ON RELATIVISTIC EQUATIONS OF MOTION WITHOUT
W"REDUNDANT" COMPONENTS

V. I. Fushchich, A, L. Grishchenko,
and A, G. Nikitin

Onm the basis of a definite representation (2.1) for the generators of the proper Poincaré group
all (to within unitary equivalence) operator functions H for which Eq. (1.1) is invariant under
the complete Poincarc group (including space-time reflections) are described. For arbitrary
spin a unitary operator is found that relates the representation (2.1) to the Foldy ~Shirokov
canonical representation, Explicit expressions are obtained for the operators of the coordi-
nate, velocity, and spin in the representation (2.1) for an arbitrary spin s,

1. Introduction

Several recent investigations have been devoted to the problem of finding relativistically invariant
equations that describe the free motion of a particle (and antiparticle) with arbitrary spin s whose wave
functions have only 2@2s + 1) components. This problem can be reduced to that of describing ail the opera-
tor functions H (the Hamiltonians of the particies with arbitrary spin s} depending on the momentum aud
spin operators of the particies for which the Schridinger-type equation
av¥(t,x)

a
is invariant under the complete Poincaré group 7 {1, 3) (inciuding space-time reflections). In other words,

H in (1.1) must be such that on the sct of solutions { ¥, x)} of Eq, (1.1) an irreducible representation of
P (1, 3) is realized.

i = HW¥(¢,x) {1.1)

This probicm is solved in {1] and {2, 3} on the basis of a specific representation for the gencrators
of the proper Poincaré group # (1, 3). Since this representation is reiated to the Foldy —Shirokov canonical
representation by an isometric and not a unitary operator {except in the case s = 1/2) difficulties can arise
in connection with thie physical interpretation of the dynamical variables found in [1-5] and the introduction
of an interaction into an equation of motion of the form (1.1).

To avoid this difficulty, we take a dif{erent representation which is related to the Foldy —Shirokov
canonical representation by a unitary operator for all spins s,

2, Statement of the Problem

Our starting point iz the following representation for the generators F"‘,z and Jyp of @ (1, 3):

anH. pAEPA=-'B'—a-e-, kzl,g,:‘,

8

Jyy == P Tips Sm
i .
Jy, == tpy —-—é—[x., iy, [z, H). == rH+ Hz,, 2.1
where i is an unknown operator function and Sgy are 2@s + 1} ~ 2@2s + 1) matrices that realize the direct

sum of two irreducible representations D(s) of the algebra SO(3). The operators Py and J#V are Hermitian
with respect ¢o the scalar product
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(¥, ¥ = {2 b ! @ 00,

where t is the operaiivii vi Hermitian conjugation.

The representation (2.1) and the corresponding representation in 1] are the same only for s = 1/2,
Accordingly, our results arc quite different {rom those obtained in [1-3],

We define the operators of the space P and time T{!) and T® reflections in the usual manner
PY(t, x) =r¥{, —x), PP~ {,
TOW (e, x) == €0 {—t, ¥}, (TU) ~ 1,
TOW(t, x) =W {—1, x), (IO ~ 4§,

where, without loss of generality, the matrix r can be chosen in the form

1 (1) o e ()

where 1 is the (2s + 1) x s + 1) identity matrix, The matrices 7{!) and 7@ can te taken, for example, in
the form of the 2(2s + 1) x 2@s + 1) Pauli matrices o, and g;. Since it is not essential, we shall not specify
the explicit form of 7{) and r®}, We shall not consider the operator of charge conjugation since it is equi-
- valent (~) to the product of TM" and T®,

The operators P, T{!}, T® and the generators Py, Iy, satisfy relations
(PH}. =0, [P, P].=0 [P du.=0, [P Ju]-=0.
(1, B]. = [T, Ju]. =0, [TO, B, = [T", Ju], =0,
fre f]y = 1, Jo], =0, [T R]_=[T0, L].=0. 2.2)

An irreducible representation of 2 1, 3) (characterized, of course, by 8 mass m and spin s) must be
realized on the set of solutions { ¥, x)} of Eq. (1.1). This means that

H = p'+ m® 2.3)

The square of the Pauli—Lubanski vector {s a multiple of the identity operator on { ¥, )} if the matrices
Sy 7 are taken in the form

5, 0
Sy = ( o )= §.. kI nr isacyclic permutation of {1,2,3),
Sa

where Sp are @s + 1) x (s + 1} matrices that realize an irreducible representation of the algebra SO(3) and
satisfy

{Sg, 5’1]— = {Earats.

By hypothesis, (1.1) is invariant under ? {1, 3); the operator H must therefore satisly the commuta-
tion relations {4, 5]

4. P = [H, Jul-==0, [H, Jal- = it [Bay Jon] - = i, {Z.4)
[Jlal, }Qn}— == m.Ju -_— ib.rlp.,

{7, J,.}._ = ik, 2.5)

(B, H]-= [T H]. =0, [T*,&], =0, @.6)

The problem of finding an operator function H for which Eq, {1.1) is invariant under @ {i, 3) has now
been reduced to the solution of the system of operator relations {2 .4)-2.6) subject to the condition @2.3).

3. Solution of the System (2.4)~(2.6)

To solve (2.4)~(2.6) we shail reduce the problem to the solution of functional equations by decomposging
the operators in (2.4)- 2.6) with respect to a complete system of orthogonal projection operators,
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i. Consider the system of projection operators

’, S, — s
A"mﬁn—-n” — 3 <8, 3.1)

where Sp = Sppr /P, p - Ipl. Using the theory of projection operators [2] one can readily show that the sys-
tem (3.1) is indeed a set of operators of orthogonal projection onto subspaces that are the proper subspaces
of the operator Sp with eigenvalues 54 (the particle helicity), t.e.,

'“ln‘\"a == OBy Z Al) = Ev

5= E (80"  m=0,4,.... 2.

Instead of the system ofoperators Ag,, it sometimes convenient to use adifferent system of operators Bs,
and Cs,:
3

Bu == An+ A*no Cﬂ = AH - A"" ‘([2 ‘g s '\:' s,

B, = A, 2 B, =1

- 14
2. To satisfy the conditions 2.6}, we take H in the form

H, =-2 (0:8.(P) + 0ufun(p)) Auyy 3.2)

where the unknown functions Bs, and f33 {which depend only on p) must have the following properties: if ¢
= |, then

B-u=gu Jo=fn, 0<s, s @.3)

if r = ¢4, there arc two cases:
B-n== 8w f-n=fu g=0, fo=+E Y<<s<s, (3.4)
fon= —fo o= ~fo Bo=fr=0, <5, <s. 3.5

Note that {2.6) can also he satisflied by making the substitution

Gy~ Gy Of Gy—> 0y O Oy 3= 0

in (3.2). We shall not consider any of the Hg obtained in this manner since they are all unitarily equivalent
to (3.2).

An additional restriction is imposed on Bs, and fs3 by 2.3):
i-’xl +g"8 == % o= pi + mt' — < 8y £ 8. (3’6)

Direct verification shows that the relations (2.4) with Hg in the form (3.2) are satisfied if (3.6) holds.
It therefore remains to consider (2.5), which, in conjunction with {3.3)-(3.5), determines the final structure
of Hg, i.e., the explicit form of B, and IHJ in (3.2),

With allowance for 2,1), the relations (2.5) take the form
1
e [{zv H.}., [z, H]}.]o= —i8., k, I, n isa cyclic permutation of (1, 2, 3). 3.7

Multiply (3.7) by pg, sum over n (n = 1,2, 3), and use the structure of Jkp k =1 [see @.1)):

S[x, H,] M, = 3ip5, BIPE B, 3.8

By
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To obtain equations for the coefficient functiona substitute (3.2 into (3.8} and use (3.6) and the commutation
relations {A, 1):

Z (gugh’ + l'qja.') {- ""a'wa' + d-m' (’(J + 1) - (8"’) 3) } = ?’P"”"

ogmag
—stiCs Ko, .9
2 (8.8 + f-j-)dm == 2p', (3,10)
Bymy
X (8.8 + [if-) s = —2p". 3.1

LPERN )

The numerical values of dﬂase’ {Appendix A) and also (3.6), {3.10), and (3,11) yield
Feodsey + BreBat-y = m* — p°. .12}

Now write down Eq.(3.9) for sy’ =58~ 1, 8 -2, 8 — 3, etc, and use equations of the type (3.12) for 8y = s,
8 — 1, 8 — 2, etc,; theinduction yields the recursion relation

fofamt T =m =P, —sHIKa S 8.13)
It follows from (3.13) and (3.6} that for each 83
m* — p? 2mp m* — pt 2mp
5y = I3 ""fn*l "i’ “E,Tgs;-l; g, == I Eo-s ™ E,j fl.—l) -8 + i < &y g g, {3.‘14)
mt— 2mp m* — p* 2mp
by = -—-éx——f-,»: - '2.;’"8’-,-«. &y = 5 Bums + £ fomss — s+ 1i<Cs, <<, {(3.15)

The recursion rclations (3.14) and (3.15) in conjunction with the conditions (3.3)-(3.5) enable us to
find all the coefficient functions fsy and gs, of Hg In (3.2) if we know at least one function in the set fg,,
~8=85;%8 (or g5yl It foliows that the system (2.4)-{2.6) is satisfied if Hg has the form (3.2) and 1'33 and
gs; satisfy the conditions {3.14), (2.15), (3.3)-(3.5).

At the same time, we obtain & descriptiog:a of all possible operator functions Hg for which Eq, {1.1) is
invariant under the complete Poincaré group # (1, 3).

Remark 1. Equations {3.13)-{3.15) are also valid for m = 0,

Remark 2. The class of operators Hg with functions fsy and gg, satisfying the conditions (3.5) de-
scribes particles with vanishing mass (m = 0) and half-integral spin s since it is only in this case that the
conditions (3.6} and (3.13) are satisficd. In this case {3.14) and {3.15) are identical and determine Is; and
Bsy to within an arbitrary function.

Remark 3. The class of operators Hg with functions fsq and g, saiisfying (3.3) describes particles
with integral spin since {3.6} and (3.13) are compatible only for integral s. In this case {3.14) and {3.15)
determine Hg to within an arbitrary function.

Remark 4. The class of operators lig with functions fg, and Bs, satisfying the conditions (3.4) de-
scribes particles with both integral and half-integral spin. In this case fsg and gs, are determined by (3,14)
and (3.15) uniquely for both integral and half-integral spins since

g =0, fo==+E forintegral s, {3.16)
Fo =2 p, fo=cm forhalf-integrals. .17

The relation {3.17) follows from the conditions (3.6) and (3.13).

The assertions of Remarks 2, 3, and 4 follow from an investigation of the compatibility of the con~
ditiong (3.3)-(3.6) and (3.13) for sy = 0, 1/2.

it i3 helpful to write (3.2) as a recursion relation:

Ho=s H,_,+ D(s), {3.18)
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where
D(s) = a(g. A+ g-.Al) + ol A+ fAL).

One can then find the Hamiltonian for spin s from the Hamiltonian for spin s — 1 {(and conversely). Of
course, Hg_, must be defined in the same space [of 2(2s + 1) dimensions with respect to the spin subscripts]
as Hg, although it i3 actually defined in a space of 2@2s — 1) dimensions. In the 2{2s + 1)-dimensional space
Hg.; has the samc form as in the 2(2s — 1)-dimensional space except that the Sig are now 2(2s + 1) % 2(2s + 1)
matrices. Equation (3,18) shows that the Hamiltonian for an arbitrarily high spin is completely determined
by the Hamiltonian for the lowest spins s = 1/2,s =1,

Equation (3.18) may prove helpful in connection with the introduction of an interaction into Eq, (1.1)
for s > 1/2.

4. Exampies of the Operators Hg

We shall now apply our method to find the simplest operators Hg (m = 0) whose coefficient functions
satisly (3.4). In addition, for m = 0, we shall find all possible [for the representation @2.1)] operators Hg
that satisfy 2.4)-2.6).

1. Since (3.14) and (3.15) are on an equal footing, they can be used in any order, different forms of
Hg being obtained depending on the different order in which (3.14) and (3,15) follow each other. As a result,
the number of possible Hg increases with increasing s.

Note that (3.%4) and (3.15) are valid for 55 = 0 and for s; < 0. For the actual calculations, to which
we now turn, it is, bowever, expedient to use them only for sy > 0 and then find fg, and gg, for s; < 0 from
3.4).

We have seen (§ 3) that f83 and gs, can be found from (3.14) and (3.15) if any one of the functions s,
for gs,), —s < s; =< s is known,

Let us consider haif-integral spin; then [see (3.17)]
fo=m, gyg=p

Generally speaking, (3.14} or (3.15) can be used to {ind :'3/2 or g3/;. Opting for (3.14), we obtain f3/2 =m
and g:‘/z = -—pD and (3.4) inldfi r_,3/2 = m and g_3/2 =P,

For fs/z and Es/2 there is the same frecdom of choice between (3.14) and (3.15); taking the latter, we
find £;/, = m and gs5/2 = p and (3.4) yields s/, = mand g5 = —p.

Calculating the higher coefficient functions by regular alternation, i.e., using (3.14) for sy = 7/2, 11/2,
fs, Bs, and (3.15) for s; = 9/2, we obtain

H.= a,m+o.p E (— 1)-4C,, “.1

8>

If the original functions are f‘/z = m, g/ =-p [see (3.17)], we initiate a new alternation process by using
(3.15) for f3/; and g, 4, and (3.14) for fy/, and g5/, ete.[alternating (3.14) and @3.15) for s, - 9/2, 11/2,ete.].
The upshot is

H, = o,m —ap E (— t)w4C,, “.2)
e

itfy;, =—mandg,/, = +p [see (3.17)}, similar calculations yield

B, = —om4 ad’z {— 1)nuC,, 4.3

e® iy

A similar proceduie yiclds fs4 and 8s, for integral spins, If fy = E and gy = 0 [see {3.16)],

20 ¢ imp ¢
H, =g, (E-——g—xanu)‘*‘ 01“%’&2 chu' {4.4)

amé ony
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where Byp ,; and Cyy, , are the operators defined in § 3 and

&1 !
7 if 513 odd,
N= . {4.5)
{ 5 i, ifsiseven

If fy = ~E and g = 0, exactly the same procedure yields an operator Hg thai differs only in sign from
4.4},

Remark 1, If s = 1/2 in (4.1), Hg is identical with the Dirac Hamiltorian and if s = 1 in {4.4) we ob-
tain the Jordan —Mukunda [7] Hamiltonian by a completely different derivation,

Remark 2, A definite al*ernation of (3.14) and {3.15) was used to obtain {4,1)~(4.4). A different
order of these formulas would bave yielded more complicated expressions for Hg not amenable to compact

expression for arbitvary s, For example, taking the same fl/’z and g, 4, [see (3, 17)} and using (3,15} to cal-
culate t's3 and Es, without the use of (3,14}, we obtain

ey, m:i:{c,m (i_—f‘.._.&,,)w, (c,,,.g_:i’f‘_:LCh)}_ {4.6)

If s = 2 and f; = E, calculation of [, and g, by (3.15) yields
;, . zpt smtpx 2”“7 p‘l
R A N N AR GRS R A @1

If fy = ~E, we obtain an Hg that differs only in sign from {4.7).

Thus, the operators Hy defined by (4.1)-{4.7) satisfy (2.4)-(2.6) and Eq, (1,1) with such Hg describes
a particle (and antiparticle) with integral and half-integral spin.

Remark 3. The explicit form of the Hg for given s depends not only on the given initial functions (of
the type [y s, &1/, Lo, and gg) but also on the ovder in which (3.14) and (3.15) are used, The number of op-
erators Hy compatible with (2.4)-(2.6) increases with increasing spin in accordance with the greater num-
ber of different orders in which (3.14) and (3.15) can be used.

Remark 4. Although the Hamiltonians for given s have different explicit structures, they are all
unitarily equivalent in the case of a free theory, At the same time, it must be emphasized that they are
physically inequivalent in the sense that the introduction of an interaction into Eq. (1,1) in accordance with,

say, the rule py —pj —~ eAy leads to different results for the different Hg. We shall discuss this question
in a following paper.

2, I the particle mass vanishes (m - 0}, (3.14) and (3.15) take the identical form
fo = ~fu-u B0y = —fu-r, —8-+1<5s (4.8)
The use of (3.16) and (4.8) for m = 0 and integral spins violds

Ho=op 3 (= )du =~z 00 ¥ (~ 1), “.9)

he

For half-{ntegral spins (3.17) for m = 0 and (4.8} yield

H o= o-ﬁE (— 4)hA,, = :ta.pz {— 1)=nE,,

Sy - ayiwify

For s = 1/2, this operator is identical with the Cini—-Touschek Hamiltonian in the ultrarelativistic limit,

4,19

Equations (4,8} are also valid if fsa and Bs, satisfy (3.3) and (3.5) (for m = 0},
Applying (3.3) to (4.8} and recalling Remark 2 in $ 3, we obtain

H, = E (—)(osfo + 0} B, &'+ =" @4.11
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Applying (3.5) to (4.8), and recalling Remark 3 of § 3, we obtain
Ho=Y (= 0)wiols +ofu)C  fitey =7 4.12)

o3y

Note that the tg in (4,11} and {4.12) are defined to within an arbitrary function f; jor gy for integral s
and fx/z (or g; 13 for baif-integral s, since it is only required that

gt =p, =0 Y

Now the wave function of a particle (antiparticle) with vanishing mass should have only two compo-
nents corresponding to the spin projections sy - s and 55 = —s. Since a function that satisfies Eq. {1.1) with
the operators Hg of the form (4.9)-(4.12) has Z@s + 1) components, we must impose additional relativistically
invariant conditions to single out just two physically realizable components, These corditions have the form

{i—“é—(B.:t—!{'—C.)}‘i’(t, X)=0, BW(Lx)=0 0<s<s—1, @.13)
)
or
{I”"‘;"‘(Blico)}‘y(tv x)xﬂl B,,‘P‘(t,x}=0, 9<$3<$"’"§, {4'14)
or
i H,
{Lw;piﬁga}wan=a BW(tx)=0 0<s,<s—1. @.15)
- 4

Equation (3.1), and also the commutation relations (2.2), show that: 1) the conditions (4.13) are T
and CP&) mvariant (k = 1,2,3), but C and T® noninvariant; 2} the conditions (4.14) are C, T(l), and T®
tnvariant, but PK) noninvariant; 3) the conditions (4.15) are T®M and P®) invariant, but C and T® nonin-
variant,

Thus, Eq. (1.1) with an operator Hg of the form (4.9)-(4.12) and one of the additional conditional con-
ditions (4.13)-(4.15) is invariant under the proper Poincaré group & (1, 3) but only partially invariant under
P(k), T, and C transformations. In (4.13)-{4.15), one must take one + or --gign,

For s = 1/2, Eq. (1.1) with the additional condition 4.13) is equivalent to Maxwell's equations in
vacuum,

5, Transition to the Canonical Representation

In the Foldy ~ Shirokov canonical representation, the generators Py and J,, of # (1, 3) have the form
P = ag,E, Pl==p, k=123
Juf = Zaft — TipPs -+ Su,

E4-m’ (5.1}

In this representation, an equation of the type (1.1} that is invariant under the complete Poincaré group
# (1, 3) has the form

594, x)

S = Hox), 6.2)

where &, X) is a4 2(23 + 1)-component wave function. Since an irreducible representation of 7 @, 3is
realized on the set of solutions {&(, x)} of Eq. (5.2}, the wave functions ¥ and & are cleariy related:

D2, x) == UW(¢, %},

where U is a unitary eperator that will be determined below,

It i3 now clear that the problem we bave solved In § 3 I8 equivalent to the problem of {inding {de-
scribing) all unitary operators U for which the algebra (5.1) goes over into the algebra (2.1). Such operators
are found in {6, 7] for 8 = 1/2, 1,
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In this section, we shali describe the class of operaters U {or arbitrary spin and find expressions
for the operators of the coerdinate X, k = 1,2, 3, velocity Xy, k = 1,2, 3, spin g and sign of the energy

£,

1, We shall seek U in the form

U. == E (au + iﬂgb.,) Aln

e

where 083@) and b33@) are real functions of p. The unitarity condition UgUgt = [ implies

a4+ b =1 -—s<s<s
The generators (5.1) are related to the generators (2,1} by the eguations
an = E,‘nij“c(]. = ]n‘. Pa = Pk’,

”n =z Un?HCU"
Ja=U WU, o Ju=Ultul}.

Substituting the explicit expressioas for H® and Hg [see (3.2) and (5.1}] into (5.5), we obtain

fn:: E(“l;' - b.:),
gn==2Eab,, —s<<s<s.

Using the explicit form of Jy and JC [sce (2.1) and (5.1}], and (5.6), we obtain

U,z U, B, = 203%-{-‘0;1 .

On the other hand, with allowance for (5.3} and {5.4), we find

®
ﬁ["nx/ﬂ}- Ua?v !{CL = ZGJE 2 (‘zn‘au + bu'baa) i‘\u' IO}- '\N"

8y, 0,78

Equations (5.9) and (5.10) with allowance for (A.1) and {A.4) yield

% E—m
2y @atbbd, =220

Sgm 2

f;‘(ana—n + ba,b—vs)dq-—- == "“"‘é"“‘,
m—£g

E(a.,a.,—l—&.,b.,,)a.,,‘,:_— —

gyra--e

~s+i<a,'gs,

Using the numerical values of the coefficients ds3st,' [see (A.3)] we reduce (5.11) and (5.12) to

B1:8ps-1 + gDy =m [ E.

5.3

{5.4)

.5)

{5.6)

8.7
5.8

®.9)

.10)

&.14

.12)

$6.13)

{5.14)

Writing down (5.13) for sy’ =8 ~ 1,8 -2, 5 - 3, etc, and using formulas of the type (5.14) for s; = 3,5 ~ 1,

8 — 2, etc.,we can prove by induction that [sec the proof of (3.13)]
@, 0,1 + bA,&np| = ml'E, e i ol I P}

The compatibility of (5.4) and #5.15) also yields the recursion relations

14}
PRSP S WP S

& £ " E E

m
&4 == ‘_E Bypey — "FT L b" =

&

Bep—t4 "'5+i\<~31<"

-—Eb.,-, -§--§;a.,-., —~a- {1 L,

{5.15}

(5.16)
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Equations (5.4), (5.16), and {5.17} determine all possibie functions ag, and bs if we know any one of
the functions in the set as,, ~8 = g; = 8 {or bgy). This function ag, lor bg,) must be chosen, for example,

for s, = 0, 1/2 such that (3.3)-(3.6), (5.7), (5.8}, (5.16), and (5.17) hold.

Thus, Eqgs. (5.4), (5.7, {5.8}, (5.16), and (5.17) in conjunction with the conditions (3.3)-(3.5) taken for
any one |s,| solve our problem, i.e., these formulas describe all unitary operators Ug [see (5.9)] that
transform the algebra (5.3) into (2.1).

For example, taking the original functions ag, and bg, in the form

E4m 4
=gy = e, B = — By = e {5.17)
=an Y2E(E - m) i ’ V2E(E+m)

for half-integral s and in the form a; = 1 and by = 0 for integral s, we obtain the following operators from
(5.16) and {5.17):

E+ o, for half-integral (.18
== e for half-integral s, .
V2E(E ¥ m) &
m—E ¢ P v
u. == { + 2 Bg,”|+ lUx'E‘ EC},.;R for integ:al S, (5‘19)

[T} ame
where the number N is defined in {.5).

The operators (5.18) and (5.19) transform HC into the operators (4.1} and (4.4), respectively, For s
= 1/2 the operator (5.18) is identical with the Foldy —Wouthuysen operator,
For completeness we may mention that if Hg is given in the representation @2.1) {(and, hence, all the
f, and gg, are given) the coefficient functions ag, and bs, can be expressed in terms of fg, and g, by means
of (5.8) and (5.20), i.e.,
..Elh—:!:‘f.l: E - l‘,
3 == e ¢ b‘x == e
el Y 2 °*
Equations (5.20) are solutions of the system (5.4) snd (5.7}.

—5K <. .20

If a unitary operator Ug {sece (5.3)] with the coefficient functions (5.20) satisfying (5.7) and (5.8) is to
transform the algebra 2.}) into {5.1) it is also necessary that ag, and bs: satisfy (5.15) {add, hence, (5.16)
and (5.17)].

2. The operators of the coordinate Xy, velecity )'(k, spin Zy;, and sign of the energy € in the repre-
sentation @.1) have the form

:;+_E(_:‘::' )4— 0;{ Squ L 4\,,2 (8.0, — @b} 80 E (..-....____,, )(ﬂ‘.b..

[P IR sy —p o a=—3

—a,b,)d... A, }— G,m— %w ( " L b,,) A, km s a cyclic permutation of (1,2,3 );

l St ap
- ppS, — Snp Sepe T \
Ln. Sb. + E(E + m) Z AS; Z d.,“ (ag,b.‘: — b..a‘. )"‘" ia, Z“An, ('p—fx Sln’
By - sy.—t Sy

X Za...,'(a.,b,,' —a,b,), k,n{ isecyclic permutation of {§,2,3);

nH, . H,
Xh ”E.T‘o L E \J

where g5, and dsasa' are given-in (A.3) and g, and bsa are determined by the method described above,

For the operators Ug in {5.18) and (5.19), Xj and Zyy have the form

Supr . Suep £ — impy
E(E+m) pE

Ky == 2, + (oufl, — m),
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s ‘E‘b +E(E—:‘;~m+ (5-. » ;)U’»"- m},

where k,n,l {s a cyclic permuration of (1,2,3) and s is half-integral;

Slr (4 Shv * £ ryr
p AP N LAY W 4 L(«:) C,,-—o,m& ot Lc,.ﬂ-a-gc,(-—i)'f‘f—s,,

E(E 4 m} —~
me . _ BPS, s.,p, s,,p, Ple P A%

i == S + ' AL — 1),

B St g O Bt oty —5-B—o S(.s ; s,)Ef( L.,

3>
where k,n,/ i3 a cyclic pernutation of (1,2, 3) and s is integral,
The operators X, ?’Ck, Tkn, and ¢ for s = 1/2 are identical with the operators obtained in [6].
APPENDIX

In this appendix we give {without proof) all the formulas used in the main text to derive our results:

S.rp,» it“ﬁ - Snl Pk
I e WA i ———— Uy W Al
CHBREES ;ia Ao+ :2: ( s )d.,,,A.,. A1)
o1
. Sy p,
{Skn Ac,l— == L—“—p" Z dn;:, A;, E (Sks - {:sl’}as,url‘:fy (A'z}
R ym~sdt

where @51, > 0, ifsy =5;-1,8;+1,

o=~ a, ., =a,.,= —s+i<sCs~1{,
S0, if sS= g — 1, 541, —sbls Ke 1,
d"’“ e Nd’x‘i oy = ‘!77 —dn—d s == ~d<l*l === d—vﬂ-l—a = du == i. (A's)

Slrpr S.x ‘D\ )
—k ‘—;— ¥‘i?51) A,=0, k& n1 isacyclic permutation of {1,2,3,}), & = 3.

(So Aulo=—{np - 2p, AL (S0, Ao = —p'[n, AL, (A4)

SAVPISE TS e ShShPr == ‘PS,V b5 ‘pz Su\...

6y

S 2y Sapepoe == p };” (s(s + 1) — 5,/JA., S0 =8 = s(s - {).
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