we shall present systems with N = 3 SUSY. In addition to (4.11)
we have the following nonequivalent combinations of parity properties

A(r12x) = r12A(x), A(r23x) = r23A(x),
Q1 = R23σ · π, Q2 = R31σ · π, Q3 = R12σ · π;

(A.8)

A(rax) = raA(x), A(rbcx) = −rbcA(x),
Q1 = iσ · π, Q2 = iRaσ · π, Q3 = CRbcσ · π;

(A.9)

A(rax) = −raA(x), A(rbx) = −rbA(x),
Q0 = σ · π, Q1 = CRaσ · π, Q2 = CRbσ · π;

(A.10)

A(rax) = raA(x), A(rbx) = −rbA(x),
Q0 = CRbσ · π, Q1 = σ · π, Q2 = iRaσ · π;

(A.11)

A(rabx) = rabA(x), A(rbcx) = −rbcA(x),
Q0 = iRabσ · π, Q1 = CRbcσ · π, Q2 = CRacσ · π.

(A.12)

The supercharges in (A.8) satisfy relations (2.3) for a, b = 1, 2, 3; su-
percharges (A.9), (A.10) and (A.11), (A.12) satisfy relations (3.13) for
g11 = −g22 = −g33 = 1 and −g11 = g22 = g33 = 1 respectively.

The supercharges in (A.10) commute with the involution Rab and thus
generate N = 3 reducible SUSY. The supercharges Q1 and Q2 in (A.12) also
commute with this involution and generate the N = 2 reducible SUSY. The
remaining supercharges, i.e., those in (A.8), (A.9) and (A.11) are irreducible.
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