
shown that the statistics Ki, q and Xi,q introduced in this paper are indeed measures of 
closeness between samples belonging to-the class of more refined differential measure of 
closeness than the coarse metric (22). In this connection, the test criterion constructed 
above is recommended for identification of distribution functions in mixture models 

F= (u) -~ (1 - -  05) F,  (U) + cz~ (u). 

We now proceed to the problem of constructing the interval ~i q, which is the basis 
of the tests proposed in this paper. Evidently, such an interval must be selected on the 
region (a, b) of the line where the distinction between the probablity densities fl(u) and 
f2(u) (for example in the metric C or ~ is the largest. Since these densities are un- 
known, they should be replaced by the histograms f1*(u) and f2*(u) constructed with the aid 
of the well-known methods of histogram estimation based on learning samples ~i and x2, re- 
spectively. Usually it is not too difficult to determine, using the graphs of these histo- 
grams, the interval in which fl*(u) and f2*(u) differ to the lar=est extent: Having this 
interval (a, b), one could obtain order statistics x1(i) and x1(l+q ) constructed by means 
of the sample xl which contain the interval (a, b) or form an interval ~i,q that differs 
only slightly from the interval (a, b). 
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GENERALIZED KILLING TENSORS OF ARBITRARY RANK AND ORDER 

A. G. Nikitin UDC 517.9:519.46 

We define Killing tensors and conformal Killing tensors of arbitrary rank and 
order which generalize in a natural way the notion of a Killing vector. We 
explicitly derive the corresponding tensors for a flat de Sitter space of di- 
mension p + q = m, m ~ 4, which permits us to calculate complete sets of sym- 
metry operators of arbitrary order n for a scalar wave equation with m indepen- 
dent parameters. 

i~ Introduction. In recent years the classical group-theoretical approach [i] has 
been increasingly replaced with more modern methods for studying the symmetry of differen- 
tial equations. In particular, more attention has been placed on the study of symmetry 
operators of higher orders which are a natural generalization of generators of Lie groups 
and which contain important information on the hidden symmetry of the equation. These 
operators are used to describe systems of coordinates in which the equation can be solved 
by a separation of variables [1-4], in the study of non-Noetherian conservation laws, etc. 
[ 5 ] .  
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It is known that the description of first-order symmetry operators (generators of Lie 
groups) is based on the explicit calculation of the Killing vector [6, 7] corresponding to 
the space of independent variables. Symmetry operators of higher orders have more compli- 
cated structures associated with them, which are called Killing tensors (or conformal Killing 
tensors) of rank j and order s (j, s = i, 2 .... ). 

In this article we define these tensors as a complete set of linearly independent solu- 
tions of some overdetermined system of partial differential equations and compute them ex- 
plicitly for all cases where the number of independent variables m is less than or equal to 
four. 

The obtained results can be used to study the higher symmetries of a large class of 
equations of mathematical physics in m independent variables. As an example (which is of 
independent interest), in this article we describe a complete set of symmetry operators of 
arbitrary order n for the scalar wave equation in an m-dimensional space. 

2. Symmetry Operators for_[_a Wave Equation. To arrive at a natural definition of Kill- 
ing tensors of arbitrary rank and order, we state the problem of determining symmetry opera- 
tors of arbitrary order n = i, 2, ... for a wave equation 

L~_~(g~O~O~--• ~)~=0, O ~ O ( 1 )  
= & - - T '  

where K is a real parameter, g~v a metric tensor whose non-zero elements are equal to g00 = 
-gll = -g22 = .." = i, D, v = 0, i, ..., m - i, m ~ 4, and repeated indices mean summation. 

For our purposes, it suffices to study only solutions of Eqs. (i) which are defined 
on some open set D of an m-dimensional manifold R m consisting of points with coordinates 
(x0, x i ..... Xm+i), and which are analytic with respect to the real parameters x 0 ..... 
Xm+l. " The space of solutions of Eq. (i) for a fixed D is denoted by Y0. 

Let Y be the vector space of all complex-valued functions defined on D which are real- 
analytic, and let L be a linear differential operator (i) defined on S. Then i~ ( ~ if 
~F~ s and z0 is the nullspace (kernel) of the operator L. 

Let ~!~, be the set (class) of linear differential operators of order n defined on Y. 
Then the symmetry operator Q e 97L, of Eq. (I) is defined as follows. 

Definition I. A linear differential operator Q of order n defined by 

r! 

Q = ~ h=t% ....  ~O~O ~ ... O ~, h%% . . . .  , . (y ' ,  ( 2 )  
f ~ O  

is called a symmetry operator of Eq. (i) in class ~n (or a symmetry operator of order n) 
i f  

[Q.L] = a0L, a0(~n_1, (3) 

where [Q, L] = QL - LQ is the commutator of the operators L and Q. 

In the case n = 1 the symmetry operators defined above can be regarded as generators 
of the invariance group of Eq. (i). Symmetry operators of order n > 1 do not generate a 
Lie group and instead define a generalized (non-Lie) symmetry. The problem of describing 
a complete set of symmetry operators of order n for Eq. (i) reduces to finding a general 
solution of operator equations (3). 

3. Killing Tensors of Rank j and Order s. It is convenient to write all operators 
appearing in Eq. (3) as sums of j-multiple anticommutators 

where 

~ - ~  I 1 
Q = - ~ G, % = v o,, %C = T [[%' 0"]+, 0,,]+ + ~- [(0"%), O,,l+, 

[=0 /=0 

(4) 

(~.j = [[ .... IF'q% .... J, a~l+,  0%]+ . . . . .  O~iI +, 

a a , , . n ~  , . . ~  
{zj = II ... I ~  ~ " ,0,~ t$,  & ~ ] + ,  O,,sl + ,  (5) 
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IA, B]+ = AB + BA, 

Fa~% .... i and e "~'''ai are unknown functions which are symmetric tensors of rank j. We can al- 
ways reduce operators (4) to their equivlent form (2) by opening up the anticommutators and 
transferring the commutator operators to the right. 

Substituting (4) and (5) into (3) and equating coeffficients of equal powers of differ- 
entiation operators, we obtain the following system of equations for x 2 ~ 0: 

O(~J+,F~I% .... ;> == O; (6)  

a q%'' 'ai-1 = O, (7)  

where F ~'a~'''~i and Gal%'"aj--1 are symmetric tensors of rank j and the indices inside the round 
brackets denote symmetrization, i.e., 

Ol~i+~Fq%...~i) = O,iH~Fq% .. . .  i q_ O~]F~i+~%...~i+O%FO~,j_}~%...~j+.. .  @OUjFa,% . . . .  i_,ai+l. 

On the other hand, if K2 = 0 then the equations for the coefficients of the symmetry 
operator become 

O(=i +lF%d2o..,p __ 2 0 Zo(a~a~...ai_ 1 .~ i~i~1) ( 8 ) 
m + 2 ( j - - l )  ~f  " g .  . = 0 ,  

a l % . . . a i _ l  = 2 a ~ b ( a . a o . . . a  i . a aLuO 
m-!- 2 ( i - -  l) o~r . . . .  - g . . . .  , (9)  

where Fat%'"a/ and ~%'"~i-~ are symmetric traceless tensors and m is the number of indepen- 
dent variables. 

Thus, the problem of describing symmetry operators of order n for wave equation (i) re- 
duces to finding a general solution of either system (6) or (8). In the case j = 1 systems 
(6) and (8) coincide with Killing's equations [6, 7]. 

Sometimes the equations for the coefficients of symmetry operators of higher order for 
systems of partial differential equations are more general than (6), (8), and are as follows 
[5]: 

and 

o ( a i , l O a j + 2  . . .  O ,  j. ;Fa~%..~cj . )  == 0 (i0) 

lO{ai+ 10~i+ 2 ... O~J~ ~ %  ..... p]sL = O, ( 1 1 )  

where t h e  symbol [ . ] S L  d e n o t e s  t h e  t r a c e l e s s  p a r t  o f  t h e  t e n s o r  i n s i d e  t h e  s q u a r e  b r a c k e t s ,  
i.e., 

[ 6 ( a l a 2 . . . a R ) l S L  = G(Qlg2 . . . .  ]~) q- ~1 ( -  | )~K~ g (a21-]cl2f) /aa2c~@ . . . .  p)blb.,...b20~r ~ _  8;blb2.bb3b4cr .., gb2cz_102 , 
cz~l i=I 

(12)  

K = =  ( n - - 2 ~ ) T 2 ~ - I  , l  2 ( n - - i ) + m - - 2  ' 
(1B)  

�9 f = l  

and {R/2} i s  t h e  i n t e g e r  p a r t  o f  R/2 .  

I n  t h e  c a s e  s = 1, Eqs.  (10)  and (11)  become Eqs.  (6)  and ( 8 ) ,  r e s p e c t i v e l y .  

Definition 2. A symmetric tensor F ala~'''a/ satisfying system (i0) is called a Killing 
tensor of rank j and order s. A symmetric traceless tensor Fat% .... i satisfying Eqs. (ii) 
is called a conformal Killing tensor of rank j and order s. 

In the case s = 1 the above definitions are equivalent to those state in [8]. 

4. An Explicit Form of Killing Tensors of Arbitrary Rank j and Order s = i. We look 
for a general solution of system (6). This system is overdetermined, since it includes 
Cj+m j+1 equations for Cj+m_lJ unknowns (C~ is the number of combinations containing a ele- 
ments from a set of b elements)~ 
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We study a set of differential conditions obtained from system (6) by a successive dif- 
ferentiation of each term with respect to Xbl, Xb2, ...: 

ao'oo~...oako(=/+~F=~%"=P~F (=~%'''~i'=i+1~hor''o~ = 0 ( 1 4 )  

(the indices after the comma denote derivatives with respect to the corresponding argument). 

Equation (14) defines a system of linear homogeneous algebraic equations in unknowns 
F =~%-'=/'~/+~h~r''~ , and the numbers of equations (Ny k) and unknowns (NHk) are 

u i + ~ u , ~ . + ~ _ ~  ' , u  r,J ~+t = ~ , :+~_~ , ,~+~ .  ( 15 ) 

Clearly, Ny k < Nnk , k < j; Ny k = NH k, k = j. 

LEMMA i. System of linear algebraic equations (14) is non-degenerate. 

This lemma is proven in [9]. 

The results proved earlier imply that for k = j system (14) has only trivial solutions, 
so therefore F ~W~ .... / are polynomials of order j. According to (15) these polynomials in- 
clude Nj m arbitrary parameters, where 

, ~ ::- ~ (A' H - -  N~) : m u / -~ " ' -~u i+ '~ ' '  
# = 0  

LEMMA 2. A genera], solution of Eqs. (6) can be written as 

i 

. ,  : :  ~ . ,  ~ b j X b 2  ' '"  Xb/__ c, 

where ~ a , . , , l . ~ / _ c l  are arbitrary parameters which are tensors that are symmetric with respect 
to permutations of indices a~ and a~, ~, v = i, 2, ..., c, are anti-symmetric with respect 
to permutations Of indices ~!.~ and bi, ! ~ i ~ j - c, and cyclic permutations of every 
triplet of indices is equal to zero. 

To prove the above lemma it suffices to check that Eqs. (6) hold for functions (17) 
and compute the number of independent parameters %o~%''~ -c] which is equal to that 
defined in Eq. (16). 

Factoring tensors ~,~ . . -~%. :~~ I .~ . [~ /~_ . . / l  into irreducible ones (i.e., ones that in addition 
to having the properties listed in Lemma 2 also have zero traces over any pair of indices), 
we obtain the following representation of solutions of system (6): 

F~,~ ... .  :== g~":-~":F","2 ..... : - ~  + /~%'"~:,  (18) 

where F ~'% ..... :.-.2 is a general solution of Eqs. (6) for j + j - 2, and f ~ ' ' 'a i  is a solution of 
Eqso (6) that depends on Nj m - Nj_2 m arbitrary parameters, which we explicitly list below. 

i. m = i, in which case /~% .... i reduces to a scalar that does not depend on the only 
available variable. 

2o m = 2, in which case the number of linearly independent solutions f=,o2 .... i is equal 
to N4 2 - Nj_~ = = 2j + i. The solutions are numerated by integers c, 0 ~ c ~ j, and in cases 
c = ~ and c > 0 they have one and two, respectively, arbitrary parameters that define the 
independent components of a symmetric traceless tensor l=~%'"ai ~ of rank j - c~ We have the 
following explicit expression for FI% ~ 

where e a./' is a unitary anti-symmetric tensor, ~c = 1/2(1 - (-l)C), 

( n n ( -  
~t=o i=]--ca, l k=U--c)/2+~+z 
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B 

[ - ] ~ x ,  B ~ A ,  (19)  

~.=A 1, B < A ,  

and i n d i c e s  (al, a~.. .a~) on t h e  r i g h t - h a n d  s i d e  o f  (19)  d e n o t e  s y m m e t r i z a t i o n .  

3. m = 3, in  which c a s e  t h e  number o f  i n d e p e n d e n t  s o l u t i o n s  i s  e q u a l  t o  ~ ja  _ ~. ~ = 
i/3(j + l)(2j ~ + 4j + 3). The solutions are numerated by pairs of integers c = (c1, ~ 
satisfying conditions 

0 G c 1 ~ 2 { / / 2 } ,  s . , - ~ c ~ ] . - - - 2 { ( c ~ - +  I) /2} ( 2 0 )  

and  f o r  e v e r y  c i n c l u d e  a s e t  o f  2 j  - 2c  z + 1 a r b i t r a r y  p a r a m e t e r s  t h a t  d e f i n e  t h e  i n d e p e n -  
d e n t  components of a symmetric traceless tensor ~%,>...a,_:. of rank j - c z The corresponding 

c ~ " ' ~ 

solutions can be explicitly written as follows: 

where s~ ic is a unitary anti-symmetric tensor and 

Air- !- l.!~ m ! ~ : (  ]" ' ~ i  . ;  ( / ! !  ~ ;2! --~) 

'~aI,:L~ . . . . .  / = =  "~ - -  ' a . . . . . . . .  , ' ~ "  

St i .= /1~ j I ; , ' ; . {Gtu--! .~t '~ 2~ ' ,-I 

(21)  

Here 

. . . . . .  . . ~ j  ~ A1a .~h  ' 

, - ~2 " ~ "  (22) ! ~ z :  . t ;  '~, ,~t~ ~, ' . , : : , ' 2 : ,  r : -= ~"  , o ;  

, '1 r ,:'~ R, .  n 2i~, . .  ' ~ I r  +" !-i, 

f L" - -  I I, 1 -@ l.i ~, . . . .  ~ =  c~, - ! ~ . . ~ - -  2 H ~  - ! , ~ ,  , , - -  , _ , 

1 ' " it 

The summation in (21) is carried out over all possible nonnegative integer values of 
such that 

0 ~ ,~1  ~ {c l /2} ,  9,o -:,- a.~ -!-~ , u , , .  , = ~,~.~.~"'2 ~,, 0 ~  ,a~ ~o~.,. ( 2 3 )  

4. m = 4, in which case the number of independent solutions is equal to Nj~ - Nj_2 ~ = 
1/4! (j + l)(j + 2)(2j + 3)(j 2 + 3j + 4). The solutions are numerated by triples of integers 
c = (cz, c2, c3) , satisfying conditions (20) and a condition 0 ~ c 3 <_ j - 2{(c I + 1)/2} - 
2c2, and for every c they include a set of N c arbitrary parameters (that define the indepen- 

b b . . . o  a . , .  a ,  ~_ d " 
dent components of an irreducible tensor X ~ ~ ~ ~ ~,~n~ n~) where 

N . = I ( i - - c l - - c i +  l)", c , = O ;  

2 ( j - - c l - - c ~ +  1) (i - -  cl - -  c~ + 2c:~ 4- 1), c.~4=0. 

The corresponding solutions can be explicitly written as 

AP--FL~ cFc:' { ]12~ 

::'~ n x~ n g~ (xi)P% (24) 

where ~, x a, K~, B~, L~, F~ are defined in (22) and (23), 

= ( - -  1)/+1, A ,  ----- i - -  c~ ~ b. ~ c.~, 
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~BI.t'AI-t'c~ ~ Xb~Xb~ ... XbBpXdlXd ~ ...  Xdc: ' ~ blb~'"bB~ (ala2"''oA~[aAIz+ldx][aA~+2dz]'''[aA[Y~cadcS] ' 

and the indices ala2...aj on the right-hand side of (24) denote symmetrization. 

We state our results derived so far as the following theorem. 
^ 

THEOREM. Equations (6) have Nj m linearly independent solutions that^are polynomials 
of order j. These solutions are given explicitly by Eqs. (18)-(24), and Nj m by Eq. (16). 

Thus, we have explicitly computed all linearly independent first-order Killing tensors 
of arbitrary rank that depend on m parameters (where m g 4). 

We now study first-order conformal Killing tensors of arbitrary rank, which by defini- 
tion are solutions of Eqs. (8). Since theoretically the analysis of these equations is 
similar to the analysis of system (6), we cite without proof an explicit expression for 
their general solution in the case m g 4. 

The case m = I is trivial, since the corresponding solution is an arbitrary constant. 

In the case m = 2 relations (8) become Cauchy-Riemann equations. The corresponding 
solutions are defined up to arbitrary analytic functions ~(x0, xl) and ~(x0, x I) as follows: 

= • w ~ j ) ,  

(25) ~ I1 . . .12  
= 

The remaining components F~ .... ~ can be expressed in terms of (25) by using the properties 
of tracelessness and symmetry. 

In the case m = 3 the number of independent solutions is equal to i/3(j + l)(2j + i)" 
(2j + 3). The solutions are numerated by pairs of integers c = (ci, c2), where 0 ~ c I ~ j, 
0 g c 2 ~ 2ci, and they contain 2c I + i arbitrary parameters that define the independent 
components of a symmetric traceless tensor s The corresponding solutions can be writ- 
ten explicitly as 

where 

al~. . .a , ,  b(ala 2. . .aj__la[) 
= SbXc] , 

(26) 

~c]c~ ~ala~'''a/ = ~ ( - -  2)kcr ,, ,  XO/)Xo1Xb2 ...  XO k (X2)({cJ 2}-k) .  

k = 0  

(27) 

In the case m = 4 the number of independent solutions of Eqs. (8) is equal to 1/12(j + 
l)2(j + 2)2(2j + 3). The solutions are numerated by triples of integers c = (cl, c2, c 3) 
such that 

o ~< q ~< i, - -  c~ ~< c~ ~< q,  0 ~< e~ ~< {(q - -  I c= r)/2}, 

and for every c contain N c arbitrary variables, where 

( 2 8 )  

N o = / ( l c 2 ] +  1) ~, q=]c=[,  
( 2 (1 c~ I + 2c~ + 1) (2cl - -  I c~l - -  2c~ + I), cl 4=1 c~ I. 

These parameters define the independent components of an irreducible tensor gh"'[ac~-m+~+2c~ac,-Ic, I] 

of rank R I + 2R2, where R I = Ic21 + 2c3, R 2 = c I - I c=l - 2cs~ 

The corresponding solutions have the following explicit fdrm, 
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le@2c a 
~:la.> .... ] = [ 2 ( -  1) cik@2c.,X 2i ~bzb""bk+2ca-- i (az a, . . . .  ,c,l_l~tri[alc,[__~e_~ ~_ld,J...[alcll_k_2c3@idct_[ez,] Y.. 

i=O X ,SL 

X X a c l - k  ~-f-L1xacl--te+f ]-2 . , .  xai)xblXb2 . . .  Xle_}_2c3_~.iXdlXd e . . .  dcl_lc~l ~ , 
(29) 

where k = -ca, c2,< 0 and k = 0, c 2 e 0. The indices a l . . . a j  on the right-hand side of 
(29) denote symmetrization. 

5. Explicit Expression for Killing Tensors of Arbitrary Order. To completely describe 
Killing tensors of arbitrary order it is necessary to find a general solution of system (10). 
In analogy to the results derived for Eq. (6) in the previous section (for details see [9]), 
we conclude that such a solution is a polynomial whose order is no larger than Nsj and 
which contains NmSJ arbitrary parameters, where 

,~C'~J = J" _~_ s 1 ~"J  s , . .  . . . . .  ~, , . , ~ - 1  , - -  , gym =~- - -  '.~/-trm--l'.~l~~s-}-rn--I. 
,Tt 

The corresponding solutions can be explicitly written as [9] 

F (~)a a~...a.l ~___ Z F a l a z ' " a / 4 - o ~ - l x a / + I x a /  Jr2 . . ,  Xa/ ' --,~ :~ s~r(aj-la'iFala~'"aj-'2"(s) " i - 8 i / a l a ' r ' ' a j  (30) 

where F a~2"''~:+~-I are first-order Killing tensors of rank j + ~ - l,which are explicitly de- 
scribed in the above theorem, a a ...a. ,, is a F I, 2 i-o Killing tensor of rank j - 2 and order s, 

is} 

~//21--1 

~ala ~ .... j =  Z 
Ix=0 

( - -  l)~tC~i/2 _ i X ( a 1  ~.fa2 . . . .  ~( a2 .tga2j.t+la2 ~ ~2g.a2).t '-3a2.t+4 , . .  ga:--~-a/--lL[ai)cixc" 

and ~[a/cj is an arbitrary anti-symmetric tensor of rank two. 

Equation (30) gives recursive relations for explicitly calculating the Killing tensor 
of order s and rank j in terms of known tensors of rank j + ~ - 1 and order one and rank 
j - 2 and order s. This calculation can be easily carried out by using explicit expressions 
for first-order Killing tensors given in the previous section. 

The explicit expressions for Killing vectors of order s ~ 3 in a three-dimensional 
space obtained from relations (30) are as follows: 

abc 

F(%) = F~I) + ~#b Xb + )~X ~ + ~"X 2 - -  X~b Xo a_ 8~b~lbaX~X~; 

(2) A- /% XbXc .3 7 xa~]bx b .3 c 8abcXbl]cX 2 .3 7 8abc~]bdlXcxdx f .2 7 ~abxox2 _ _  xa  ~bcXbXc. 

Here @be is a unitary anti-symmetric tensor, and other Greek letters denote the arbi- 
trary parameters that define the symmetric traceless tensors. 

Conformal tensors of arbitrary rank j and order s are defined as general solutions of 
system (ii). As in Sec. 4, we can show that these tensors are polynomials of x a of order 
2(j + s - i). We cite without proof an explicit expression for these tensors in the case of 
arbitrary j and s and m ~ 4o 

The number of linearly independent solutions in cases m = 3, 4 is equal to 

m ~ 3 ~  

/"/l ~.~. 4 ,  

O~ j s i ----- --~ (2] 4-, 1) (2] q- 2s -~- 1) (2j Jr  s -T- 1); 

N~ i = --~2 (] + 1) 2 (j + s + 1) ~ ( 2 / +  s + 2), 
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and in the case m = 2 there are infinitely many of them. Solutions can be explicitly writ- 
ten as follows [9]: 

e,y, . . . .  ' =  E (e;,% .... ,x + (31) 

~ , . .u .  where F~W~"ai are first-order conformal tensors defined by Eqs. (26) and (29) and f~'~l~ s 
are tensors of rank j which are explicitly described below. 

~ a 1 % . . . a  i In the case m = 2 we have . ~ _ t ~  = O. In the case m = 3 the independent functions 
a 1 % . . . c t /  fi-m are numerated by integers c, 0 ~ c g 23, and are determined up to an arbitrary sym- 

metric traceless tensor %h~ These functions can be explicitly written as 

a ~ . . a .  ~ 'a  �9 , "~b (a  a . . . a ; _  1 a ; )c  ~SL  [ ~ "  S ~ ' - - f S f ~ % ' " a s - I - ( l - - ~ e )  e.~c , ~'- " s b" x~l , ( 3 2 )  

where 

~c/2} 

~"'a/ ~ S ( -  2)nCJC/~l-'zX b'b'~'"bcx+n(afi'- . . . .  i-r'Xa/-n+l xai--n§ ... xai) xD Xb (Xe) (tc'/~s-n). 

In the case m = 4 the function f~f~-'"~ is described by a pair of supplementary inte- 

gers c = (c~, c2) , -j <_ c~ _< j, 0 <_ c 2 ~ {(j - [cz[)/2}, and is determined up to an arbi- 

trary irreducible tensor X oi -'[~,-"+~d~-Ic~l] of rank R~ + 2R2, where R~ = lc~I + 2c 2 + ~, R2 = 
j - [ca]. These functions can be explicitly written as 

. . . . . .  n+2c~ 

(33) 

~,< ~,blb~'"bn~-2e.,,-i+a(ala.z"_ ~ [a c~ - - n + i d j  " 'LJ/ - -~- l -  f@--~c, i ] ,  , %~ -i+i~ai--;~ i ~5 ... Xaf; :C~'IX6~ 2 . . . . . .  Xb'<k2c'~!'~-cz--iXaiXd~ "<: 

where n = --c a , c I < 0 and n = 0, c I e 0, and the indices at...ai on the right-hand side of 
(33) denote sym~etrization. 

Using (32), we obtain an explicit expression for conformal Killing vectors of order 
s ~ 3 in the case m = 3 as follows: 

^ a ac 0 L f-e . .2 9 v a ~ b  

F ~ ~ F~I) -T- F< ~x -~- ~,(2)x~ '~, e, q(~ ~ x e -7. ~(2)XbX- -- 2xQ )Xb.~:~, 

~ -  "a .k.2 (,~ab ~ ae t,,d . . ~ab  X 9 O c~ ~bc6 
/~(3)Xb-gc @- "b ]131 X.cXa'XI- ~ + g ( 3 ) X b X c . ' "  - -  . X  g(3} X o X c X  d, 

6. Explicit Expression forSymmetry Operators of the Wave Equation. We have explicit- 
ly found all linearly independent solutions of Eqs. (6), (8), (I0), and (ii) that describe 
Killing tensors and conformal Killing tensors of arbitrary rank and order. These solutions 
allow us to describe symmetry operators for a large class of mathematical physics. In par- 
ticular, for wave equation (i) such a description is accomplished by substituting solutions 
of Eqs. (6) and (8) into Eq. (4), which determines the general form of symmetry operators 
of arbitrary order. In the case X 2 z 0, j = 1 we use (4), (18)-(23) to obtain the follow- 
ing complete set of symmetry operators: 

Q, = P~ = JOe. Q=a = J~ =:xoPa--xbPa. (34) 

Equations (34) describe generators of the Poincare group. Using representation (17) 
for the general solution, we see that symmetry operator (4) for Eq. (i) is a polynomial of 
operators (34). In other words, all symmetry operators of arbitrary finite order for the 
wave equation belong to the enveloping algebra induced by the generators of the Poincare 
group (34). 
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We shall count the number N(n, m) of linearly independent symmetry operators of order 
n. Analyzing Eq. (18), whose first term on the right-hand side corresponds to a complete 
set of symmetry operators of order j - 2, we conclude that N(n, m) is equal to the number 
of linearly independent solutions of system (6) for j = n and j = n - i. According to (16) 
we have 

--' (m-- 1) r,m-2 ~m-2 (35) 
== 1%r~, q N ,n  == i ~ n - ~ r n - - 2 u m + n - - 1 .  

.:V (n, m) On "~- ,  2n "~ 2nm -9 m 
m ( m -  1) 

E q u a t i o n  ( 3 5 )  g i v e s  t h e  number  o f  l i n e a r l y  i n d e p e n d e n t  s y m m e t r y  o p e r a t o r s  o f  o r d e r  n 
for the wave equation with m variables. In particular, for m = 4 we have 

] 
N(n, 4) =: - ~ -  (n -+- 1)(n q- 2)~(n -+- 3) (n'-' q- 4n q- b). (36) 

The corresponding symmetry operators can be explicitly obtained by substituting (18)- 
( 2 3 )  into (4). 

In the case < = 0 the number of symmetry operators of order n is equal to 

~" {i + 1~ ~ ( / - +  2) 2 (2] + 3); A:(n, 4) ~ ~ . .  ,. , 
/ = 0  

i V ( 2 i ~  l ) ( / q -1 ) (21q-3 )~  N(n ,  2 ) = o o .  N ( n , 3 ; = :  3 - -  ~ '- 

T h e  symmetry operators in this case are explicitly given by Eqs. (4) and (29). It can be 
shown that these operators are polynomials of the generators of a conformal group D = 
ix~SD + i, KD = 2xDD + x~xViSp and PD, JD~ (34). 

7. Conclusion. We have defined Killing tensors and conformal Killing tensors of arbi- 
trary rank and order and derived them explicitly in the case of m independent variables, 
where m <- 4. 

Equations (i0) and (ii), which define Killing tensors of arbitrary order, are a natural 
generalization of Killing's equations [6, 7]. They appear during a determination of symmetry 
operators of order s for systems of partial differential equations, in particular Maxwell's 
equations [5]. 

The obtained generalized Killing tensors can be used to study higher symmetries of the 
equations of mathematical physics. In this article we have used them to completely describe 
symmetry operators for the wave equation. 

The notion of a (conformal) Killing tensor of arbitrary rank (and first order in our 
notation) was introduced in [8]. The general solution of Eqs. (6) for j = 2 appears in 
[i0]. The authors of [9] cite solutions of Eqs. (6), (8), (i0), and (ii) along with some 
technical details and numerous examples. The use of symmetry operators of higher orders in 
describing coordinate systems in which equations can be solved by a separation of variables 
is discussed in [2-4, ii]. 
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