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EQUATIONS OF MOTION FOR PARTICLES OF ARBITRARY 

S P I N  I N V A R t A N T  U N D E R  T H E  G A L I L E O  G R O U P  

A.Go Nikitin and V ol. Fushchich 

Systems of different ial  equations of f i r s t  and second o rde r  a re  derived that a re  invar iant  
under the Galileo group and desc r ibe  the motion of a par t ic le  with a r b i t r a r y  spin. These 
equations admit  a Lagrangian formulat ion and desc r ibe  the dipole, sp in -o rb i t ,  and Darwin 
couplings of the par t ic le  to an external  e lec t romagnet ic  field; t radi t ional ly,  these have 
been r e g a r d e d  as pure ly  re la t iv i s t i c  effects .  Examples  a re  given of inf ini te-component  
equations that a re  invar iant  under the Galileo group.  The p rob lem of the motion of a non- 
re la t iv i s t ic  par t ic le  with spin s = ~ in a homogeneous magnetic field is solved exact ly .  

Introduction 

Relat ivis t ic  equations of motion for  par t i c les  with a r b i t r a r y  spin s t imulate  g rea t  and sustained 
interest among physicists and mathematicians (see ill and the literature quoted there). On the other hand, 
remarkably little literature has been devoted to equations invariant under the Galileo group. But as early as 
1954, Bargmann [2] showed that by means of the central extension of the Galileo group the concept of 
particle spin can be introduced consistently in nonrelativistic quantum mechanics as well. 

In [3,4], Galileo invariant differential equations of first order describing the motion of a nonrela- 
tivistic particle of arbitrary spin were obtained. These equations describe the dipole interaction of a particle 
with an external field but do not take into account well-known physical effects such as the spin-orbit and 
Darwin couplings. 

In the present paper, using the method developed in [I, 5, 6] to derive Poincar~ invariant equations, 
we obtain Galileo invariant equations of motion for a particle with arbitrary spin s, these being capable of 
describing the above couplings. This is achieved by an extension of the Galileo group G to the group G', 
which includes the transformation of simultaneous reflection of the coordinates and the time. The obtained 
equations have the SehrSdinger fo rm 

iOn'(t, x)/~t=H~(p)~(t, x), pa=--iO/OX~ (0.1) 

(where Hs(p) is a differential  opera to r  of second o rde r ,  and ~ is a 2(2s + 1) -component  wave function), 
pe rmi t  a Lagrangian formulat ion,  and desc r ibe  the dipole, sp in -o rb i t ,  Darwin, and quadrupole couplings of 
a par t ic le  of spin s to an external  e lec t romagnet ic  field. This means ,  in par t i cu la r ,  that the l isted i n t e r ac -  
tions, which a re  usual ly  introduced as re la t iv i s t ic  co r rec t ions ,  can be t rea ted  cons is ten t ly  in the f r amework  
of nonrela t iv is t ic  quantum mechanics .  

In the paper ,  we also obtain Galileo invar iant  differential  equations of f i r s t  o rde r  descr ib ing the 
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motion of a particle with arbitrary spin. After the minimal coupling p,-~p~-eA~,, these equations also describe 
the spin-orbit and Darwin couplings of the particle to a field. We also give an example of infinite-component 
equations invariant under the Galileo group. 

i. Basic Definitions and Formulation of the Problem 

The Galileo group G is the set of transformations of the coordinates xa (a=1, 2, 3) and the time t 

of the form 
__). ! x~ x~ =B~bxb+Vat+b~, t-~t'=t+bo, (1 1) 

where ]Rab is an opera to r  of a th ree -d imens iona l  rotation,  and V a and br, a re  a r b i t r a r y  r ea l  p a r a m e t e r s .  

The rep resen ta t ion  of the group G is uniquely de termined by specifying the explicit  f o r m  of the 
inf ini tes imal  ope ra to r s  Pt~' Ja, and G a cor responding  to d i sp lacements ,  ro ta t ions ,  and Galilean boos t s .  

DEFINITION. We shall that Eq. (0.1) is invar iant  under the Galileo group if the Hamil tonian H s = P0 
and the gene ra to r s  ida, Ja' Ga sa t i s fy  the commutat ion re la t ions  

[P~, Pb]=0, [P~, ]6]=ie.b~Po, (1.2a) 

[Ga, Gb] =0, [G~, ]~]=iz~b~Gc, (1.2b) 

[Pa, Gb]=i6~M, [M,P,]=[M,/~]=[M, G~]=0, (1.2c) 

[H,, P~] =[H,, ]a] =0, (1.2d) 

[H~, G~]=iP~, a, b=l ,  2, 3, t~=0, t, 2, 3. (1.2e) 

The re la t ions  (1.2) define the Lie a lgebra  of the Galileo group.  The a lgebra  (1.2) has th ree  invar iant  
ope ra to r s  (Casimir  opera tors ) :  

2MC~=2MPo-PaPo, C~=M: C~=(MI~-so~PbG~) (M]o-e~d~P~G~). (1.3) 

The eigenvalues of the ope ra to r s  Ci, C~, and C 2 a re  assoc ia ted  with the internal  energy,  spin, and m a s s  of 
the par t ic le  descr ibed  by the invar iant  equation {0.1). 

We shall solve the p rob lem of finding all poss ible  (up to equivalence) Galileo invar iant  equations of 
the fo rm (0.1) in two approaches ,  which are  in genera l  inequivalent.  In approach I, the p rob lem is f o r m u -  
lated as follows: to find all Hamil tonians H~ s such that the ope ra to r s  

P0~=H~ ~, Po~=p~=-iO/~x~, ]~=(xXp)~§ G~=tp~-rnxo+t,~ ~ (1.4) 

sa t i s fy  the Lie a lgebra  of the extended Galileo group (1.2). Here  

S~= (s~ 0 )  (a,b,c) is cyclic  p e r m .  of (1,2,3); (1.5) 
0 8c 

s c a re  the gene ra to r s  of the i r reduc ib le  r ep resen ta t ion  D ( s )  of 0 ( 3  ), m is the p a r a m e t e r  which speci f ies  
the par t ic le  mass ,  and ;t~ a re  numer ica l  m a t r i c e s  whose explicit  f o r m  will be de te rmined  below. 

Equations (1.4) define the genera l  fo rm of the gene ra to r s  of the Galileo group cor responding  to the 
local t r ans fo rmat ions  of a 2(2s + 1 )-component  wave function on the t ransi t ion to a new coordinate  s y s t e m  
(1.1), 

~F (t, x) ~W'( t ' ,  x') =exp[i](t, x) ]D ~ (Rob, v~) W (t, x), (1.6) 

where DS(Rab , v a) is a numer ica l  ma t r ix  that depends on the t r ans fo rmat ion  p a r a m e t e r s  (1.1), and ](t, x) 
is a phase factor  [27: 

](t, x) =mvoR~xb§ (1.7) 

We shall see below that the ope ra to r s  HI s can always be chosen to make Eq. (0.1) also invar iant  under  the 
ant iuni tary t r ans fo rmat ion  of ref lect ion of the coordinates  and the t ime:  

(t, x) ~ r ~ *  (--t, --x) , r~2=i, (1.8) 

where r 1 is a mat r ix .  

In the approach II, the p rob lem reduces  to de termining  all poss ible  different ia l  o p e r a t o r s  H I I S 
such that the g e n e r a t o r s  

PoH=H,~, P.~=p~=--iO/Ox., / .=(xXp).+S. ,  G.I~=tp.--a3rnx.+s ~ (1.9) 
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satisfy the algebra (1.2). Here, ~3 is one of the Pauli matrices 

~ 

and I and 0 are (2s + 1) - row square unit and null mat r ices ,  respeetively,  and h~ I are  certain opera tors  
(in the general case they depend on Pa) that we must also find. One can show that Eqs.  (1.9) give the general 
form of the genera tors  of G for which Eq. (0.1) is invariant under the unitary t ransformat ion W (t, x) -+r2W 
(-t ,  -x ) ,  r~=~. 

We require  that the genera tors  (1.9) be Hermitian under the sca lar  product usually adopted in 
quantum mechanic s: 

( ~ v ,  ~p2) = ~ d~z tF , t~ .  (1.10) 

An important difference between the representat ions  (1.4) and (1.9) is that the genera tors  H I and GI a 
are non-Hermitian under (1.10) but are Hermitian in the Hilbert space with scalar product 

(~,, ~ ) =  ~d~x ~ t ~ ,  (1.11) 

where ~[ is some positive-definite differential operator, or with respect to the indefinite metric when l~ in 
(I. 11) is some numerical positive-indefinite matrix. The explicit form of l~I will be found below. Thus, the 
complication of the metric is the price that must be paid for the local transformations (1.6) of the wave 
function. The situation is the same for relativistic equations [I]. 

We require HlsI to satisfy the condition 

(H~H)~=(m+p2/2m) ~. (1.12) 

This is equivalent to the requirement  that the internal energy of the particle be equal to its mass .  

Thus, the problem of finding Galileo invariant equations of the form (0.1) reduces to the solution of 
the sys tem of relat ions (1.2) for the opera tors  (1.4) and (1.9). 

2 .  E x p t i e i t  F o r m  o f  t h e  H a m i l t o n i a n s  H I 

We give the solution to problem I in the form of a theorem.  

THEOREM 1. All possible (up to equivalence) Hamiltonians H I satisfying together with the 
genera tors  (1.4) the commutation relat ions (1.2) and (1.4) are given by the formulas 

H Z = o ~ l m _ 2 i ~ k e l S . p +  i C - -  a, b = ] ,  2, 3, (2. la) 2m ~bpopb, 

p~ 
//,T=z~m + -- 2@ (02--ia~) S.p, (2. lb) 

2m 

where C~=Sa~-2~/k ~(z~+iz~) (SoS~+S~So)~ ~, k ,  and ~ are  a rb i t r a ry  pa ramete r s .  

Froof.  We determine f i rs t  the explicit form of the mat r ices  XI a in (1.4). From (1.2b), we obtain 
for X~ the equations a 

[~', )~b'] =0, [ ~ ,  Sb] =ie~bo)~ ~, [S~, Sb] =ieobr (2.2) 

From (1.5) and (2~ 2) we conclude that, without loss of generali ty,  the mat r ices  X I can be represented in the 
form a 

)~ = k ((~+i(~) S~, (2.3) 

where k is an a rb i t r a ry  coefficient.  

We find the general form of the Hamiltonian H I in the representat ion in which k a = 0. The t r ans i -  
tion to suel~, a representa t ion is made by means of the operator  [7] 

V=exp (i~J. p/~rn) = ] +ik  ~. p /m.  (2.4) 

Using (2.4)~ we obtain 

~P ~ VP IV- '  (H, ~) '=VIt ,~V -' ,  ~ o,  = o = ~ ,  ] / = V I ~ V - ' = I o ,  (G~ ~) '=VG~V-~=tpa-mxo.  (2.5) 
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From (2.5) and (1.2) we conclude that the general  form of the opera tor  (HI s ) '  is given by the 
formula 

(H~ ~)'=p2/2m§ A:~a~rn, (2.6) 

where a~, are a rb i t r a ry  coefficients and, without loss of generali ty,  we can set a0=0. 

We can show that by means of t ransformat ions  that do not change the general  form of X I (2.3) the 
a 

matrix A (2.6) can be reduced to one of the forms 

A=o~wn or A = ~ m .  (2.7) 

Substituting (2.7) in (2.6) and using the inverse of the t ransformat ion (2.5), we a r r ive  at Eqs.  (2.1). 
This proves the theorem.  

Equations (2.1) define nonrelativist ic HHamiltonians for part icles  with a r b i t r a r y  spin. In the case 
s=1/2, k=-i,  ~1='1, Eq. (0.1), (2. la) can be written in the compact  form 

n 2 

(~.r •= (t§ ~ ~, (2.8) 

where ?0=a~, ?~=-2i~S~, ?~=i?07~727~ are Dirac mat r i ces ,  

Note that all the Hamiltonians (2.1) belong to the c lass  of second-order  differential opera tors ,  which 
was not required a pr ior i .  In the f ramework of the Poincar~ group, the Hamiltonians of par t ic les  with 
a rb i t r a ry  spin are,  as a rule, integro-different ial  opera tors  [1, 5]. 

The pa ramete r s  k, V, and ~ can always be chosen to make Eqs. (0.1) and (2.1) invariant under the 
antiunitary operation (1.8) of reflection of the coordinates  and the t ime. A necessa ry  and sufficient condition 
of such invariance is the simultaneous fulfillment of the relat ions 

~*=• k*~• or ~-*=~, k*=k, (2.9) 

where rl=(~ A. if ~]*=-~1, k*=-k or ~1"=~1, k*=k, r~=A, if ~]*=~1, k*=k, A = 0 A' ' where A p are  mat r ices  

defined up to the phase by the relat ions [81 

A%=-so*A', (A')~=(-I) ~ 

Thus, under the res t r ic t ions  on the pa ramete r s  ~, ~, and k imposed by Eqs.  (2.9), Eqs. (0.1) and 
(2.1) are invariant under the extended Galileo group including the t ransformat ions  (1.8). 

The Hamiltonians (2.1) and the opera tors  (1.4) and (2.3) are  non-Hermit ian in the sca lar  produet 
(1.10). However, these opera tors  are  I-Iermitian in the metr ic  (1.11), where ~I is a posit ive-definite 
opera tor :  

~=(V-~)+ V-'=l+[i(k-k*)~-(k+k*)~]S.p/rn+ 2(k'k)(1+ol)(S.p)2/rn 2. (2.10) 

In addition, if ~/, k, and ~ sat isfy the conditions (2.9), the Hamiltonians (2.1) are Hermitian in an 
indefinite metr ic  of the form (1.11), when 

=~=  ~ o~, if ~1'=~1, k'=k, ~ ' = - ~ ,  (2.11) 
. G2, i f  , F = - n ,  k'=-k, fF=-~l. 

If (2.11) is satisfied, Eqs. (0.1) and (2.1) can be obtained by means of a variat ional  principle.  The 
corresponding Lagrangians have the form 

L(t,x) = ~x~ ~x~ 2m Ox~ Oxb ~t Ot 

when HI s is given by Eq. (2.1a), and 

�9 [ ]} L ( t , x ) = ~ v g  OW __OgJ ~F_2i~lm~Y~F§ k ~(o2_i~3)S ~_OW --Ovg (~2-ia3)S~W t 0W 0~F , (2.12b) 
z t Ot Ot Ox~ dxo 2m Oz, Ox~ 

if the Hamiltonian has the form (2. lb). Here �9 =~*~. 

The Lagrangians (2.12) are  sca la rs  under the t ransformat ions  (1.1) and (1.6), where 

D~(R,~, V~)=(l+i~'.v)D~(Ro~), (2.13) 

and DS(Rab) are  mat r ices  that real ize  the direct  sum D(s)~D(s) of two irreducible representa t ions  of SO(3 ). 
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3,  Explicit Form of  the Hamiltonians HI I 

We solve problem II, i.e., we find differential operators that satisfy together with (I. 9) the 
relations (1.2) and (1.12). 

THEOREM 2. All possible (up to equivalence transformations) differential operators  HIsI that are 
Hermitian in the metric (1.10) and sat isfy the conditions (1.2), (1,9), and (1.12) are given by the formulas 

H'~=o3 Ira+ 2-~, (S~ + a2 ~-2sinO'-~---+ e~ [a'2~ ~ 4ms (SoS~+SbS~)popb], (3.1) 

w h e r e  

. . . .  - -  5 a, =sin 20v. bv,=O, a~=l, bl=sil120~, a,/~--b,1,- I~ sin 20~/~=-l,ls sin 20~/,-~/~ sin 0.,/:(t-~/~ sin 2 0~/J v,, 

a,=b~=0,=0, s>~/2, 
and Or. 0. 0,~: are a rb i t ra ry  real  parameters .  

Proof. We show firs t  that the operators  HIsI c.an include derivatives of not higher than second order .  
N 

Indeed, suppose H. ~ =  yjH~,  where H i contains derivatives of only i-th order;  then f rom (1.12), we obtain 
�9 * . ,=v 

H~H.-=H~-+H_~.=O or H~-=0, if N>2. 

We represent  the required differential operators  HIsI in the form of an expansion with respect  to 
the spin matr ices  and 2(2s + 1)--row I)auli matr ices  (1.9): 

H~'=s  [a/m+b/ P2 +c.~S.p+d/ (Sp)2] 
2m -2~m J ~ 

where a/, b~ ', c/, d/  are a rb i t r a ry  real  coefficients.  Using the orthogonal projection operators  [1, 51 

, r ,r '=-s ,-s+l , . . . ,  s, A~.A~,=6 , , ,  A ~ = L  r~A~ = 
/ "  Y ~ 

r ' ~ r  r r 

we can rewrite HIsl in the form 

~ t = 0  r = - s  

The operators (3.4) obviously satisfy the conditions (1.2d) and (1.10). 
Substituting (3.4) in (1.12), using the orthogonality of the operators  At, 
we find that a2, by, c;, d/  must sat isfy one of the system of equations 

s  2=0. ~ [r~(cJ)2+aJ(bf~+r2d~)] =1, s 

o r  

aJ =bo' =do'=co'=O 

(3.2) 

(3.3) 

(3.4) 

We require that (1.12) hold. 
and equating the independent terms, 

3 

.~=, ~=l ( 3 .5 )  

The general solution of Eqs. (3.5) and (3.4) (up to equivalence t ransformat ions  realized by numerical  matrices) 
is also given by Eqs. (3.1). One can show that the solution (3.6) is incompatible with (1.2a), (1.2b), and 
(1.2e). 

To complete the proof of the theorem, it is now sufficient to indicate the explicit form of the 
operators klaI for which the operators (I. 8) satisfy Eqs. (I. 2b) and (I. 2e). It is easy to show that k II can 
be chosen in the form 

~J~ = [ U, ~x~] U +, 
where 

U= (E+c~H~ H) / Y2E (E+'/2H,~(13+I/2(~H,I~), E=m+ff / 2m, 
is the operator  that diagonalizes the Hamiltonian (3.1) and the generators  (1.8): 

UfH,IIU=(~E, UfG~U=tpa-(~mx~. 

(3.7) 

(3.8) 

(3.9) 
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The t h e o r e m  is  p roved .  

In the e a s e  0,:~=n/4, Eq. (0.1), (3.1a) t akes  a p a r t i c u l a r l y  s imp le  f o r m  (of. Eq.  (2.8)): 

(%p~+rn) ~ =i'~, Pm ~" (3. 10) 

Equation (3.10) d i f f e r s  f r o m  the r e l a t i v i s t i c  D i rac  equat ion only by the p r e s e n c e  of the t e r m  on the r i g h t - h a n d  
side,  which obv ious ly  d e s t r o y s  the i n v a r i a n c e  under  the P o i n c a r 6  g roup  but p r e s e r v e s  the i n v a r i a n c e  unde r  
the Gal i leo  g roup .  

4. Nonrelativistic Particle in an 

E__xternal Electromagnetic Field 

To go over to the description of the motion of a charged particle in an external electromagnetic field, 
we make in Eq. (0.1) the usual substitution 

p~ ~ = p ~ - e A ~ , ,  (4.1) 

w h e r e  A~ is  the f o u r - v e c t o r  potent ia l  of the ex te rna l  f ie ld .  We then a r r i v e  at the equat ions  

i - - W ( t , x ) = H ~ ( ~ , A o ) V ~ ( t , x ) ,  a = I ,  II, (4.2) 
~t 

whe re  H2(~ ,  A0) is one of the Hami l ton i ans  obtained f r o m  (2.1) and (3.1) by  the subs t i tu t ion  (4.1): 

n2 k 2 
H~ ~ (n, Ao) = a2~l m + - -  - 2i~lkolS.n+eAo - (a~+ia2) Tlt~- [ (S.z~) 2 + V~eS-tI], (4.3a) 

2rn rn 
~ 2  

/ /~(~,  A~) = (h~rn + - 2~lk ((h--i(h) S '~+  eA0, (4.3b) 
2m 

[ S.H 2 1 ~2 
~z (8"~)2 s i n 2 0 ~ - e ~ s l n  0~] -4- O, eb~msZ ] sin0~+eAo. g~II(~, Ao) = 

(~ !. ra-~ 2m ms ~ 2ms ~ 
[ a , ~ m  ~+ b ' (S-g)~ § S . I I  - S . ~  

�9 ~ +o~2 s (4.3c) 

In (4.3) Ho=--ie~bo.%go is the magnetic field intensity. 

Equations (4.2) and (4.3) are obviously invariant under gauge transformations. In addition, as they 
were before the introduction of the interaction, Eqs. (4.3) with the Hamiltonians (4.3a) and (4.3b) are invariant 

under transformations in the Galileo group (1.6), (2.13), if the vector potential transforms in accordance 
with the law [3] 

4 Ab-~A~ =R~Ao, Ao~Ao'=Ao+v~A~. (4.4) 

It is  convenien t  to ana lyze  Eqs .  (4,2) in the r e p r e s e n t a t i o n  in which the o p e r a t o r s  (4.3) a r e  q u a s i -  
d iagonal  ( i . e . ,  c o m m u t e  with one of the ~ m a t r i c e s ) .  As in the c a s e  of the Di rac  equat ion,  the Hami l t on i ans  
(4.3) can be d iagonal ized  only a p p r o x i m a t e l y .  Below, we i m p l e m e n t  such a d iagona l iza t ion  and r e p r e s e n t  
the Hami l ton ian  of a pa r t i c l e  with a r b i t r a r y  spin in the f o r m  of a s e r i e s  in p o w e r s  of l / m ,  which is  conven ien t  
for  ca l cu la t ions  in p e r t u r b a t i o n  t heo ry .  

Diagona l iza t ion  of the Hami l t on i ans  (4.3) up to t e r m s  of o r d e r  1 / m  2 is  i m p l e m e n t e d  by  m e a n s  of 
the o p e r a t o r s  

V ~ = exp ( iC,~+~J~ 2 q ~ t  OB, ~'O~_) exp (iB, ~) exp (iA~'), a = I ,  II, W=exp (iC, ~) exp (iB, ~) exp (i.4, ~) (4. 5) 

whe re  

i S-~ 1/2 sin 0, k t l  e I 
A , = - i o 2 k  A H - S':L ~l~=~l, ~l~=l, B , ~ = ( h . ~ l - - [ S . ~ , z r 2 ] + i k [ 2 ( S n ) 2 §  S-E 

'm 2ms 2rn ~ t 2q -~- 

C ~ = o 2 ~ { - . ~ - - ( S . n ) 3 + i e k [ S . ~ , S . H ] +  +[ (S.~)2, eAo]}, 

B~- -a  4-~. { + ~ [ 2 ( S - : ~ ) ~ + e S . H ] +  e] /2sin0~S'E} 
s - -  2 a s  ~ 2  - -  

S 

_ = ieb~ [ ~, 
S S 2 + S 3 
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~,  = - ~ k ( ~ - i ~ , ~  rn ' B~ ~= (o~-i~)S.E,  6%' 4 ~ m 2 ( z ~ - ~ ) [ ~ , S ' M  

By direct  calculation,  we obtain 

[ Ho~ (~, Ao) ] '= V~H/~ (n, Ao) (V~)-' ~ A~m+B~ ( ~-~ + eAo) + 

Ot 

where 

e F%(s+t )d ivE  4: + D s. ( XE-EX ) +' 6m 
rn 4m ~ 

1 0 o n L~e 
. . . .  G~Q~ - -  + - -  S- (:~XtI-tIXrt) + ~ Qo~ o 
4.2m "~ Ox~ m ~ m ~ Ox~ 

~ ( i )  
[ ~ ]  (~, A~) ]'=V'il[ '  (~, Ao) (V ~) - '=~(Im + - -  + eAo+o 

2m ~ "  

(4.6) 

II I I  

AJ =o3rl, BI=I ,  CI=-qU,  -DI=FI=Gr~-U nI=-3LI=~IU, 

_CIt =DIr=_Ft~=_GII = sin~0__._~ n i i_  ]]2sinO~ [_a~ + b~ ~ LI~ _ 
2s ~ ' 2s \ "~4s / '  

Q~=(e/2) {3[S,, Sb]+--2Gbs(s+ l) }. 

~2 b~ sin O~ 

24s ~ 

(4.7a) 

(4.7b) 

The o p e r a t o r s  (4.6) and (4.7) contain t e r m s  cor responding  to dipole (~S.H),  s p i n - o r b i t  (~S. (~• 
E - E •  quadrupole (~Q~bOE~/Oxb), and Darwin (~divE) couplings of the par t ic le  to the field. The las t  two 
t e r m s  in (4, 6) and (4.7) can be in te rpre ted  as the magnet ic  sp in -o rb i t  and magnetic  quadrupole couplings.  
The approximate  Hamil tonians obtained f rom re la t iv i s t ic  equations [5, 6] have a s imi l a r  s t ruc tu re .  In the 
case  s=V~, q=l ,  k~=--t, 0~=~/4, the f i r s t  seven t e r m s  in (4.6) and (4.7) a re  identical with the F o l d y -  
Wouthuysen Hamiltonian [9J obtained by diagonalizing the Dirac  equation, Thus,  in the 1 /m 2 approximat ion 
the nonrela t iv is t ic  equations (4.2), (4.6), and (4.7) desc r ibe  the motion of a par t ic le  with spin s = ~ in an 
externM elec t romagnet ic  fieId with the same accu racy  as the re la t iv i s t ic  Dirae equation. 

Note that for some c l a s s e s  of external  fields Eqs.  (4.2) can be solved exact ly .  We give without 
proof  the eigenvaIues of the Hamiltonian (4.3b) for a par t ic le  with spin interact ing with a constant  homogeneous 
magnetic field [10]: 

H,jy (n, Ao) W .... ~ = G ~ q  ~ .... ~, 

4rn ~ \ 2m J m 4rn = ' 

where ~ ( 2 n + Q e H ~ ,  H~H~=O, n=O, :l, 2 . . . . .  e=_+t, &=:t:V2. 

5.  F i r s t ' O r d e r  E q u a t i o n s  

We cons ider  b r i e f ly  the p rob lem of descr ib ing Galileo invariant  differential  equations of the fo rm 

(5.1) FW=O, F=~p"-V~srn~ p,=-iO/Oz,, 

where ~,, 135 a re  numer ica l  m a t r i c e s .  

By definition, Eq. (5.1) is invar iant  under the Galileo group if 

iF, Q~I=[~F, A=I ,  2 . . . .  ,10, (5.2) 

where  QA is an a r b i t r a r y  genera to r  of the group G: {Q~}= {Po, p~, G,, Jo}, and /~ a re  ce r ta in  ope ra to r s  
defined on the set  of solutions of Eq. (5.1). 

Setting ]~--=0 and choosing the gene ra to r s  P~, /o, G~ in the fo rm (1.4), where S a and Xa a re  a r b i t r a r y  
m a t r i c e s  (which co r r e sponds  to local Galileo t r ans fo rma t ions  (1.6) for  the function ,~ ), we obtain f rom (5.2) 
the following sys t em of commutat ion re la t ions  for the ma t r i c e s  ~,, ~, M, G: 

[S~, ~5]=[S~, ~o]=0, [S~, ~{]=ieo~13~, [)~, ~ ] = i ~ ,  [~, ~b]=i6ob~o, [~,~, ~o']=0, (5.3) 

where X a and S a a re  m a t r i c e s  sat isfying Eqs.  (2.2). 

Thus, the prob lem of descr ib ing  Galileo invar iant  equations of the fo rm (5.1) r educes  in our f o r m u -  
la~ion to finding ma t r i c e s  So, ~o, ~, ~o sat isfying the conditions (2.2) and (5.3). 
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We give a special solution of the system (2.2), (5.3), which makes it possible to obtain equations of 
the form (5. I) for nonrelativistic particles of arbitrary spin. We denote by S~z, k, /~I, 2, 3, 4, 5, 6, the 
generators of the irreducible representation of the group SO(6). Then the matrices 

S~=~/2eo~S~, ~='/2(iS6~+S~), a= i ,  2, 3, ~=2S4~, ~o=iS~+S~5, ~=2(I+iS~6-S~) (5.4) 

sa t is fy  the commutat ion re la t ions  (2.2) and (5.3), i . e . ,  Eqs.  (5.4) solve the posed p rob lem.  

Setting in (5.t), (5.4) S~z=(i/4) [~, ~z], S~k=~/~%, where  Yb a re  Hermi t i an  fou r - row  Dirac  m a t r i c e s ,  
we obtain an equation equivalent to Lev i -Leb lond ' s  equation [3] for  a par t ic le  with spin s = ~. Choosing other  
r ep re sen ta t ions  of the Lie a lgebra  of the group SO(6),  we obtain f rom (5.1) and (5.4) equations for  pa r t i c l e s  
with other values  of the spin. 

Equations (5.1) and (5.4), like the s econd -o rde r  equations cons idered  ea r l i e r ,  make it possible  to 
descr ibe  the sp in -o rb i t  in teract ion of the par t ic le  with an external  field. For  example ,  set t ing S~=i[~, ~i], 
S~=~h, where ~ a re  the t en - row K e m m e r - D u f f i n  m a t r i c e s  (which can be chosen,  for  example ,  in the fo rm 
given in the monograph [12]), and making in (5. I) the substitution p~-+n~,, where ~=p~, ~o=po--eAo, we obtain 
after simple but somewhat lengthy calculations an equation for the three-component wave function ~(~) : 

0 z~ ~ S-E 
i - -  W(3)=ItW(~), H=rn + . - -  + eAo+e ....... , (5.5) 

Ot 2rn 4m 

H' where S are  spin m a t r i c e s  for  s = 1. By means  of the t r ans fo rmat ion  H ~ = VHV -~, where  V = 
exp(iS. ~ / m ) ,  the HamiItonian (5.5) can be reduced to a fo rm analogous to (4.6), 

H ' = - - + e A o  S. ( n X E - E X ~ ) -  -~- Q~b Oxb 3 " 2m - ~  divE + o  (5.6) 

The ope ra to r  (5.6), like (4.6) and (4.7), contains t e r m s  descr ib ing the Darwin, sp in -o rb i t ,  and 
quadrupole couplings of the par t ic le  to the external  e lec t r ic  field. 

6. Concluding Remarks 

I. We have obtained systems of differential equations of first and second order which are invariant 
under Galileo transformations and gauge transformations and describe dipole, quadrupole, spin-orbit, and 
Darwin couplings of particles of arbitrary spin to an external electromagnetic field. Thus, these interactions 
are not purely relativistic effects and can be treated consistently in the framework of nonrelativistic quantum 

mechanics (see also [10, 11]). 

2. Equations (2.8) and (3. i0) have a structure such that their left-hand side is identical to the 

relativistic Dirac equation, while the right-hand side contains terms which destroyed a symmetry under the 
Poincar6 group and ensure invariance of the equation under the Galileo group. Such a method of destroying 
the Poincar6 symmetry is one of the possible approaches for obtaining Galileo invariant equations of motion 
for particles with arbitrary spin. Thus, proceeding from the relativistic equations without redundant com- 
ponents given in [i, 6] we can, adding terms that destroy the Poinear~ invariance but preserve the symmetry 

under the group E(3 ), obtain Eqs. (1.2) and (2. la). 

3. Equations of the form (0.1) and (5. I) do not, of course, exhaust all possible linear differential 
equations that are invariant under the Galileo group. For example, to describe the motion of a nonrelativistic 
particle with spin s = 1 one can use the Galileo invariant analog of the Proea equations 

(2mpo-p 2) W~=O, v=0, t, 2, 3, mTo-paW~=O, a= t ,  2, 3. 

4. The non-Hermi t i c i ty  of the gene ra to r s  (1.4) with r e spec t  to the usual s ca l a r  product  (1.10) is 
due to the non-Hermi t i c i ty  of the f in i te -d imensional  r ep re sen ta t ions  of the a lgebra  (2.2) (which is i somorphic  
to the Lie a lgebra  of the Euclidean group E(3 )). A s im i l a r  situation obtains in re la t iv i s t ic  theory,  in which 
nonunitary r ep re sen ta t i ons  of the homogeneous Lorentz  group a re  always rea l ized  on the solutions of equations 
of motion that a re  finite dimensional  with r e spec t  to the spin indices,  the r equ i r emen t  of uni ta r i ty  of such 
r ep resen ta t ions  leading to inf ini te-component  equations.  It is the re fo re  of in te res t  to cons ider  inf ini te-  
component equations invar iant  under the Galileo group.  We give an example  of such equations.  

We denote by S~,~ (p, v=0, 1, 2, 3, 4, 5) the g e n e r a t o r s  of the uni tary  inf ini te-dimensional  r ep resen ta t ion  
of the group O(1, 5). Then an equation in the f o r m  of {5.1), (5.4), where S~,=S~, (k, /=~, 2, 3, 4, 5), So~=iSo~, 
is invariant  under the Galileo group.  
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Q U A S I P O T E N T I A L  M O D E L S  O F  A R E L A T I V I S T I C  O S C I L L A T O R  

N , M .  A t a k i s h i e v ,  R . M .  M i r - K a s i m o v ,  
and S h .  M.  N a g i e v  

Two exactly solvable one-dimensional models of a relativistic oscillator are investigated 
in the quasipotentia[ approach in quantum field theory, and coherent states are constructed 
for them and the dynamical symmetry groups are found. 

1. The harmonic  osc i l la tor ,  being one of the few exact ly  solvable p rob lems  in nonrelat ivis t ic  quan- 
tum mechanics ,  has  been widely used in different  b ranches  of theore t ica l  physics  such as s ta t i s t ica l  
mechanics ,  superconduct ivi ty  theory,  nuclear  physics ,  and so for th.  The in teres t  in the harmonic  osc i l la tor  
was sharpened af ter  the appearance  of the quark models ,  by means  of which one can desc r ibe  the basic  
p rope r t i e s  of hadron s t ruc tu re .  The fur ther  development  of the quark models  led to the need to cons t ruc t  
re la t iv i s t ic  wave equations of composi te  pa r t i c les  and, in par t i cu la r ,  re la t iv i s t i c  models  of an harmonic  
osc i l la tor  [t-5].  

A cha rac t e r i s t i c  fea ture  of the harmonic  osc i l l a to r  is the p resence  of a c l a s s  of solutior~s in the fo rm 
of coherent  s ta tes .  The use of coherent  s ta tes  makes  it possible  to employ a persp icuous  c lass ica l  language 
to describe quantum phenomena, initially, coherent states were introduced for quantum systems with 
quadratic Hamiltonians. i.e.. for systems that can be represented in the form of a finite or infinite set of 
harmonic oscillators. Coherent states of quadratic systems are defined as eigenstates of non-Hermitian 
boson annihilation operators [6] and are Gaussian wave packets that minimize the uncertainty product of the 
coordinate and momentum and preserve their form with the passage of time. A definition of coherent states 
for arbitrary quantum systems as eigenfunctions of the integrals of the motion was proposed in [7]. 

The representation of coherent states has also proved to be convenient in the investigation of 
hadron interaction at high energies. For example, in [8] a study was made of a high-energy model in which 
the excited states of the colliding hadrons have a coherent nature, and in [9] the method of coherent states 
was used to obtain a factorization of dual amplitudes of a semimultiperipheral type. The problems that arise 
in a systematic formulation of the quantum field theory in the representation of coherent states was studied 
in [101. 

In the p resen t  paper ,  we study two exact ly  solvable one-dimensional  models  of a re la t iv is t ic  
osc i l l a to r  in the f r amework  of the quasipotent ial  approach in quantum field theory  [11, 12]. We cons t ruc t  
coherent  s ta tes  and find the dynamical  s y m m e t r y  groups for  these models .  

The ene-d imens ional  quasipotential  equation for  the wave function in the p represen ta t ion  in the case  
of equal m a s s e s  has the fo rm 
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