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Complete sets of symmetry operators of arbitrary finite order are found for the Schr6dinger equation with some types of potential, 
including the potential of a supersymmetric harmonic oscillator. Potentials that admit nontrivial higher symmetries are described, 

Symmetry operators of higher orders attract increasing interest of investigators; see, for example, [1 7]~ Study of such 
symmetry operators yields information about the hidden symmetry of the equations of mathematical physics, including 
Lie--B/icklund symmetries [1] and supersymmetries [2]; they enable one to calculate explicitly the conservation laws and 
integrals of the motion that in principle cannot be found in the classical approach of Lie [3]. A very important application of 
symmetry operators of higher orders is the description of the coordinate systems in which an equation admits solutions in 
separated variables [4]. A review of results relating to the symmetry operators of the basic equations of quantum theory can 
be found in [3]. 

Investigations of the higher symmetries of the equations of mathematical physms are usually restricted to some defimte 
class of symmetry operators, for example, first-order differential operators with matrix coefficients in the case of the Dirac 

equation [2,5]. Of course, there is a natural interest in the problem of describing symmetry operators of the highest possible 
order, ideally an arbitrary order. This interest is stimulated by the successful use of symmetry operators of higher order 
(exceeding the order of the equation) for the separation of variables [6,7]. 

In [8--11] complete sets of symmetry operators of arbitrary order n<oo were obtained for the d'Alembert, 
Klein Gordon--Fock, Schrrdinger, and Dirac equations describing free (noninteracting) particles. In this paper, we investigate 
the higher symmetries of the Schrrdinger equation with various potentials. 

Potentials admitting nontrivial Lie symmetries of the one-dimensional Schrrdinger equation were obtained in [12--t4]. 
Below, we find complete sets of symmetry operators of arbitrary order for the Schrrdinger equation with all these potentials 
and also the potential of a supersymmetric oscillator. Potentials that admit higher symmetries are described; it is shown that 
the potentials corresponding to exactly solvable Schrrdinger equations [15] admit symmetry operators of third order (see. also 

[111). 

1. DETERMINING EQUATIONS 

where 

We write the investigated one-dimensional Schrrdinger equation in the form 

L qr =_ (po_,/. (p% v ( z ) ) )  q~ =0. 

o 0 
po=i - - ' ~  . p=  --i . . . .  ion. 

0~. OX 

Investigation of the symmetry of Eq. (1.1) includes problems that can be nominally divided into two types: 
1) the potential V is given the symmetry is to be found; 
2) to determine potentials that admit a known (or some) symmetry. 
In this section, we give general results relating to both types of problem. 
Definition. A linear differential operator of order n, 

Q " =  Z ( q " P ) "  
i = f ,  

(1.1) 

(t .2) 

where 
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(qrp) ,=l(q , 'p)  .... p]+, (qo'p)o=qo, [A, BI+=AB+BA,  q~=q,(t, :r.), 

is called a symmetry operator (of order n) of Eq. (1.1) if 

It'., Q"] =0, (1.3) 

Remark 1. The operator (1.2) does not depend onP0 , since on the set of solutions of Eq. (1.1) it is always possible to 
express P0 in terms of p2+ V. This makes it possible, without loss of generality, to require vanishing of the commutator of L 
with the symmetry operator that carries solutions to solutions [3]. 

Remark 2. 
the identity [11] 

The representation of Qn as a sum of/-fold anticommutators simplifies the subsequent calculations. Using 

(q,p) ,= ( - * ) '  (O/'q,)O'/" 
~=o ( i -k ) !k!  

we can always transfer the differentiation operators to the right. 
We find equations for the coefficients qi of the symmetry operators. Substituting (1.1) and (1.2) in (1.3), using the 

relations [11] 

t .~-. p:. (q, ,#), ] g , 
_ = 5-(~, p) , . , ,  [P,,.(q,'P),I = i ( 4 , p ) ,  

[ V, (q_,~,-p)~] = - i  ( - 1 )  ...... . ( 2 k ) .  .~q~& I~ p) ........ k ~ l ,  
...... (2k z 2~.- .()  ! (~,~-+ i )i 

k 

{ V. (qa~,,.~)~+,] . . . .  * s  '' ' ' '~' 2(2k-'- 1)! # ~_.~ ..... 
(2k-2mt|}!(-'-2m)--~ (qa~ .... '~ 'I/-p)zo., .~c~>(! 

(where the dot and the prime denote the derivatives with respect to t and x), and equating the coefficients of the linearly 
independent terms of the form (AP)i, we arrive at the following system of equations for the coefficients qi and the potential V: 

g(i,-- l ) / 2 l  

q,,'=O, 2gh,,,+2q..,',,~_,+ 2 ( - 1 )  ....... 2(2k+1)!  0~_.., . . . . . . .  
, .... i~#2E; ,+ i f i - i2 . - - ) - , . -  q.,.,+,~ v = o ,  242,~,+q._., 

! ~,12i  

2 {-1)"+' 2(2k)! ......... 
. ~ . . . .  ~-2-k-2~_5~-i-i2/4_i5i qako, v=-o, (1.4) 

where 

re=O, I . . . . .  {n/2};/=0.  l . . . . .  1(,~-1)/2}: q-,=-O. 

Equations (1.4) give necessary and sufficient conditions for the existence of a symmetry operator of arbitrary preassigned 

order n for Eq. (1.1). The general solution of Eq. (1.4) for V and qi determines the explicit form of the potentials that admit 
a symmetry operator of order n and the explicit form of this operator. 

2. COMPLETE SETS OF SYMMETRY OPERATORS OF 
THE ONE-DIMENSIONAL SCHRODINGER EQUATION 

We consider problems of the type 1 for Eq. (1.1), in which the potential V is assumed known. We restrict ourselves to 
analysis of potentials of the form 

1,'= V,, (2. la) 

V=V~a:, (2.1b) 

V= V:9. (2. l c) 
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1 
V= V,, -x~ , (2. ld) 

V = V.,z~+ V - - -  (2.  le) 
X z 

where V 1 . . . . .  V 6 are arbitrary constants. 
The expressions (2.1) give all inequivalent potentials that admit nontrivial Lie symmetries [12--14]. Here, we shall_find 

complete sets of symmetry operators of arbitrary order n for Eq. (1.1) with the potentials (2.1). 
In the case of the potential (2. la), the problem reduces to the description of the symmetry operators of the free Schr6dinger 

equation [11]. The corresponding equations (1.4) take the form 

q0=(), q,," =0, 2q~-q~_,=0, (2.2) 

where the dot and the prime denote the derivatives with respect to t and x, respectively. By successive differentiation of (2.2), 

we obtain 

"~,~"q~=O, 0,; ...... q~=O. (2.3) 

whence 

where CI~ ,l are arbitrary constant coefficients, the number of which is (k+l ) (n-k+l ) .  
restriction on C~,I: 

"eZ(*+*)C2 .... +" ~+'" tp~-l)Ck-~ =t), ~= ~, 2 . . . . . .  a. (2.5) 

Therefore, the total number of independent parameters in (2.4) is [11] 

,V' = (k+ l )  ( n - k +  1)-- d,,, ~ k(n-k .+'! )=V~(n+l)  (n+21 (2.6) 
~ = O  k ~ l  

The corresponding symmetry operators of order n (the number of which, obviously, is N) are determined by the relations (1 o2), 
(2.4), and (2.5) (these last can be regarded as recursion relations). It is readily noted that all symmetry operators of Eq. (1:1), 
(2.1a) are polynomials of order n in the first-order symmetry operators P=p and G=tp-mx.  

For the potentials (2. lb) and (2. lc), Eqs. (1.4) reduce to the systems (2.7) and (2.8), respectively: 

q,,'--=O~ (1o-2V.~q~=O, 2(1,+0 .... =0, 2(1~+q~_~-2(k+l) V~q~+,=O. 0<k<r~; (2.7) 

(2.4) 

From (2.2), we obtain a unique 

q, /=0,  20,-qoi_,=O, (1o-2Vaxq~=O. 2(t~+qh'-,--4(k+l)V~xq~§ 0 < k < m  (2.8) 

Equations (2.7) can be solved in complete analogy with (2 .2 ) .  W e  again have the differential consequences (2:3), and the 
representation (2.4) holds; however, instead of (2.5) we obtain from (2.7) the following conditions on q~,l: 

2m(b+l)C~ ~ ...... + " ~+"--4 V,zC~"=O. r~. (ptl)C,._, (#+l) k= l  . . . . .  (2.9) 

Thus, Eq. (1.1) with the potential (2.1 b) admits N n symmetry operators of order n. The explicit form of these operators is given 
by (1.2), (2.4), and (2.9), and N n is given by (2.6). All the symmetry operators are polynomials of degree n in the first-order 

symmetry operators/~=p+ Vt, G=tp-mx.  
To find the general solution of the system (2.8), we use the following differential consequences: 

which enable us to represent qk in the form 

, a,~ 1 
Or q~=( , 

: , - k  

~ ~-' ~2.10) 

where ak, i are arbitrary functions of t. Substituting (2.10) in (2.8) and equating the coefficients of identical powers of X, we 
arrive at a system of N n ordinary differential equations of first order for the N n unknowns ak, i. Using the fact that the general 
solution of such a system depends on N' arbitrary parameters [16], we immediately specify the explicit form of the 
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corresponding linearly independent symmetry operators: 

Q " =  E E C ' , ~ ( p - i ~ 1 7 6  (2 .11)  

where w=(v3)l/2, and Ck, a are arbitrary constants, the number of which is N n (2.6). 
We see that all the symmetry operators of Eq. (1.1), (2.1c) of finite order n reduce to polynomials in the first-order 

symmetry operators p+ =(p_+io~x)exp(-T-io~t). In the case n=2, our results reduce to those obtained earlier in [12]. 
The integration of the system (1.4) with the potential (2.1 d) requires somewhat more cumbersome calculations. We restrict 

ourselves to giving the explicit form of the corresponding symmetry operator of order 2n: 
,t 

E t/19, ~t/ Q-'" = ~, ()~,Qo, , . . . . Q~, (2.12) 

where )~al"'al  are arbitrary symmetric tensors, ak= 1, 2, 3, 

Q, _ p~ V~ Q . , = 2 t Q , - x p  + ' 9  Q ~ = ~ Z Q , - t Q , , - - ~ / . . m a ? .  
2,rn .1: z ' . . . " ~ . 

The number of linearly independent operators (2.12) is N n (2.6). Symmetry operators of odd order do not exist for Eq. (1.1), 
(2.1 d). 

The relations (2.6) and (2.12) determine a complete set of symmetry operators also for Eq. (1.1), (2. le). 

3. SYMMETRY OPERATORS OF THE SUPERSYMMETRIC OSCILLATOR 

The Schr6dinger equation for the supersymmetric oscillator has the form [17] 

I 1 t ot 

where xI, is a two-component wave function, o~ is an arbitrary real parameter, and tr 3 is one of the Pauli matrices: 

o~,= ~i I ~ o , =  (I ~ = " t 0 ' d ~ =  0 - t  " 

(3.1) 

Equation (3.1) possesses a specific symmetry in the class of first-order differential operators with matrix coefficients; it 
is determined by the superalgebra s q m ( 2 )  [17]. This algebra is formed by the symmetry operators 

~,), = - 1r q~ = _=- (o~p-o , , ,~a : ) .  
t/2 t/2 

~Q,, QA ~ =o. Q,-~ =Q.z~ =Q~. i Q . Q : , I = I Q ~ , Q : 3 = O ,  (3.2) 

which satisfy the relations 

The invariance with respect to the algebra (3.3) is the main property of the equations of supersymmetric quantum 
mechanics [17]. 

In [18] a complete set of second-order symmetry operators was obtained for Eq. (3.1). We find all inequivalent symmetry 
operators of arbitrary order, the description of which reduces, essentially, to investigation of the symmetry of Eq. (1.1), (2. l d). 
Indeed, subjecting 9 and/~ in (3.1) to the transformation 

(3.3) 
�9 i 

we arrive at the equation L '~ '  =0, where 

d I 
L' = i  ........... w- (p-' + ~l~-'z ~) 

0t 2 

is the operator representing the direct sum of the two operators (1.1) and (2. ld). The corresponding symmetry operators can 
obviously be represented in the form Q ' a = a u Q n ,  where ~u are the symmetry operators of Eq. (1.1), (2. ld) determined by the 
relation (2.11) (in which Ck,a- - ,C~,a) .  Returning by means of the transformation that is the inverse of (3.3) to the original 
equation (3. i), we obtain a complete set of symmetry operators of this equation in the form 
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Q" = o '  "Q,,". (3.4) 

where 

,~,,'=o,. a , ' : = o , ,  c, , '=o,  co.-, :.- + o~,4,, ~ . . , ' = a .  eos ~ -~J, sin - -  
2 2 2 2 

The number of  linearly independent symmetry operators of order n is 4N*, where N n is given in (2.6). 
The symmetry of  the supersymmetric Schr6dinger equation with arbitrary potential was investigated in [19]. 

4. S Y M M E T R Y  O P E R A T O R S  O F  T H E  T H R E E - D I M E N S I O N A L  

H A R M O N I C  A N D  S U P E R S Y M M E T R I C  O S C I L L A T O R S  

The higher symmetries of  the three-dimensional Schr6dinger equation 

L q r ~  [ i  0 1 ( p ~ + V ( x ) l q t = 0  
Ot 2 

(4.!) 

can be investigated using the scheme employed in Sec. 2. The significant complication of the problem associated with the 

transition to partial differential equations with respect to the spatial variables can be overcome by using generalized Kitling 

tensors [8,10]. 

We represent the symmetry operators of  Eq. (4.1) of  arbitrary order n in the form 
n 

O" = s [[ . . .  [b .......... , po,l +, p~] . . . . . .  p, ,,]., (4.2) 
h ~ 0  

where F ........... is a symmetric tensor of  rank k that depends on x and t. 

Substituting L (4.1) and Qn (4.2) in the invariance condition (1.3) and equating the coefficients of  the linearly independent 
differentiation operators, we arrive at the following system of determining equations [cf. (1.4)]: 

; ( r i - t ) , ' ~ l  

2(2k+1) !  
0 ~ ..... b ... . . . . . . .  ' = 0 .  2 f i  . . . . . . . . . .  + 0 '  ..... F .......... ' +  ( - l ) " + ~ + ' - - ( 2 k _ 2 m + l ) Y ( 2 m )  T 

h = m  

2P ........... +0  ~ ...... F ~, ........ ' +  Z ( -1 )~+ '  2 ( 2 k ) !  W ............. 
k=,~-, ( 2 k - 2 1 - 1 ) ! ( 2 1 + 1 ) !  ' 

(4,3) 

where 

0 
0 " ~ - - -  . m = 0 , 1  . . . . .  {n/2}, 

Ox. 
t = O .  1 . . . . .  { ( n -  ~ ) / ~ 1 .  

U ............ F . . . . . . . .  ~,b~.. ~ ....... Ob'O ~ . . . 0 ~ . . . . . . .  V ,  W . . . . . . . . . . . .  F . . . . . . . . . . .  ~,o~ ~ ....... 0~  < . . . 0 . . . . . . . .  V 

and symmetrization over the indices enclosed in the brackets is understood. 

Equations (4.3) determine potentials V that admit nontrivial symmetries of  order n and the coefficients F .......... of  the 

corresponding symmetry operators. The general solution of these equations for V=-0 was obtained in [t0]. Here, we consider 
the case of  the harmonic oscillator potential 

V(x)----~x ~ 

and give without proof  the number ]Qn of linearly independent symmetry operators of  order n and the explicit form of these 
operators: 

1 
" = ~;~!~S,(, n + . , , ,  1) ( n + 2 ) ~ ( n + 3 )  ~ (,~+4), 

(4.4) 

, , = 0  ~ - - 0  

where 
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%~- = (p~j• l~=e~r q~ -. 

and )~ ..... ~:' ~''' are arbitrary constant tensors that are symmetric with respect to the substitutions aioaj, bkob I and have zero 

trace with respect to any pair of indices (aj, bi). 
The symmetry of Eq. (4.1) with the potential of the supersymmetric oscillator 

can be made in complete analogy with Sec. 3. The general expression for the corresponding symmetry operator of order n is 

given by (3.4), where L~ are the operators (4.5) (~. . . . .  / .... ~ ........... i.~, .,,~b~. ~ .... ), and the number of linearly independent 
symmetry operators is 4N n. 

5. P O T E N T I A L S  T H A T  A D M I T  N O N T R I V I A L  S Y M M E T R I E S  

We now consider the problem of the second type and describe the class of potentials for which Eq. (1.1) admits nontrivial 

symmetries. In principle, all such potentials are described by Eqs. (4.1) if both V and qi are regarded as unknown. 

We consider successively the cases n=  1, 2 (which correspond to Lie symmetries) and n =3 (simplest non-Lie symmetry). 
Setting n=  1 in (1.4), we arrive at the system 

q , '=0 .  2~,+q,, '=0, (I,,- V'q,=O. (5.1) 

By definition ql ~ 0, and therefore the following differential consequences of the system (5.1) hold: 

q,,"=O~ V'"=0,  

and from them we obtain the general form of a potential V admitting a first-order symmetry operator: 

V = V , +  V~x§ V~x ~. 

where V1, V2, and V 3 are arbitrary constants. The corresponding symmetry operators are given in Sec. 3. 
For n=2,  the system (1.4) takes the form 

q:," ~0,  2 ~ + q , ' = 0 ,  t),~-I"q,--0. 2ft,+q,,'-2q.,.V'=O, (5.2) 

from which we obtain by analogy with the above 

V= I/,+ V,x+ V,x:: + -(Co+C,x). ~ . (5.3) 

We see that Eqs. (1.4) permit an elementary calculation of the general form of a potential admitting a nontrivial Lie 
symmetry [second-order symmetry operators reduce on the set of solutions of Eq. (1.1) to first-order differential operators which 
are generators of a Lie group]. 

The case n=3  already corresponds to a non-Lie symmetry. The corresponding equations (1.4) take the form 

q / = 0 ,  2~:~+q~' =0. 2 ~ +  q,"-rq,~ V" =0. (5.4a) 

2~,+qo'-4q.~ V' =0. (5.4b) 

~,,-q, V" +q~ V'" =0. (5.4c) 

It is easy to show that the general solution of Eqs. (5.4a) has the form 

q.~=o, q,:=b-2d.z, q, =2iix"- 26x+6a V +c. (5.5) 

where a, b, c are arbitrary functions of t. Differentiating (5.4b) with respect to t and (5.4c) with respect to x, and eliminating 
q~ we arrive, using (5.5), at the equation 

(aV"-3aV~-  cV)" -2 i i [  ( V'x") '+4(xV)" + 2V] ~+26[ ( V'z) '+ 2V'] =4"ax~-4bx+2?. (5.6) 

The nonlinear equation (5.6) is fairly complicated, and we therefore restrict ourselves to an investigation of its particular 
solutions. We note first that all the potentials (5.3) satisfy (5.6) and, therefore, admit a nontrivial third-order symmetry 
operator. However, it turns out that the class of potentials admitting such a symmetry operator is much larger and includes, 
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for example, the following solutions of  Eq. (5.6) [11]: 

2d :~ d ~ ( i •  dx ) 
l = . . . . . . . . .  V=2d ~ tg-' dx. V=2d(tb- '  dx . - ! ) .  V=2d~(cth: d x -  ! ). V . . . . . . . . . . . . .  , (5.7) 

cos z dx " sh 2 dx 

where d is an arbitrary parameter. 
Equations (1.1) with potentials (5.7) are exactly solvable [151. It should be emphasized that these potentials do not admit 

a nontrivial Lie symmetry, but for the corresponding Schr6dinger equations a third-order symmetry operator exists, 
We give a number of  other solutions of  Eq. (5.6). Setting a priori a =b = ~ = 0 ,  we can integrate this equation twice with 

respect to x and reduce it to the form 

An obvious solution of (5.8) is the function 

(5,8) 

V =  )i- w - - - .  , ~ 0 ,  (5.9) 
6a 

where Wis the Weierstrass function, satisfying the equation g/ '  = W 2, and at the same time k0=k  I =0 .  We obtain other solutions 
of Eq. (5.8) using the handbook I201: 

a) for c=ko=O, k 1 = 2 a # 0 ,  V=2y we obtain the equation that determines the transcendental Painter6 function; 

b) for k 1 = k  0 =0 ,  c=4a # O, V= 2y we obtain an equation whose solution leads to elliptic integrals. The solutions include, 
for example, the functions 

I 

corresponding to the special case of  the P6schl--Teller potential [21]. 

CONCLUSIONS 

We have shown that the problem of  describing the complete set of  symmetry operators of  arbitrary finite order n for the 

one-dimensional Schrrdinger equation reduces to finding the general solution of the system of  linear equations (1.4) for the 
coefficients qi of the operator (1.2). The integration of this system for a given interaction potential enables us to find all 
inequivalent symmetry operators of  order n. Above, we have found these symmetry operators for all potentials that admit a 
nontrivial Lie symmetry and for the potential of  the supersymmetric oscillator. 

Much more complicated is the problem of describing the potentials that admit symmetry operators of  a given order n. 
This problem also reduces to the solution of the system (1.4), in which both qz" and V are regarded as unknown. As a result, 

already in the case n = 3 we arrive at a nonlinear equation for V for which we were cmly able to obtain particular solutions. 
However, they include the very important potentials (5.7) and (5.10), which correspond to exactly solvable Schrrdinger 
equations [15,21]. In our view, the existence of a generalized (non-Lie) symmetry of exactly solvable equations that do not 
possess Lie symmetry is a fundamental fact, opening up new possibilities in the construction of  exactly solvable models. Thus, 

it would be very interesting to investigate the possibility of  constructing exact solutions of  Eqs, (1.1) with the potential (5.9) 
and the other potentials listed above under a) and b) admitting third-order symmetry operators. 

It should be noted that our approach makes it possible to calculate symmetries of  infinite order too. The corresponding 
symmetry operators can be represented in the form (1.2) or (4.2), where n~oo,  and the determining equations are specified by 
(1.4) or (4.3), where the first rows must be omitted and the summation replaced by infinite series, i.e., the upper limit of  
summation tends to infinity. 

Our approach to the investigation of symmetry operators of higher orders of Eq. (1.1) is an alternative to the one employed 
in [22], which describes symmetry operators admitted by the Morse and Prschl--Teller potentials. 
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