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Relativistic wave equations for interacting, massive particles with arbitrary half-integer spins
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New relativistic wave equations~RWE! for massive particles with arbitrary half-integer spinss interacting
with external electromagnetic fields are proposed. They are based on wave functions which are irreducible
tensors of rank 2n (n5s2

1
2 ) antisymmetric with respect ton pairs of indices, whose components are bi-

spinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches
to equations describing interacting higher spin particles.
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I. INTRODUCTION

Over the years many relativistic wave equations~RWE!
for the description of particles with arbitrary spinshave been
proposed and studied in detail by the field- or grou
theoretical methods~see, e.g., Refs.@1–11# and surveys in
@12–14#!. It turns out that the various proposed RWE a
more or less equivalent as far as free particles are conce
but differ essentially in the physically more relevant cas
i.e., whenever interactions of particles with an external el
tromagnetic or other field are taken into account. In fac
has been discovered that several difficulties arise for R
describing higher spin particles interacting with extern
fields. They are related to several mutually dependent f
and can be briefly summarized as follows.

First, the wave function which is a solution of a given fir
order RWE describing a particle with higher spins (s
.1/2) must necessarily have more components than
theoretically required@i.e., more than 2(2s11)#. Hence the
RWE should be provided with the appropriate number
constraints to ensure the right number of independent c
ponents of the wave function. While this requirement can
met in the case of the RWE for free particles, the introd
tion of interactions with an external electromagnetic fie
may cause a failure in this respect. It leads either to too m
constraints on the components of wave function or to
enough of them~for details see@15#, @16# or @18#!, or it yields
to an unacceptable restriction on the external field alre
discussed by Fierz and Pauli in@3# ~see also@16#!. The alge-
braic criteria which determine whether or not the above m
tioned difficulties will arise, can be found in@10#.

Second, the wave function describing a higher spin p
ticle interacting with external fields can propagate acaus
since the corresponding RWE may not be hyperbolic or
propagation speed of the wave function can be larger t
that of the velocity of light in the vacuum. This phenomen
which was first discovered to the surprise of theoreticians
Velo and Zwanziger@15# in 1969~see however also paper b
Johnson and Sudarshan of@17#! reopened the problem o
RWE once again—the problem that, after the papers
Salam and Mathews@19# and by Schwinger@20# had been
considered as completely solved.
0556-2821/2001/64~12!/125013~11!/$20.00 64 1250
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Third, unacceptable changes in the anticommutation ru
for field components can occur when interactions with
electromagnetic~or other! field are introduced@17# ~see also
@13#!.

In the fourth place, modes of complex frequency~i.e., the
complex energy levels! may appear for a system of highe
spin particle interacting with a strong external magnetic fi
~for details see@21#!.

Fifth, starting with spins RWE for a free particle and
introducing to it interactions via minimal coupling a charg
particle is described whose gyromagnetic ratiog is equal to
1/s instead of the desiredg52 ~see, e.g.,@8#!. The other
inconsistency of RWE with minimal interaction consists
the absence of spin-orbit coupling@22#.

Let us remark that the above mentioned difficulties are
addition to those which appear already in the free part
theory, namely, that the charge of integer spin particle a
energy of half-integer spin particle are indefinite~see, e.g.,
@7,22#!.

In order to complete this brief survey let us mention t
main disadvantages of the most frequently used approac

In the Bargman-Wigner formulation@5# in which the
wave function has 2s bispinorial indices and satisfies th
Dirac equation for each of them the main disadvantage c
sists in the impossibility to introduce a minimal interactio
because the resultant equations have trivial solutions o
The same is true for covariant systems of equations propo
by Bakri @23#.

In the Bhabha approach@24# the corresponding equation
admit the minimal interaction@25#. But these equations de
scribe multiplets of particles with spins equal tos,s
21, . . . ,s0 wheres05 1

2 or s050 for half-integer and inte-
ger spins, respectively.

The Lomont-Moses@26#, Hagen-Hurley@27#, and Dirac-
like equations with differential constraints@28# are causal in
the case of anomalous interaction, but yield complex en
gies for a particle interacting with crossed electric and m
netic fields@14#.

The Weinberg equations@29# for particles of spins con-
tain time derivatives of order 2s, and, as a result, admi
nonphysical solutions. For the recent analysis of these eq
tions, see Ref.@30#.
©2001 The American Physical Society13-1
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The relativistic Schro¨dinger equations without redunda
components@31# admit reasonable quasirelativistic approx
mations@14#, however, make troubles to introduce minim
interaction since they are formulated in terms of integ
differential operators.

These inconsistencies of RWE for particles with high
spin s are especially provoking due to the following we
known experimental facts:~i! that many baryonic resonance
with spins equal tos5 1

2 , 3
2 , . . . up to 13

2 have been found
and are well established@32#; ~ii ! that relatively stable and
massive vector bosonsW1 andW2 mediating weak interac
tions were discovered and has been studied in great de
~iii ! that there exists a number of composite systems~e.g.,
exotic atoms@33#, or excited states of the Helium nucle!
whose energy states and other properties should be desc
by the RWE for particles of higher spin.

Moreover, in connection with the idea of unification
fundamental particle interactions and of quantum theory w
gravity in contemporary particle physics~i.e., in string theo-
ries, supergravity, M theory, etc.! many interacting higher
spin particles or other objects~p-branes! have been intro-
duced and must be consistently described~and not only in
311 dimensions!.

In the present paper we propose new equations
chargedmassiveparticles with arbitrary half-integer spin
interacting with an electromagnetic~or other! external field.
In fact we propose two kinds of models: one for a sing
interacting particle and the second one for a pair of partic
or more precisely for a parity doublet. Our approach is ba
on wave functions with well defined tensorial and spinor
properties. Namely, our wave functions describing an in
acting massive particle with higher spins is an irreducible
skew-symmetric tensor of rank 2n with n5s2 1

2 each com-
ponent of which is a bispinor.

Our approach is simple and straightforward when go
from, say,s5 3

2 to a general half-integer spins, is causal,
describes the anomalous interaction of a particle having
s and preferred valueg52 of the gyromagnetic ratio, has
suitable nonrelativistic limit, etc.

The appearance of RWE which consistently describe p
of higher spin particles~parity doublets! instead of single
particles might be advantageous of our approach since m
of above mentioned observed resonances with higher s
have been found to be parity doublets@32#. Mathematically,
each of these RWE actually define a carrier space of irred
ible representation of thecompletePoincare´ group ~i.e., the
Poincare´ group including discrete transformationsP, T and
C) which, when considered as a representation space o
proper Poincare´ group, corresponds to the carrier space o
reducible representations isomorphic to a direct sum of
equivalent irreducible representations.

We shall restrict ourselves to massive interracting p
ticles since for massless ones there are no-go theorems w
state that it is impossible to build a consistent theory of
teraction of such particles with electromagnetic@34# or gravi-
tational @35# fields in space-time which is assymptotical
flat. However, we present a brief discussion of the mass
limit of free particle equations which appears to be well d
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fined and generates consistent equations for massless
with arbitrary spins.

In Sec. II we outline the Rarita-Schwinger theory@36# for
particles of spins5 3

2 and discuss the troubles with intera
tion problems. It was noticed in@37# that, contrary to the
statement of paper@38# these troubles cannot be overcom
with using the Singh-Hagen approach@8# ~for a simple proof
see Appendix A!.

In Secs. III–V we introduce a new formulation of equ
tions for particles with spin3

2 ~which effectively are equa-
tions for parity doublets! which are causal. The massle
limit of these equations is discussed in Sec. VI. In Sec.
we present equations for single particle states, causality
pects of which are discussed in Appendix B.

II. RARITA-SCHWINGER EQUATION

We begin with the most popular formulation of RWE fo
particle of spin 3

2 proposed by Rarita and Schwinger@36#.
The wave function is a 16-component fourvector-bispin
c (a)

m with m50,1,2,3 being a four-vector index anda
51,2,3,4 a bispinor index which will be usually omitte
Then the RS equation can be written in the form@36#

~glpl1m!cm50,

gmcm50, ~2.1!

wheregl are the Dirac matrices acting on the bispinor ind
in the following way: (glcm)(a)5Ss51

4 (gl)(a)(s)c (s)
m .

Contracting the first of Eqs.~2.1! with gm we obtain the
compatibility condition for the system~2.1!:

pmcm50. ~2.2!

The RS system~2.1!, ~2.2! can be rewritten as a single equ
tion

Fm5Lmlcl50 ~2.3!

with operatorLmn of the form

Lml5~gnpn1m!gml2gmpl2glpm1gm~gnpn2m!gl .

~2.4!

Reducing Eq.~2.3! with gm andpm we get Eqs.~2.1!.
Equation ~2.3! admits the Lagrangian formulation. Th

corresponding LagrangianL can be written as

L5c̄mLmncn, ~2.5!

wherec̄m5cm†g0.
Let us discuss now the RS equation with interaction. T

minimal interaction with the external e.m. field can be intr
duced replacing

pm→pm5pm2eAm ~2.6!

in the considered free equation. In order to be sure that
change does not break the compatibility of our equations
3-2
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have to make a change~2.6! in the Lagrangian~2.5! whose
variation with respect toc̄m generates the following equa
tion:

~gnpn1m!cm2gmpaca2pmgaca1gm~gnpn2m!glcl

50. ~2.7!

Contracting Eq.~2.7! with gm andpm we obtain two con-
ditions, namely

gmcm5 f ncn ~2.8!

and

pmcm5S gnpn2
3

2
mD f ncn . ~2.9!

Here

f n5
2ie

3m2
gmF̃mn, F̃mn5

1

2
g5«mnrsFrs

with g55g0g1g2g3 and Fns52( i /e)@pn,ps# is the
strength tensor of the electromagnetic field.

Using conditions~2.8!, ~2.9!, Eq. ~2.7! reduces to the
form

~gnpn1m!cm2S pm2
m

2
gmD f ncn50, ~2.10!

which together with Eq.~2.8! is equivalent to Eq.~2.7!.
Equation~2.10! has a nonsingular matrix coefficient for th
time derivative and is called the ‘‘true motion equation.’’

There are two important physical requirements wh
have to be imposed to any RWE for a particle of spins.
Namely, that~a! the related Cauchy initial value problem
must possess a unique solution depending on 2(2s11) ini-
tial data functions, and that~b! the velocity of propagation o
the wave solutions must not exceed the velocity of light
vacuum.

For FmnFmn,2(3m2/2e)2 condition ~a! for the the RS
equation is fulfilled due to the following facts. First, evol
tion equation~2.10! is supplemented by constraint~2.8!. One
more constraint is generated by Eq.~2.7! for m50:

paca1~gapa2m!gbcb50, ~2.11!

where summation is understood over the repeated ind
a,b51,2,3.

Relations~2.8! and ~2.11! are compatible with Eq.~2.10!
and reduce the 16 componentscm to 8 @i.e., 2(2s11) with
s53/2# independent ones.

However, the RS equation does not satisfy requirem
~b!. To show this it is sufficient to consider Eqs.~2.8!–~2.10!
in the eikonal approximationCm5ĉmexp(itnnx

n),t→`

whereĉm are constants andnm is a constant four-vector. Thi
actually means to substitute the characteristic four-vectornm
to the covariant derivatives and keep only leading terms
nm . Then Eq.~2.10! reduces to a system of linear homog
12501
es

nt

n

neous algebraic equations. Equating to zero the determi
of matrix defining this system we obtain an algebraic eq
tion for nm . Then, if all n0 satisfying this equation are rea
the system~2.7! is hyperbolic and if alln0 satisfy n0

2/n2

<1 or n0
22n2<0 where n25n1

21n2
21n3

2, the theory is
causal@15,39#.

However it seems that the simplest way to prove acau
ity of Eqs. ~2.8!, ~2.10! is to choosead hocspecial solutions
of the form Cm5pmf and show that it is acausal. In th
eikonal approximation such solutions satisfy Eq.~2.10! iden-
tically provided Eq.~2.8! is satisfied. On the other hand, E
~2.8! is reduced to the following form:

S gnnn2
2ie

3m2
gnF̃nsnsD f50. ~2.12!

Choosingnm5(n,0,0,0) we conclude that Eq.~2.12! ad-
mits nontrivial solutions for time-likenm which evidently are
acausal. Moreover, it is possible to show that acausal s
tions appear even for very small~but nonzero! Fmn @15#.

Thus the minimally coupled RS equation admits fast
than-light solutions and is not in this sense satisfactory
was shown in@40# that the RS equation with anomalou
interaction is acausal too~for the most recent analysis of thi
problem see Ref.@37#!.

It is, therefore, still current to search for consistent form
lations of RWE for a particle with spin32 and higher. They
will be described in Secs. III–VII.

III. EQUATIONS FOR PARITY DOUBLETS

The RSequation with spin3
2 and its generalizations hav

been formulated in terms of fourvector-bispinor and symm
ric tensor-bispinor wave functions respectively@3,8#.

We shall propose here an approach valid for particles w
arbitrary higher half-integer spinss in which the spin-s fer-
mionic field is described byC [m1v1][ m2v2] . . . [mnnn]—an anti-

symmetricirreducible tensor-spinor of rank 2n1 (n5s2 1
2 )

satisfying the condition

gm1
gn1

C [ls][ m1n1] . . . [mnnn]50, ~3.1!

where gl and gs are the Dirac matrices. Moreover, fiel
C [m1v1][ m2v2] . . . is supposed to satisfy the Dirac equation

~glpl2m!C [m1n1][ m2n2] . . . [mnnn]50. ~3.2!

A mere consequence of Eqs.~3.1! and~3.2! is the follow-
ing relation:

glpsC [ls][ m2n2] . . . [mnnn]50. ~3.3!

1That is, the tensor antisymmetric with respect to permutationsm i

with n i and symmetric with respect to permutations of@m i ,n i # with
@m j ,n j # and, moreover, having zero all contractions withgm in j

and
«m in im jn j

, i , j 51,2, . . . ,n.
3-3
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We shall see that antisymmetric tensors are in many
spects more convenient for constructing RWEs than the u
ally used symmetric tensors@3,8#, since they more naturally
lead to causal equations.

In accordance with its definition, fieldC [m1n1] . . . [mnnn]

transforms according to the representation

@D~s2 1
2 ,0! % D~0,s2 1

2 !# ^ @D~ 1
2 ,0! % D~0,1

2 !#

5D~s,0! % D~0,s! % D~s2 1
2 , 1

2 ! % D~ 1
2 ,s2 1

2 !

% D~s21,0! % D~0,s21! ~3.4!

of the Lorentz group, so that it has 16s components.
Relation ~3.1! defines a static constraint, i.e., the co

straint which does not involve derivatives. Expressi
p0C [0n1][ m2n2] . . . [mnnn] in terms of derivatives with respec
to the space variables in Eq.~3.3! we get the second, dy
namical constraint.

Static constraint~3.1! suppresses the states correspond
to the representationsD(s21,0) andD(0,s21) and relation
~3.3! reduces half of the remaining states, so that we h
exactly 4(2s11) independent components, i.e., twice mo
than necessary.

Equations~3.1!–~3.3! can be replaced by the followin
equation:

L [m1n1][ m2n2] . . . [mnnn][ l1s1][ l2s2] . . . [lnsn]

3C [l1s1][ l2s2] . . . [lnsn]

[~glpl2m!C [m1n1][ m2n2] . . . [mnnn]

2
1

4s (̀ ~gm1gn12gn1gm1!plgsC [ls][ m2n2] . . . [mnnn]

50, ~3.5!

where the symbol(` denotes the sum over permutations
subindices (1,2, . . .n) and tensorC [m1n1][ m2n2] . . . [mnnn] is
supposed to satisfy relation~3.1!.

Contracting Eq.~3.5! with gmgn we get an identity while
contraction~3.5! with pmgn yields relation~3.3!.

It is important to notice that Eqs.~3.5! can be derived
from a Lagrangian of the form

L5C̄ [m1n1][ m2n2] . . . [mnnn]

3L [m1n1][ m2n2] . . . [mnnn][ l1s1][ l2s2] . . . [lnsn]

3C [l1s1][ l2s2] . . . [lnsn] , ~3.6!

with

L [m1n1][ m2n2] . . . [mnnn][ l1s1][ l2s2] . . . [lnsn]

3C [l1s1][ l2s2] . . . [lnsn]

defined in Eq.~3.5! andC [ls][ m1n1] . . . [mnnn] assumed to sat
isfy Eq. ~3.1!.

In the cases5 3
2 this Lagrangian is of the form
12501
e-
u-

g

e

f

L5C̄ [mn]L
[mn][ ls]C [ls] , ~3.7!

where

L [mn][ ls]5 1
2 ~gapa2m!~gmlgns2gmsgnl!

2 1
12 ~gmgn2gngm!~plgs2psgl!. ~3.8!

We notice that it is always possible to chose such L
grangian which generates also simultaneously Eq.~3.1! ~so
that validity of this equation is not necessary to be assum
a priori!. For s53/2 it has the form

L [mn][ ls]5 1
2 ~gapa2m!~gmlgns2gmsgnl!1 1

12 ~pmgn

2pngm!~glgs2gsgl!2 1
12 ~gmgn2gngm!

3~plgs2psgl!1 1
24 ~gmgn2gngm!grpr~glgs

2gsgl!. ~3.9!

The corresponding propagator is given by

G[mn][ ls]5
gapa1m

plpl2m2 F ~gmlgns2gmsgnl!1
1

6m
~pmgn

2pngm!~glgs2gsgl!2
1

6m
~gmgn2gngm!

3~plgs2psgl!1
1

12m
~gmgn

2gngm!grpr~glgs2gsgl!G . ~3.10!

Let us remark that solutions of both our Eqs.~3.10! and
those of Lomont and Moses@26# ~see also@27# and @28#!
transform according to the same representation of the L
entz group specified in Eq.~3.4!, and in this respect the men
tioned equations are equivalent. However, due to their dif
ent forms they essentially differ in the interaction conte
Whereas our tensor-spinorial formulation~3.5! seems to be
suitable and very convenient for systematic and consis
introduction of various types of interactions, the Lomon
Moses formulation is consistent for description of free p
ticles only.

IV. MINIMAL AND ANOMALOUS INTERACTIONS

The minimal interaction with an external electromagne
field can be introduced by using replacement~2.6! in the
Euler-Lagrange equation~3.5!. As a result we obtain

~glpl2m!C [m1n1][ m2n2] . . . [mnnn]2
1

4s (̀ ~gm1gn1

2gn1gm1!plgsC [ls][ m2n2] . . . [mnnn]50. ~4.1!

Contracting Eq.~4.1! with pmgn and using Eq.~3.1! we
obtain the following relation:
3-4
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plgsC [ls][ m1n1] . . . [mn21nn21]

5
ie

2m
~Fls2gnglFsn!C [ls][ m1n1] . . . [mn21nn21] .

~4.2!

In view of Eqs.~3.1! and~4.2!, Eq. ~4.1! can be written as

~gmpm2m!C [m1n1][ m2n2] . . . [mnnn]

5
ie

4sm (̀ ~gmngnn2gnngmn!~Fls

2glgsFal!C [sa][ m1n1] . . . [mn21nn21] .

~4.3!

Equations~4.1!, ~3.1!, and ~4.3! are suitable for description
of a particle with arbitrary half-integer spins. We shall dis-
cuss these equations in detail for the simplest cases5 3

2 .
However, the obtained results remain true for arbitrarys.

For s5 3
2 the corresponding tensor-spinor function h

only one pair of indices and thus Eqs.~4.3!, ~3.1! are reduced
to the following form:

F mn5~gmpm2m!C [mn]2
ie

6m
~gmgn2gngm!~FlsC [ls]

1glgsFalC [sa] ! ~4.4!

and

gmgnC [mn]50. ~4.5!

Equation~4.4! is equivalent to the system

F1
mn5glplC1

[mn]2mC2
[mn]50, ~4.6!

and

F2
mn5glplC2

[mn]2mC1
[mn]

1 1
6 ~gmgn2gngm!glpsC2

[ls]

50, ~4.7!

where F 6
mn5F mn6 1

2 g5«mn
rsF rs, C6

[mn]5C [mn]

6 1
2 g5«mn

rsF [rs] .
Solving Eq.~4.6! for C2

[mn] and using Eq.~4.7! we obtain
the following relation:

S plpl2
ie

2
glgsFls2m2DC1

[mn]2
i

6
~gmgn

2gngm!FlsC1
[ls]50. ~4.8!

Formula~4.8! presents a nice second-order hyperbolic d
ferential equation whose solutionsC1

[mn] are causal. The
same is true for componentsC2

[mn] , expressed in terms o
C1

[mn] via relation ~4.7!, as well as forC [mn] which is the
sum ofC1

[mn] andC2
[mn] .

Let us remark that Eq.~4.8! can be expressed in the form
12501
-

S pmpm2m22
ige

2
SmnFmnDC1

[ls]50, ~4.9!

whereg5 2
3 , i.e., is reciprocal tos, andSmn are spin genera-

tors of the Lorentz group which act on the tensor-bispin
C1

[ls] in the following way:

SrsC1
[mn]5

i

4
@gr,gs#C1

[mn]1 i ~grmC1
[dn]2gdmC1

[rn]

2grnC1
[sm]1gsnC1

[rm] !

[
3i

4
@gr,gs#C1

[mn]1
i

2
@gm,gn#C1

[rs] .

~4.10!

Formula ~4.9! generalizes the Zaitsev-Feynman-Gell-Ma
equation for electron@41# to the case of particles with spin32 .
It describes a charged particle whose gyromagnetic ratiog is
1/s5 2

3 .
Following Pauli@42# we can generalize Eq.~3.5! to that

with ‘‘anomalous’’ interaction by adding to it a term
L [mn][ rs] (F) linear in Fmn, i.e., by changing

L [mn][ rs]→L [mn][ rs]~p!1L [mn][ rs]~F !.

This term can be found as a linear combination of
antisymmetric tensors linear inFmn. The complete set of
such tensors can be derived in terms of tensorsF [mn] , «mnrs,
gmn and vectorsgm and is given by

L1
[mn][ rs]5glgaFla~gmrgns2gmsgnr!,

L2
[mn][ rs]5 ig5glgaFla«mnrs,

L2
[mn][ rs]5Fmrgns2Fnrgms2Fmsg[nr]1Fnsgmr,

L4
[mn][ rs]5 ig5~Fam«a

nrs2Fan«a
mrs

1Far«a
smn2Fas«a

rmn, ~4.11!

L5
[mn][ rs]5Fnrgmgs2Fmrgngs2Fnsgmgr

1Fmsgngr,

L6
[mn][ rs]5gmglFrlgrs2gnglFrlgms

2gmglFslgnr1gnglFslgmr,

L7
[mn][ rs]5Fmn~grgs2gsgr!1Frs~gmgn2gngm!.

Hence the general form ofL [mn][ rs] (F) can be written as

L [mn][ rs]~F !5 (
n51

7

anLn
[mn][ rs] , ~4.12!

wherean are arbitrary constants.
3-5
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A natural condition which can be imposed o
L [mn][ rs] (F) is that the equation with anomalous interacti
should be compatible with relation~3.1! which suppresses
spin 1

2 states. Thesufficientconditions which guarantee thi
property ofL [mn][ rs] are

gmgnL [mn][ rs]~F !50 ~4.13!

and

pmgnL [mn][ rs]~F !50. ~4.14!

Substituting expression~4.12! into the conditions~4.13! and
~4.14! we obtain

4a154a25a35a45
2k

3
, a55a65a750,

wherek is so far an arbitrary parameter. Consequently
equation with anomalous interaction is of the form

~glpl2m!C [mn]2
1

6
~gmgn2gngm!pagsC [as]

1
iek

3m S 1

4
gagsFasC1

[mn]1Fa
mC1

[na]2Fa
n Ĉ1

[ma] D .

~4.15!

Contracting Eq.~4.15! with gmgn andpmgn we get again
conditions ~3.1! and ~4.2!, which enable us to write Eq
~4.15! as a system which consists of~4.6! and the equation

glplC2
[mn]2mC1

[mn]2
1

6
~gmgn2gngm!glpsC2

[ls]

1
iek

3m S 1

4
gagsFasC1

[mn]1Fa
mC1

[na]2Fa
nĈ1

[ma] D50.

~4.16!

Solving Eq.~4.6! for C2
[mn] and using Eq.~4.16! we obtain

the second order equation~4.9! in which, however,g5 2
3 (1

1k).
Thus the anomalous interaction causes only one th

namely, that the gyromagnetic ratiog in Eq. ~4.8! which in
minimal interaction case was fixed and equal to 1/s becomes
arbitrary, but the form of the equation remains the same.
possibility of changingg without changing the form of the
equation seems to be an attractive feature of the propo
approach.

We recall that even in the case of the Dirac equation
troduction of the anomalous interaction leads to a very
sential complication of the theory. Indeed, the Dirac equat
with minimal interaction is mathematically equivalent
Zaitsev-Feynman-Gell-Mann equation, the explicit form
which can be obtained from Eq.~4.9! by changingC1

[mn]

→c,g→2,Smn→( i /2)smsn, where c is a two-component
spinor andsm are the Pauli matrices. In the case of anom
lous interaction the related second-order equation@i.e., the
analog of Eq.~4.9!# includes a second order polynomial
12501
e

g,

e

ed

-
s-
n

f

-

Fmn and derivatives ofFmn with respect toxl as well, which
does not happen in our approach.

Takingk52 we can get the gyromagnetic ratiog equal to
2, i.e., to its ‘‘natural value’’~see, e.g.,@38#!.

V. FOLDY-WOUTHUYSEN REDUCTION

In order to analyze a nonrelativistic approximation of E
~4.15! it is convenient to make the Foldy-Wouthuysen redu
tion and express the corresponding Hamiltonian in a po
series of 1/m. For this purpose we shall introduce the follow
ing notations:

C5column~C23,C31,C12,C01,C02,C03!,

S̃mn5I 4^ Smn , Ŝmn5S̃mn1
i

4
@ ĝm,ĝn#,

ĝm5gm ^ I 6 , ŝ25S 0 2 i I 12

i I 12 0 D , ~5.1!

Sab5«abcS sc 0

0 sc
D , S0a5S 0 2sa

sa 0 D ,

where I 12, I 6, and I 4 are the 12312, 636 and 434 unit
matrices, respectively, andsc are 333 matrices elements o
which are (sc)

ab5 i«abc .
Then Eq.~4.16! multiplied by g̃0 reads

i
]

]t
C5HC, ~5.2!

where

H5ĝ0ĝapa1ĝ0m1eA01ĝ0~11 i ĝ5ŝ2!
e

4m
~gŜmn

2 i ĝmĝn!Fmn. ~5.3!

To simplify calculations we suppose that]Fab/
]xc!1, a,b,c51,2,3, and g52. Then, trans-
forming H→H85VHV211 i (]V/]t)V21 where V
5exp(iS3)exp(iS2)exp(iS1) with

S152
i

m
ĝ0~11 i ŝ2ĝ5!ĝapa,

S252
g5

4m2
~p22eŜmnFmn!2 i

g0g5

8m3

3Fe~paEa1Eapa!22i
]ŜmnFmn

]t
G ,

S35
ig

2
g0«abcŜ

abpc
3-6
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and omitting terms of the order of 1/m3 we finally obtain2

H85ĝ0S m1
p2

2m
2

p4

8m3
2

e

m
SW •HW D 1eA01

e

2m2
SW •~pW 3EW

2EW 3pW !2
e

12m2
Qab

]Ea

]xb
2

es~s11!

6m2
¹W •EW . ~5.4!

Here SW denotes a vector (S1 ,S2 ,S3) with Sa5 1
2 «abcŜbc ,

Qab53@Sa ,Sb#122s(s11)dab(s5 3
2 ) is the quadrupole in-

teraction tensor, andEa and Ha denote components of th
electric and magnetic fields vectors.

All terms of Hamiltonian ~5.4! have a clear physica
meaning. For positive energy solutions they have the follo
ing interpretation:m1p2/2m1eA0 represents the Schro¨-
dinger Hamiltonian with the rest energy term,2p4/8m3 the
relativistic correction to the kinetic energy, (e/m)SW •HW is the
Pauli coupling,2(e/2m2)SW •(pW 3EW 2EW 3pW ) is the spin-orbit
coupling,2(e/12m2)Qab(]Ea /]xb) is the quadrupole cou
pling and2@e(s11)/6m2#¹W •EW is the Darwin coupling.

Let us remark that all equations starting with Eq.~4.3! up
to Eq.~5.4! can easily be extended to the case witharbitrary
half-integer spins. As a result we obtain the quasirelativist
Hamiltonian ~5.4! which is of the same form but withSW
corresponding to appropriate spin matrices for the conside
spin s.

VI. THE MASSLESS CASE

It is well known that relativistic wave equations for mas
less particles with higher spins cannot be generally obtai
from those for massive particles by taking the limitm→0
@4#. Here we demonstrate that tensor-spinorial equati
~3.1! and ~3.5! have similiar properties like the Dirac equ
tion, namely, that they have a clear physical meaning fom
50 provided some additional constraints are imposed
their solutions.

We begin with spins5 3
2 . Taking Eq.~3.5! appropriate for

this case, setting in itm50 and supposing that the conditio

gnC [mn]50 ~6.1!

is true, we obtain the equation

gapaC [mn]50 ~6.2!

which describes a massless field whose helicities are6 3
2 and

energy signs are61. This can be shown in the following
way.

Reducing Eq.~6.2! with gn and using Eq.~6.1! we get the
condition

2The only term in Eq.~5.4! which is of order 1/m3, i.e., the term
p4/8m3, should be present in as much as it is of the same orderc2

as the last three terms~c is the speed of light!. Using the Heaviside
units in whichh5c51 leads to implicit dependence of the Ham
tonian onc.
12501
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ed
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pnC [mn]50. ~6.3!

It follows from Eqs.~6.1! and ~6.3! that

«mnrsgnC [rs]50 ~6.4!

and

«mnrspnC [rs]50. ~6.5!

In other words fieldC [mn] satisfies both the massless Dira
equation~6.2! and the Maxwell equations~6.3! and ~6.5!.

Condition ~6.4! reduces the number of independent co
ponents ofCmn to 8 while relation~6.3! reduces this numbe
to 4. To prove that solutions of Eqs.~6.2!, ~6.1! correspond
to helicities 6 3

2 relations ~4.10! and ~6.5! should be used
from which follow that

«abcS
abpcC

[mn]5
3

4
i«abcg

agbpcC
[mn]

[
3

2
ig5g0gapaC [mn] . ~6.6!

In accordance with Eqs.~6.2! and~6.6! the eigenvalues of
the related helicity operator coincide with eigenvalues of
energy sign operator multiplied by6 3

2 . Thus solutions of
Eqs. ~6.2! and ~6.1! belong to the carrier space of th

irreducible representation D1( 3
2 ) % D2( 3

2 ) % D1(2 3
2 )

% D2(2 3
2 ) of the Poincare´ group, whereDe(l) denotes rep-

resentation corresponding to energy signe and to helicityl.
Imposing the additional constraints (11 ig5)C [mn]50 or
(12 ig5)C [mn]50 it is possible to reduce this representati

to D1( 3
2 ) % D2(2 3

2 ) or D2( 3
2 ) % D1(2 3

2 ). In other words,
relations~6.2! and ~6.1! form a natural generalization of th
massless Dirac equation to the case of spin3

2 .
We note that the ansatz

C [mn]5pmCn2pnCm, ~6.7!

whereCm is a vector-spinor satisfying the conditionglCl

50 reduces Eqs.~6.1!, ~6.2! to the massless RS equation f
Cm:

gapaCm50, glCl50.

Equation~6.7! is invariant with respect to the gauge tran
formationCl→Cl1]w/]xl , wherew is an arbitrary solu-
tion of the massless Dirac equationgapaw50.

Analogously, starting with Eqs.~3.1!, ~3.5! for arbitrary
spin we come to the following equations for the massl
field with spins5(2n11)/2:

gapaC [m1n1][ m2n2] . . . [mnnn]50,

gaC [an1][ m2n2] . . . [mnnn]50.

Like solutions of Eqs.~6.2! and~6.1!, the related wave func-
tion C [m1n1][ m2n2] . . . [mnnn] has only four independent compo
nents corresponding to states with helicities6s and energy
signs61.
3-7
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VII. SINGLE PARTICLE EQUATIONS

As was shown, Eqs.~3.1! and~3.2! describe a doublet o
relativistic particles with spins. In order to find the Poincare´
and parity invariant equation for a single particle it is nec
sary to impose onC [m1n1][ m2n2] . . . [mnnn] an additional condi-
tion which annuls half of the physical components. It can
taken in the form

pmC [mn1][ m2n2] . . . [mnnn]50. ~7.1!

The resulting system, i.e., Eqs.~3.1!, ~3.2!, and ~7.1!, obvi-
ously satisfies all required invariance properties and
scribes a particle of arbitrary half-integer spins52n11/2.

In the cases5 3
2 this system is reduced to the equation

~glpl2m!C [mn]50, ~7.2!

gmgnC [mn]50, ~7.3!

pmC [mn]50. ~7.4!

In the rest framep5(m,0,0,0) relation~7.4! reduces to
mC [oa]50, which impliesC [oa]50. Thus Eq.~7.4! annuls
half of the components of the wave function. On the oth
hand, in the rest frame condition~7.3! can be written as

SW 2C5s~s11!C, s5
3

2
, ~7.5!

where C5column(C [23],C [31],C [12]) and SW
5(S23,S31,S12) is the total spin for the tensor-spinor wav
function, components of which are given in Eq.~4.10!.

The system of equations~7.2!–~7.4! can be replaced by
one equivalent equation which is of the form

~glpl2m!C [mn]1gnplC [lm]2gmplC [ln]2
1

2Fgmpn

2gnpm2~gmgn2gngm!S 1

2
glpl2

m

3 D GglgsC [ls]

50. ~7.6!

Indeed, reducing Eq.~7.6! with gmgn and pmgn we get
the system~7.2!–~7.4!. On the other hand, reducing Eq.~7.6!
with gn and denotinggnC [mn] by Cm we obtain the RS
equation ~2.3! as an algebraic consequence of Eq.~7.6!.
However, Eq.~7.6! is not of the Euler-Lagrange type.

In order to find a Lagrangian generating Eqs.~7.2!–~7.4!
one should add an auxiliary field. Using this old idea of Fie
and Pauli@3# the desired Lagrangian is given by

L5LTS1LRS1LCR, ~7.7!

where LTS is the Lagrangian of the tensor-spinor field d
fined in Eqs.~3.7!, ~3.9!, LRS is the Rarita-Schwinger La
grangian given in Eq.~2.5! andLCR is the ‘‘crossed Lagrang
ian’’ of the form
12501
-

e

-

r

z

LCR52C̄ [mn]p
mCn1C̄mpnC [mn]

2 1
12 „C̄ [mn]g

mgn~pl2gsp
sgl!Cl

2C̄l~pl2gsp
sgl!gmgnC [mn]…. ~7.8!

Variation of Lagrangian~7.7! with respect toC̃ [mn] and

C̃m yields two equations: namely,

~glpl2m!C [mn]2pmCn1pnCm1 1
12~gmgn2gngm!~ f

22plgsC [ls] !1 1
24 ~gmgn2gngm!

3~glpl2m!glgsC [ls]50 ~7.9!

and

~glpl1m!Cm2gm~ f 1mglCl!2pmglCl1pnC [mn]

2~pm2glplgm!glgsC [ls]50, ~7.10!

in which f denotes the expressionplCl2glplgnCn.
Reducing Eq.~7.9! with gmgn we obtain condition~7.3!.

Thus Eqs.~7.9! and ~7.10! can be simplified to

~glpl2m!C [mn]2pmCn1pnCm1 1
12 ~gmgn2gngm!

3~ f 22plgsC [ls] !50 ~7.11!

and

~glpl1m!Cm2gm~ f 1mglCl!2pmglCl1pnC [mn]50,
~7.12!

respectively.
Reducing Eq. ~7.11! successively withgm , pm, and

pmgn , and Eq.~7.12! with gm andpm , we obtain Eqs.~7.2!–
~7.4! for C [mn] and the conditionCm50. In other words, the
equations of motion annul the auxiliary fieldCm and are
equivalent to the system~7.2!–~7.4! describing a particle of
spin 3

2 and massm.
Taking into account relation~7.3! it is convenient to rep-

resentC [mn] in the form

C [mn]5xmn1
1

2
~gmAn2gnAm!, ~7.13!

wherexmn and Am is a g-irreducible tensor and vector, re
spectively. They satisfy the conditions:xmn52xnm,gnxmn

50 andgnAn50. In view of Eq. ~7.3! we easily find that
xmn5 1

2 C1
[mn] andAm52gnC [mn] .

Using variables~7.13! and introducing a minimal interac
tion via replacementpm by pm we can write the related
equations~7.3!, ~7.11! and~7.12! in the following equivalent
form:

pm~Cn2An!2pn~Cm2Am!1 1
12 ~gmgn2gngm! f̂

1m~xmn2 1
2 ~gmAn2gnAm!1gmCn2gnCm!50,

~7.14!

2glplxmn2m~gmAn2gnAm!2~p•C!1
mn50,

~7.15!
3-8
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where the following notations have been use

(p • C)6
mn 5 pmCn2pnCm 6 1

2 g5«mnrsp rCs , f̂ 5plCl

2glplgnCn.
We show in Appendix B that for a rather extended class

external fields Eqs.~7.14! and ~7.15! remain causal.

VIII. DISCUSSION

In the paper RWE for a massive interacting particle w
arbitrary half integer spins has been proposed and especia
for s53/2 discussed in detail.

RWE considered in Sec. III are causal and free of m
inconsistences which are typical for equations for particles
spin greater than 1. Moreover, these equations have a p
cally suitable form in quasirelativistic approximation and a
able to describe mostly used interactions such as Pauli, s
orbit, quadrupole and Darwin couplings. We recall that ev
such popular equations as the Kemmer-Duffin-Petiau@43#
one does not describe the spin-orbit coupling in the fram
work of the minimal interaction principle@22#.

The other attractive feature of the tensor-spinorial wa
equations consists in their hidden simplicity which can
recognized considering the second-order equation~4.9! for
the physical components. This equation can be easily so
for many particular cases of the external fields as it was d
in @28,44# for the special case ofg51/s. We plan to presen
these exact solutions elsewhere.

The considered equations have a reasonable zero
limit for a free particle case and so can serve as a bas
formulate consistent equations for massless fields with a
trary spin. Such equations were discussed briefly in Sec.

Finally, introduction of anomalous interaction into th
tensor-spinorial wave equations generates a surprisi
small complexity of the theory in comparison with the ca
of the minimal interaction. In this aspect the proposed eq
tions are quite unique and are more convenient than even
Dirac equation.

We do not discuss specific kind of difficulties connect
with the complex energy eigenvalues for the case of inte
tion with the constant magnetic field provided the gyroma
netic ratiog of the particle is equal to 2@21#. This problem
arises also for the tensor-spinorial wave equation, but it
be overcome using the approach proposed in@45#.

For completeness notice that single particle equations
spin 3

2 considered in Sec. VII correspond to the Haris
Chandra index 4 and thus belong to the class describe
Labonté@46#. We believe that our tensor-spinorial formul
tion ~7.6!–~7.12! and~7.14!, ~7.15! forms an appropriate ba
sis for the theory of interacting particles of arbitrary ha
integer spin and its various applications.

APPENDIX A: INCONSISTENCY OF SINGH-HAGEN
EQUATIONS

A specific formulation of the RS equations was used
Singh and Hagen@8# who introduced an additional scala
bispinor field c such thatcm and c satisfy the following
system:
12501
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F̃m5~gnpn1m!c̃m2 1
2 gmplc̃l2 2

3 ~pm2 1
4 gmgnpn!c̃50,

~A1!

F̃5pnc̃n2~gnpn22m!c̃50, gmc̃m50.

Equations~A1! are equivalent to the RS equations. I
deed, denoting in Eq.~2.1! c̃m1 1

3 gmc̃ by cm we easily find
that Eq.~A1! is an algebraic consequence of Eq.~2.1! and
vice versa, because

F̃5 1
2 gmF m, F̃m5F m2 1

4 gmglF l,
~A2!

F m5F̃m1 1
2 gmF̃.

In contradistinction to the RS equation, it was stated
@38# that the Singh-Hagen formulation~A1! is causal pro-
vided a nontrivial anomalous interaction is introduced. W
think that this statement has no meaning since in the cas
anomalous interaction proposed in@38# the Singh-Hagen
equations became inconsistent. This can be easily seen i
following way. The equation proposed in@38# has the form

F̃m5~gnpn1m!c̃m2 1
2 gmplc̃l2 2

3 ~pm2 1
4 gmgnpn!c̃

1aF1
mnc̃n50, ~A3!

F̃5pnc̃n2~gnpn22m!c̃50, gmc̃m50,

wherea is a coupling constant.
Using relations~A2! we reduce Eq.~A3! to the RS form

~gnpn1m!cm2gmpaca2pmgaca1gm~gnpn2m!glcl

1Tmncn50, ~A4!

where

Tmn5a~F1
mn2 1

4 F1
mlglgn!. ~A5!

It is easy to show that in contrast with Eq.~2.7!, Eq. ~A4!
does not include required eight constraints but only four
them. Indeed, reducing Eq.~A4! with gm andpm we obtain
the correct number of constraints only for the caseT0050
@40#, which is compatible with Eq.~A5! only for the trivial
anomalous interactionaF1

mn50.

APPENDIX B: CONSISTENCY OF EQUATIONS FOR
SINGLETS

Let us show that for some class of external fields E
~7.14!, ~7.15! are consistent, i.e., include the correct numb
of constraints and are hyperbolic. To do this we will use a
differential and algebraic consequences of these equatio

Contracting Eqs.~7.14!, ~7.15! with gn and gmgn and
using Eqs. ~7.14!, ~7.15! we come to the equivalen
g-irreducible set of equations:
3-9
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~p•C!2
mn2~p•A!2

mn12mxmn1 1
6 ~gmgn2gngm!

3~ f̂ 13mglCl!50, ~B1!

glpl~Cm2Am!2pmglCl1m~2Cm2Am!

1gm~ 1
2 f̂ 1mglCl!50, ~B2!

2pnxmn1glplAm22m~Cm2Am!2gm~ f̂ 1mglCl!50,
~B3!

pnAn22 f̂ 23mglCl50. ~B4!

The other~differential! consequences can be found by r
ducing Eqs.~B1!–~B3! with pm . In this way we obtain from
Eqs.~B2!, ~B3! the following two relations:

glpl f̂ 16m2glCl22iglF̃ls~Cs2As!50 ~B5!

and

m f̂5 i ~glF̃ls~ 1
2 As2Cs!1 1

2 F̃lsxls!. ~B6!

One more consequence can be obtained reducing Eq.~B1!
with pn , acting on Eq.~B2! by glpl and adding the result
ant expressions together. We get

m2Cm1 1
6 pm f̂ 1 i ~ F̃ms2 1

3 gmglF̃ls!~Cs2As!50.
~B7!

Reducing Eq.~B7! once more withpm we obtain a scalar
consequence

S m22
i

12
gmgnFmnD f̂ 52 iplF̃ls~Cs2As!. ~B8!

Applying operatorglpl to Eq.~B7! and using Eqs.~B2!,
~B5! we come to one more consequence

m2S glplCm2
i

3
pmglClD1

i

3
~gmglpl2pm!glF̃ls~Cs

2As!2 iglplF̃ms~Cs2As!1
i

6
Fmlgl f̂ 50. ~B9!

Finally, contracting Eq.~B7! with Fmlpl and using Eq.
~7.15! we get the following important condition:

m2FmlplCm2
i

3
FmlplgmglF̃ls~Cs2As!

2 ig5C2~psCs22 f̂ 23mglCl!2FmlS ]

]xl
F̃msD

3~Cs2As!50, ~B10!
12501
-

where C25FmlF̃ml is an invariant of the electromagnet
field.

Now we are ready to analyze the constraint context
Eqs.~7.14! and~7.15!. First we note that the considered sy
tem includes nine dependent variables~each being a four-
component spinor!. To describe a particle of spin32 it is
sufficient to have eight degrees of freedom and so we n
seven constraints which do exist. Six of them are presen
by Eqs. ~7.14! for m,n51,2,3 and Eq.~B7! for m51,2,3.
The seventh constraint is easily obtained from Eq.~B3! for
m50 and Eq.~B4!:

2pax0a2gapaA01g0~paAa12mglCl1 f̂ !

12m~C02A0!50.

The next task is to find the true motion equations. Th
are given by Eq.~7.14! for m51,2,3,n50, by Eqs.~B3!,
~B9! for m51,2,3 and by Eq.~B10!. The related matrix with
time derivatives is nonsingular provided

C2Þ0 or ~and! F̃0aÞ0. ~B11!

On the other hand, ifC250 and F̃0a50 then relation
~B7! for m50 reduces to the constraint expressingc0 via
other variables and so that in this case we do not nee
motion equation forc0.

To investigate causality we consider the true motion eq
tions in the eikonal approximation. Substituting the char
teristic four-vectornm to the covariant derivatives and kee
only leading terms innm we come to the following system

nm~Cn2An!2nn~Cm2Am!50,
~B12!

2nnxmn1glnlAm50,

m2~glnlCm2nmglCl!1
i

3
~gmglnl2nm!

3glF̃ls~Cs2As!50,

m2FmlnlCm2
i

3
FmlnlgmgaF̃as~Cs2As!

2 ig5C2nsCs50.

Settingnm5(n,0,0,0) in Eq.~B12! we easily find thatxmn

5Am5Cm50 providedn0 and C2 are not equal to zero
Thus Eqs.~7.14!, ~7.15! are causal provided the extern
electromagnetic field satisfies the covariant relationC2Þ0.

We remind that acausality of the RS equation is caused
noncovariance of its hyperbolicity condition@47#.
3-10
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