
ON R E L A T I V I S T I C  E Q U A T I O N S  OF MOTION W I T H O U T  

" R E D U N D A N T "  C O M P O N E N T S  

V. I .  F u s h c h i e h ,  A. L .  G r i s h e h e n k o ,  
a n d  A .  G.  N i k i t i n  

On the basis of a definite representation (2.1) for the generators of the proper Poincard group 
all (to within unitat3" equivalence) operator functions H for which Eq. (1.1) is invariant under 
the complete Poincarc" group (including space-time reflections) are described. For arbitrary 
spin a unitary operator is found that relates the representation (2.1) to the Foldy-Shirokov 
canonical representation. Explicit expressions are obtained for the operators of the coordi- 
nate, velocity, and spin in the representation (2.1) for an arbitrary spin s. 

I. I n t r o d u c t i o n  

Several recent investigations have been devoted to the problem of finding relativistically invariant 
equations that describe the free motion of a particle (and antiparticle) with arbitrary spin s whose wave 
functions have only 2(2s + 1) components. This problem can be reduced to that of describing all the ogees- 
tar  functions H (the Hamilto~fian.~ of the particles with arbitrary spin s) depending on the momentum atrd 
spin operators of the particles for which the Schr5dinger-type equation 

a~(t,at x) ~ llW(t, x) (1.1) 

is invariant under the complete Poincar~ group ,i~ fl, 3) (including space-time reflections). In other words, 
H in fl.1) must be such that on the set of solutions {~,(t, x)} of Eq. (1.1) an irreducible representation of 

(1, 3) is realized. 

This problem is Solved in [1] and [2, 31 on the basis of a specific representation for the generators 
of the proper Poincar~, group ~ (1, 3). Since this representation is related to the Foldy-Shirokov canonical 
representation by an isometric and not a unitary operator (c• in the case s = 1/2) difficulties can arise 
In connection with the physical interpretation of the dynamical variables found in [1-51 and the introduction 
of  an Interaction into an equation of motion of the form {1.1). 

To avoid thi3 difficulty, we take a different representation which is related to the Foldy-Shirokov 
canonical representation by a unitary operator for all spins s. 

. S t a t e m e n t  o f  t h e  P r o b l e m  

Our starting point ia the following representation for the generators P9 and Jy~, of ~ (1, 3): 

0 
P e m H ,  P ~ p . = - - i ~  k ~ i ,  2,3, 

{2.1) 

where I( is an unknown operator 5motion and Sk/ are 2(2s + 1) ,r 2(2S ~ 1) matrices that realize the direct 
sum of two irreducible representations D(s) of the algebra SO(3). The operators Pp and J/~l, are Hermitian 
with respect to the scalar product 
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(~=, V=) = Id=z'lQ ~ It, x) V= (r x), 

where  t Is the operai.it,ii vf Hermi t lan  conjugation. 

The r ep resen ta t ion  (2.1) and the cor responding  representa t ion  in [i] a re  the same only for  s = 1/2.  
Accordingly ,  ou r  r esu l t s  a re  quite different  f rom those obtained tn [1-3]. 

We define the ope ra to r s  of the space  P and t ime T(t) mad T~ a) ref lect ions in the usual manner  

PVf(t, x} = r~(t ,  --x), P ' ~  l, 

where ,  without loss  of genera l i ty ,  the matrLx r can be chosen in the form 

r - - = I ~ -  0 i or r ~ a , ~  0 - - 1  ' 

where  1 is the (2s ~ 1) • C2s ~ 1) identity matr ix .  The mat r i ces  T(i) and z (2) can te taken, for  example,  in 
the fo rm of the 2f2s �9 1) • 2(2s ~ 1) Pauli ma t r i ces  a x and ~2- Since it is not ezsent ia l ,  we shall not specify 
the explici t  f o rm  of r 0) and r (z). We shall  not cons ider  the opera to r  of charge  conjugation s ince it is equi- 

�9 valent  (~--) to the product  of TO) and T~}. 

The ope ra to r s  P, TO), T~) and the gene ra to r s  PU, Jpu sa t i s fy  relat ions 

[ P , Z } _ = 0 ,  [ e , e . ] ~ = 0 ,  [ P , ~ ] . = 0 ,  [ e . ~ o d _ = 0 .  

[~",  Hi_ = [r~", 1~]_ = 0, [To), p , ] .  = [W', 1,;], = 0. 

~r.,, n l .  =: [r~',, :o.]+ = 0, W" ,  ~ . 1 - =  [r~'~. h,]_ = 0 ~ .2)  

An i r reduc ib le  r ep r e sema t ion  of .~ (1, 3) (charac ter ized ,  of course ,  by a mass  m and spin s) must be 
r ea l i zed  on the set  of solutions {,I,{t, x)} of Eq. (1.1). This means that 

/P = p' + n:. r 

The squa re  of the P a u l i - L u b a n s k i  vec to r  ts a muir/pie of the identity ope ra to r  on {~{t, ~)} if the mat r ices  
Sk/are taken in the form 

& ' = '  0 s .  

where  s n a r e  f2s + 1) • ('2s . 1) ma t r i ces  that r ea l i ze  an I r reducible  representa t ion  of the a lgebra  SO(3} and 
sa t i s fy  

Is , ,  s , ] -  = ~E,t .* . .  

By hypothes is ,  (1.1) is invariant  under  9 ~ {1, 3); the ope ra to r  H must t he re fo re  sa t i s fy  the commuta -  
tion re la t ions  [4, 5] 

[~, p , ] -  = [#,  ],,]_ --= o, [~, ] , j _  ~ ~ . ,  [p.,  j . . j _  = ~ ,  r 
[:~,, : . . J -  = ~ = J , , -  ~6.,]o., 

[J"' ~"] . . . .  ~ '"  t2.~) 
[P, #J -  ---: [~",  # 1 -  = o, I t . , ,  t t ] .  = o. ~ .6 )  

The problem of flndmg an operator ~nc~ion H for whLch Eqo (1.1) is invarlant under ~b (1, 3) has now 
been reduced to the solution of the system of operator relatlorls ~2.4)-(2.6) subject to the condition (2.3). 

3~ Solution of the System (2.4)-(2.~) 

To solve (2.4)-{2.6) we shali reduce the problem to the solution of functional equations by decomposing 
the operators In (2,4)-(2.6) with respect to a complete system of orthogona! projection operators. 
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I. Consider the system of projection operators 

A., 

*t'qtml t 

where  Sp = SkPk/p, p -: t p l .  Using the theory of projection operators  [2] one can readily show that the s y s -  
tem ('3.1)i is indeed a set of opers:tors of orthogonal projection onto subspaces that are the proper  subspaces 
of the ope ra to r  Sp with eigenvalueS s 3 (the part icle helicity),  i .e. ,  

A . j L . .  === 0.,...A,,., 2 A,, ---- i, 
$tm--r 

So" = ~ (s=)'A. , ,  n = 0, i . . . . .  2s. 

Ins tead of the sys t em of opera tors  As3, it somet imes  convenient to use a different  sys t em of operators  Bs~ 
and Cs3: 

B..---= A.=+ A .... C.. = A..-- A .... ;/= ~< =, ~ s. 

B, ~ A,, Z B,,-~ I. 

9. To sa t i s fy  the conditions (2.6), we take H in the form 

H. ~ ~ (o,g.,(p) + ad.,(p) )A,,, (3.2) 

where  the unlmovcn functions gs3 and fs3 {Which depend only on p) must have the following proper t ies :  if r 
= Is then 

g-,o=#.,. I - . , = / . .  o ~ = , < ~ s ;  (3.3) 

if r = ~3, there  a re  two cases:  

g- . ,= - -g , , ,  /-, ,~--j,.  g , = 0 ,  A===t:E, I/~<~.s,<~,, (3.4} 

* - - , = - g . , ,  1-,,=--1,,, g . = l , = 0 ,  ' / , ~ s , ~ < , .  D.5) 

Note that G.6) can also be sat isf ied by making the substit~tion 

O=-"r O'1 or  O; ~ Ua or  flrt ~ 0"= 

in (3.2). We shall not consider any of the tl s obtained in this manner since they are all unitarily equivalent 
to (3.2). 

An additional res t r ic t ion  is imposed on gsz and fs3 by (2,3): 

/.~ "t" g J  = E' = f + m', --8 <~ z, ~< s. ~ .6)  

Direct ver i f icat ion shows that the relations (2.4) with Hs in the form (3.2) are  sat isf ied if (3.6) holds. 
It there fore  remains  to consider  (2.5), which, in conjunction with (3.3)-{3.5), de termines  the final s t ruc ture  
of Hs,  i .e. ,  the explicit  form of gs3 and fs~ in (3.2). 

With allowance for (2.1), the relat ions (2.5) take the form 

f 
-4- [[~' '  n . l - ,  [~,, U.]_]_ = - - ~ . ,  k, t. , , .  ,, r162162 ~,m,,,~,~o,, or (t .  2. 3).  ( 3 : 0  

Multiply (3.7) by Pn, sum over  n ~ = 1,2,3) ,  and use the s t ruc ture  of jk / ,  k ~ I [see (2.1)]: 

Six, ~r.] :u .  = ~tp~, == 3~p 2 =,A,,. (3.s) 
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To obtain equations for  the e~efficleat  function~ subst i tute (3.2) ~ t o  (3o8) and use  (3.6) and the commutat ion 
re la t ions  (A. I): 

~.~(g.$... + lJ...) [ -  ~,'a..... + d..... {s(~ + 1) - -  (s , ' ) ' )  ] == 2~%' .  

(~.~,. + IJ.)d.., ffi 2 f  , r 

~.~ (g,.~_, + ],]_.)d.._. -- - ~ f .  r 

The numer ica l  values  of ds~s~ (Appendix A) and also (3,6), (3.!0),  and (3.11) yield 

~,]~<. ~ + g •  : m '  - -  f . (3,i2) 

Now wr i te  down Eq. (3.9) for  s~' : ~q - 1, s - 2, s - 3, etc.  and use  equations of the type (3.12) fo r  $~ = s, 
s - 1, s - 2 ,  etc,;  the induction yields  the recurs{on  re la t ion  

L J,,-, -F g,~ ,-, =- m'  - -  f ,  - - s  + t ~.  s, ~ s. r 

It  follows f rom (3.13) arcJ (3.6) t~at for  each s a 

1,, . _  m ~ - -  f 2rap 

E" L , - ,  + - - ~ -  g. ,- , ,  

m t ~ ,~s 2rap 

I t m - -  p 2rap 
g., = ~ g . , - ~ - - - ~ l . , - , ,  - s +  t <~ s, ~ s; 

rn ~ - -  f 2rap 
g" = ---E'  "g"-' +-~;--1 . , - , ,  - ~  + i ~ s, <~ s. 

~ A 4 )  

C3.~5) 

The recurs{on  re la t ions  (3.14) a~xt (3.15) in conjunction with the conditions (3.3)-(3.5) enable us to 
find all  the cocff lcient  ftmctions fs~ and gs~ of Its ha (3.2) if  we know at leas t  one function in the se t  fs3, 
- s  -< s 3 --< s (or  gs~L It follows thai the sys tem (2.4)-(2~6) is sa t i s f ied  ff H s has  the fo rm (3.2) and fs~ and 
gs~ sa t i s fy  the conditions (3.14), (3.i5),  (3.3)-(3.5). 

At the same t ime,  we obtain a descr ip t ion  of all poss ib le  c~e ra to r  functions H a fo r  which Eq. (1.1) is  
{near{ant under  the comple te  Poincar~  g v o ~  ~ (1, 3). 

R e m a r k  1. Equations (3.13)-~3.15) a rc  also valid fo r  m = 0. 

Remark  2. The c lass  of ope ra to r s  tI s vAth functions fs 3 and gs~ sat isfying the conditions (3.5) de-  
s c r ibes  pa r t i c l e s  with vantshhtg mass  (m : 0) and ha l f - in tegra l  spin s s ince it is only ia this case  that the 
condit ions (3.6) and (3.13) a re  ~atlsficd. In this case  (3.14) and (3.151 a r e  identical  and de t e rmine  fs,~ and 
gs.~ to within an a r b i t r a r y  function. 

Rema___ r k 3 :  The c lass  of epe r a to r s  H s with functions fs 3 and gs- sat isfying (3.3) desc r ibes  pa r t i c l e s  
with lntegvai spin since (3.6) and (3.13) a re  compatible  or~ly for  tnteg~al s. In this ease  (3.14) and (3o15) 
de t e rmine  tts to within a~ a r b i t r a r y  function. 

Remark  4. The c lass  of opeca tors  It s w i t h  functions fsl  and gs3 sat isfying the conditions {3.4) de.- 
s c r i be s  pa r t i c l e s  with both integral  and h,q.lf-integral spin. In this ease  fs3 and gs3 are  dc te rmlncd  by (3.14) 
and (3.15) uniquely for  both lntegl-al and half - in tegral  spins s ince  

g, ~ 0, /,---~ ~ E for integral s, ~.16) 

g~ ~--- • p, /~ ~ :km for half-late~r s. ~3.]t7) 

The re la t ion  (3.17) follows L~om the conditions (3.6) and (3.13). 

The a s se r t i ons  of Rca la rks  2, 3, and 4 f o l l o w  f rom an invest igat ion of the compat ibi l i ty  of the con-  
dit ions (3.3)-(3.6) and (3.13) for  s~ = 0, J/2. 

i t  is helpful to wri te  (3.2) as a r e cu r s ion  relat ion:  

H. =~ H._, + ~(s) ,  ~3~ 
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where  

D(~) = a,(g.A. + g-.A_.) + ~,(/A. Jr I-A-.). 

One can then find Lhe Hami | tonian  for  spin s f rom the t iamil tonian for spin s - 1 (and converse ly) .  Og 
c o u r s e ,  Hs_ l must  be defined in the s a m e  space  [of 2(2s , 1) d imensions  with r e spec t  to the spin subscr ip t s ]  
a s  Hs,  although it is ac tua l ly  defined in a space  of 2(2s - 1) d imensions .  In the 2(2s , 1)-dimensional  space 
Hs_ l has  the s a m e  fo rm as in the 2(2s - 1)-dimensional  space  except that the Sk a r e  now 2(2s , 1) • 2 ~ s  , I) 
m a t r i c e s .  Equation (3.18) shows that the t lamil tonian for an a r b i t r a r i l y  high spin is comple te ly  de te rmined  
by  the Hamiltonim~ for  the lowest  spins s = 1/2, s = 1. 

Equat ion (3.18) may  prove  helpful in connection with the introduction of an interact ion into Eq. (1.1) 
f o r s  > 1 / 2 .  

4 .  E x a m p t e s  o f  t h e  O p e r a t o r s  H s 

We shall  now appiy ou r  method to find the s imples t  ope ra to r s  H s (m ~ 0) whose coefficient  functions 
sa t i s fy  (3.4). In addition, for  m : 0, we shall  find all  poss ib le  [for ~he rep resen ta t ion  (2.1)| ope ra to r s  Hs 
that  sa t i s fy  (2 .4) -~ .6) .  

1. Since (3.14) anct (3.15) a re  on an equal footing, they can bc used in any o r d e r ,  different fo rms  of 
H s being obtained depending on the di f ferent  o r d e r  in which (3.14) and (3.15) follow each other .  As a resu l t ,  
the n u m b e r  of poss ib le  H s i nc rea se s  with inc reas ing  s .  

Note that (3.:.4) and {3.15) a re  valid for  S 3 -> 0 and for  s 3 < 0. For  the actual  calcula t ions ,  to which 
we now turn,  it is ,  however ,  expedient  to use them only for  s 3 > 0 and then find fs3 and gs3 for s a < 0 f rom 
(3 .4) .  

We have s een  (w 3) that  fs3 and gsa can be found f rom (3.14) and (3.15) if any one of the functions fsa 
(or gs3), - s  ~ s a -< s is known. 

Let us cons ide r  ha f t - in t eg ra l  spin; then [see (3.17)| 

l ~ = m ,  g~=p .  

Genera l ly  speaking,  (3.14) o~" {3.15) can be used to find f3/2 o r  g~/z. Opting for  (3.14), we obtain f3/2 = m 
and g3/2 = - P  and (3.4) y ie lds  f-3/z : m and g-3/2 = P- 

For  f5/2 and g5/2 the re  is the s a m e  f r eedom of choice between (3.14) and (3.15); taking the l a t t e r ,  we 
find fs/z = m and g5/2 : P and (r3A) yie lds  f-~/z : m and g-5/~ = - P -  

Calculat ing the h igher  coeff ic ient  functions by r egu la r  a l ternat ion,  i .e. ,  using (3.14) for  s 3 -- 7/2,  11/2, 
fs 3, gs.~ and (3.15) for  s 3 = 9/2,  we obtain 

1 
H..= e,nt § o,p 2 (-- t)',-'/<7~ (4.1) 

If the original  functions a re  ft/~ : m, gl/2 : - P  [see (3.17)], we initiate a new al ternat ion p rocess  by using 
(3.15) for f3/2 and ga/:~ and (3.14) for  fs/z and gs/z e tc . [a l te rna t ing  (3.14} and (3.151 for  s~ = 9/2, l l / 2 , e t c . ] .  
The upshot is  

H. = o,m - o~ ~ 1 -  I)',-'i,C,,. (4.2) 

If ft/Z : - m  and gl/2 : ~:P [see (3.17)], s i m l l a r  calcula t ions  yield 

//, .= - -  o,m • ~ , p ~  ( - -  11 ',-v,C.~ ('t.3) 

A s i m i l a r  procedu~-e y ie lds  rs 3 and gs3 for  integral  s p i n s .  If fo = E and go : 0 [ s ee  (3.16)1, 

X Jq 

/:' : o , - -E--  ~_~ C, .+ .  (4.4) 
mmO m~ 
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where  Bzn st and C2n ~t a r e  the o p e r a t o r s  defined in g 3 and 

$ 
{4.5) 

If f0 = - E  and go = 0, exac t ly  the s a m e  p r o c e d u r e  yie lds  an o p e r a t o r  H s that d i f fers  only in sign f rom 
(4.4). 

R e m a r k  1. If s = 1/2 in (4.1~, H s is identical  with ~he Dirac  Hamil tonian and if s : 1 in (4.4) we ob-  
ta in  the J o r d a n - M u k u n d a  [7] Hamil tonian  by a comple t e ly  diffcrent  der iva t ion .  

R e m a r k  2. A defini te a l te rna t ion  of (3.14) and (3.15) was used to obtain (4 .1)- (4 .4) .  A different  
o r d e r  of these  f o r m u I a s  would have y ie lded more  compl ica ted  exp re s s ions  fo r  H s not amenable  to compac~ 
e x p r e s s i o n  for  a r b i t r a r y  s ,  [.'or example ,  taking the s a m e  ft/z and gt/~ [see (3,17)] and using (3.15) to c a l -  
cu la te  fsa and gs~, without the use  of (3.14), we obtain 

: : k , c ~ m ( i  - 4p' �9 3 m ~ - - p  ' H % =  , , .0, 

If s = 2 and fo = E, calcula t ion of fz and g2 by (3.15) yie lds  

H, == o, IE  -- 2p" _ 8 m t p t n  ~ 2rap [r m ~ f - - e -  " 0 , 1 +  o, - e -  + 2 . c, ) . (4.'I) 

If f0 = - E ,  we obtain an 11 s that d i f fers  only in sign f rom (4.7). 

Thus,  the o p e r a t o r s  H s defined by (4 .1 ) - (4 .7 )sa t i s fy  {2.4)-f2.6) and Eq. 0.1)  with such H s desc r ibeg  
a pa r t i c l e  (and ant ipar t ic le )  with integral  and ha l f - in teg ra l  spin.  

R e m a r k  3. The expl ic i t  f o rm of the Hs for  given s depends not only on the given initial functions (of 
the type fL/2, g~/z,  f0, and go} but a l so  on the o r d e r  in which (3.14) arid (3.15) a r e  used. The number  of  op-  
e r a t o r s  R s compa t ib le  with fg.4)-('2.6) i n c r e a s e s  with inc reas ing  spin in accordance  with the g r e a t e r  num-  
b e r  of d i f ferent  o r d e r s  in which (3.14) and (3.15) can be used.  

R e m a r k  4. Although the Ilamil.tvnians for  given s have different  explici t  s t r u c t u r e s ,  they a r e  all 
un i ta r i ly  equivalent  in the e a s e  of a f ree  theo~T. At the s a m e  t ime ,  it must  be emphas ized  that they a r e  
phys ica l ly  inequivalent  in the s ense  that the introduction of an in teract ion into Eq. (1.1) in accordance  with, 
say ,  the rule  P k - - P k  - e A k  leads to di f ferent  resu l t s  for  the d i f fe ren t  H s .  We shall d i s c u s s  this question 
In a following pape r .  

2. If the pa r t i c l e  m a s s  vanishes  (m : 0), (3.14) and (3.15) take the Identical fo rm 

/,, ----- -1,,-,,  g . , =  -e.,,-,, --a § i ~ s, ~ ~. (4.8) 

The use  of  (3.16) and (4.8) re., m = 0 and integral  spins y ie lds  

e ~t 

Fo r  ha l f - In t eg ra l  spins (3.17t for  m :, 0 and (4.8) yield 

"e ~ -~  ~ ' ~ t s  

For  s = 1/2 ,  this o p e r a t o r  is identical  with the C i n i - T o u s c h e k  Hamilton~an in the u t t r a r e l a t iv i s t i c  t i r~ t .  

Nquations (4.8) a r e  a l so  valid If fs~ and gsa s a t i s fy  (3.3) ~'~d (3.51 (for m = O). 

Applying (3.3) to {4.8) mid reca l l ing  Remark  2 in ~ 3, we obtain 

11, = ~ ( -  l}',(o,h + ~,g,)R,. g,' + h' - -  ~. (4.11) 
Bill*If 

771 



Applying (3.5) to (4.8), and recal l ing Remark 3 of ~ 3, we obtain 

it. = ~ ( -  t)'.-',,(o,l~ + ~,/,~)c.: 1~, + ~ = f .  (4.xz> 
$1#111 

Note that the i-: s in (4,11) and (4.12) a re  dcfirmd to within an a r b i t r a r y  function f0 (or go) for ~ntegral s 
and ft/2 (or gJ/z) for  haf t - in tegra l  s,  s ince it is only requ i red  that 

t J  + g,,~ = f ,  s, = 0, ~1~. 

Now the wave function of a par t ic le  (antiparticle) with vanishing mass should have only two compo-  
nents cor responding  to the spin project ions  s 3 : s and s3 : - s .  Since a function that sa t i s f ies  Eq. (1.!) with 
the ope ra to r s  H s of the form (4.9)-(4.12) has  2(2s + 1) components ,  we must impose additional rc la t iv i s t ica l ly  
invariant  conditions to single out just  two physical ly rea l i zab le  components .  These  cor.ditions have the fo rm 

or  

o r  

o < , , < , - t ,  ( 4 . 1 4 )  

{ ' ( , , . )  } t - - - ~  I•  B, ~ ( t , x ) = 0 ,  B.,Vd(t,x)-~O, O-<.s3<~s--l. {4.i5) 

Equation (3.1), and also the commutat ion re la t ions  ~ .2) ,  show that: 1) the conditions {4.13) a re  TO) 
and CP(k) invartant  (k = 1, 2, 3), but C and T(2) noninvariant ;  2) the conditions (4.14) a re  C, T(I), and T (2) 
lnvariant ,  but p(k) non;nvariant;  3) the conditions (4.15) a re  T0) and p(k) tnvariant ,  but C and T (z) nonin- 
var ian t .  

Thus,  Eq. fl.1) with an ope ra to r  ti s of the form (4.9)-(4.12) and one of the additional conditional con-  
ditions {4.13)-(4.15) is invaviant under  the p roper  Poincard  group ] (l,  3) but only par t ia l ly  invariant  under  
p{k), T(i),  and C t r ans fo rma t ions .  In (4.13)-(4.15), one must  take one + or  - sign.  

For  s = 1/2,  Eq. (1.1) with the additional condition (4.13) is equivalent  to Maxwell 's  equations in 
v a c a u  m .  

5.  T r a n s i t i o n  t o  t h e  C a n o n i c a l  R e p r e s e n t a t i o n  

In the Foldy-Shtrol , .ov canonical  r epresen ta t ion ,  the g e n e r a t o r s  Pt~ and J/~v of .~ (1, 3) have the fo rm 

P,'=-.-H'=a,E, Pi'=p,, k = t , 2 , 3 ,  

J,,~ = x~p, - -  z,p~ + &,, 

l o S~,p ,  
1 , :  = t:. - -  T [ x , .  t t  1+ - -  ~ ~-q:- - ,g .  (5.1~ 

this represen ta t ion ,  an equation of the type ,(1.1) that is lnvar iant  under  the comple te  Poincar6  group 
if' fl ,  3) has the form 

OO(t, x} 
ot ~= H'O(~, x), ~.z) 

where  ~(t, x) is a 2(2s ~ 1)-compo~ent wave function. Since an i r reduc ib le  represen ta t ion  of ~ (1, 3) is 
r ea l i zed  on the set  of solutions {q,(t, x)} of Eq. (5.2), the wave functions ~, and ~ a re  c l e a r l y  re la ted:  

where  U is a uni ta ry  ope ra to r  that will be de te rmined  below. 

It is now c l ea r  that the problem we have solved in w 3 is equivalcnt to the p rob lem of finding (de- 
scr ibing)  all uni tary  ope ra to r s  U for which the a lgebra  (5.1) goes ove r  into the a lgebra  {2.1). Such o p e r a t o r s  
a r e  found in [6, 7] f o r  s = 1 / 2 ,  1 ,  
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In this sect ion,  we shall desc r ibe  the class  of opera~.ofs U for a rb i t r a ry  spin and find express ions  
for  the ope ra to r s  of the coordinate  Xk, k :: 1,2,  3, veloci ty  Xk, k = 1, 2, 3, spin Ekl ,  and sign of the energy 
g. 

1. We shall  s eek  U in the form 

U. = ~ (a,. + io,b,,)A.,, 15.3) 

w h e r e  as3(p) and b%(p) a re  real  functions of p. The uni tar i ty  condition UsUst  = I implies 

a . : + b ~  ~ = i ,  - - s~<s~<* .  (5.4) 

The gene ra to r s  (5.1) a re  re la ted  to the genera to r s  C2,1) by the equations 

,r =- UJ.CJU,  = h : ,  /~ = P:, (5.5) 

H, =: UflH<U,, 

;~ ,=U. r  or ] , : = U . I , ~ U : .  

Substituting the explici t  express ions  for  H e and H s [see (3.2) and (5.1)] into (5.5), we obtain 

~5.6) 

f , . =  E ( a . ;  - -  b.,'), 

g,, =: 2Ea.,b,,, - - s  <<. ss ~<~ s. 

Using the explici t  f o r m  o f  Jzk and Jok e [see (2.1) and (5.1)l, and ~5.6), we obtain 

S,~p, 
[[U, .  x,l_ U,  ~, H'I+ = 2% E + m 

On the o ther  hand, with al lowance for  (5.3) and (5.4), we find 

||V,,x~l_ U, ~, H~i+ = 2~3E ~ (a,,.a,, + b,.b,,) |A,,. x,1_ A,~ 

(5.9) 

(5.10) 

Equations (5.9) and (5.10) with al lowance for  (A,1) and (A.4) yield 

(a,,a. + b,,b,)d.~. E - -  m 
E ' 

~ (a,,a_. + b.b_,ld, ,_,  m --  E 
E ' 

~_~(a, ,a.r+ b,,b,,,)a,,.e___ - m--F-,  
g ' 

e l ~ - - i  

ts . l l )  

(5. lZ) 

--* + i ~< 8/~< s. (5.t3) 

Using the numer ica l  values of the coeff ic ients  ds3sfl [see {A.3)] we reduce  (5.11) and (5.12) to 

Writing down (5.13) fo r  s3' ~ s - 1, s - 2, 
s - 2, e tc .  ,we can prove  by inductioi~ that 

(5.i4) 

u - 3, etc,  and using formutas  of the type (5.14) for sa = z~ s - l ,  
[see the proof  of (3.13)] 

a. : . ,_ ,  + ~,,b,,_, ----- r o l E ,  - - s  + l ~ s, ~ r.. 

The compat ibi l i ty  of (5.4) and (5.15) also yie lds  the r ecu r s ,on  relat ions 

m p -~mb - -LPa - - - + + i ~ s , ~ s ;  a,, -~_a . . - i+u  b., E ., i E ' ~ 

m p m Pa 
a~,~-~-a,, . , --u b. = -gb, ,_,+ T . . _ , , - - , + t ~ < s , < , .  

(5.i5) 
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Equations (5.4), (5.16), and (5.17) determine all possible fimcLions as3 and bs3 if we kTlow any one of 
the fimetions in the set as3, - s  --- s 3 -< s (or bs3). This function as3 (or bs~) must be chosen, for example, 
f o r  s 3 -- 0, 1/2 such that (3.3)-(3.6), (5.7), (5.8), (5.16), and (5.17) hold. 

Thus, Eqs. (5.4), (5.7), (5.8), (5.16), and (5.17) in conjunction with the conditions (3.3)-(3.5) taken for 
any one Ts3[ solve our problem, i.e., these [ormutas dcscribc all unitary operators  U s [see (5.3)] that 
t ransform the algebra (5.~) into (2.1). 

For example, taking the original functions as3 and bs3 in the form 

E + m  p 
= , b ~  = - -  b_,~ = ( 5 . 1 7 )  

a~i ---- a-% y2E(E + m) ~21:, '(E + m)- 

for half-integral s mad in the form a 0 = 1 and b 0 : 0  for integral s, we obtain the following operators f rom 
(5,16) and (5.17): 

E + a,H, 
U, 2~'E'(E + re) for half-integral s, ~.18) 

.-E,. § 
v. = t + ~ ~ . a  e,.,, + lo, 

n ,,, t '  �9 ~ 0  

foc integr~l $. (5.19) 

where the number N is defined in (4.5). 

The operators (5.18) and (5.19) t ransform ttc into the operators (4.1) and (4.4), respectively.  For s 
= 1/2 the operator (5.18} is identical with the Foldy-Wouthuysen operator .  

For completeness we may mention that if t{ s is given in the representation (2.1) (and, hence, all the 
fs3 and gss are given) the coefficient functions as~ and bs3 can be expressed in te rms of fsa and gs~ by means 
of (5.8) and f5.20), i.e., 

1/E+,- 

Equations (5.20) are solutions of the system (5.4) r~d (5.7). 

If a tmitazT operator U s [scc (5.3)] with the coefficient functions (5.20) satisfying (5.7) and (5.8) is to 
transform the algebra (2.'_) into (5.1) it is also necessary  that as 3 and bsa sat isfy  (5.15) [add, hence,  (5.16) 
and (5.Z'Z)]. 

2. The operators of the coordinate Xk, velocity ~:k, spin 2;k/, and sign of the e n e r ~  ~ in the repre-  
sentation ('2.1) have the form 

t s' ~ - -  * ' t  t $ , s ~  - - #  t t '~ ' . s l , e~  - -  4 

} oo..,  
--a.,;b.,)d,,.,,A,r --or a.. Op ~ , b , . ) A . , ,  k ,n, l  i~acyclicpermutationof(i,2,3 ); 

t e ~m--t  

= s , ,+  u ; j  ,,, 

X ~a.,...(a,,b.,.-- a.,.b,.), k ,n, l  is a cyclic pc~mu(a~mn of (I, 2,3); 
e a a s - - t  

where a s #  3, and ds3s3, are given in (A.3) and Usa and bs3 are determined by the method described above. 

For the operators U s in (5.18) and (5.19), X k and Xkn have the form 

S~,p, S~,p,E -- tmp~ 
X~ == z.. + - ( adf .  - -  m ) .  

E ( E  + m) p'E = 

7 7 4  



m PP'&' + Et---(S,. - - m )  �9 - { - s , ) ( o . , .  . 

where k . n . / i s  a cycl ic  permutat ion of (1.2.3) and s is ha l f - in tegra l ;  

&,p, . �9 S,,p. ~' i ~ " . S~p, ="+ ........ + ~ +'~ 
e--I 

x.. ~ T s , .  + ~(E + ~n) a,(-l)  -T-B.  - p 

where  k , n , !  tu a cycl ic  permuta t ion  o[ (!,  2, 3) and s is integral .  

The ope ra to r s  Xk, Xk, Zkn, and ~. for  s -- 1/2 are  identical with the ope ra to r s  obtained in [Gl. 

A P P E N D I X  

In this appendix we give (wi*&out proof) all the formulas  used in the main text  to der ive  our  resul ts :  

-~ p--7-  a,,,,,A,,, + i .*/ d.....A..: 
P f 

�9 # - - t  

IS,., A..I- i$,.O. (S~. P' " ~ = , g ~.....A.:-- E --- (A.2) 19 Sj )a...eA.v. 
## "~--'�9 e;~--e4tI 

where as3,s3 ~ O, if s 3' -- s= - 1~ s 3 + 1, 

a . . . , =  - - I .  a.._, . . =  a., . . . .  = '/:, --~ + i ~ s, ~< s --  i. 
d., . .ve0, if s / = : ~ - - i . s ~ + t . - - s + l ~ s , < ~ s - - t .  

d..+, ..~- --d.~_~ .. ---: t/~. --d._, . = --d . . . .  ~--- d-.+t-. = d.. ~--- t. 

[ s ~ .  a . , ] _  = - [ - , e ,  - -  , , v , ,  a . , l ,  [ s~ ,p , ,  A . , ] _  = -p*[~,, a . , l - ,  

e 

S,.p.S, =: -- S~S,.p. = lpS~ ,= ~P 2 s.A... 

Sa.y.S,..p.. = V' E [s(s + l) -- s.']A.., s's" = S' = s(s + t). 

sz ~ =ks, 

(A.3) 

(h.4) 

2 .  
3 .  
4 .  
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