. 't Hooft, Nucl. Phys. B, 61, 455 (1973).

. A, Anikin and O, I, Zav'yalov, Teor. Mat. Fiz., 26, 162 (1976); 27, 425 (1976): S. A. Anikin,
. C. Polivanov, and O. 1. Zavialov, Fortschr. Phys., 25, 459 (1977).

21. 8. Mandelstam, Proc. R. Soc. London, Ser. A, 233, 248 (1955),

22. K. Symanzik, Prog., Theor. Phys., 20, 690 (1958).

19,
20.

11. Y. Frishman, Phys. Rep., 13C, 1 (1974).
12, V. N, Gribov and L, N, Lipatov, Yad. Fiz., 15, 781 (1972).
13, N. Christ, B, Hasslacher, and A. H. Mueller, Phys. Rev. D, 6, 3543 (1972),
14. N. N. Bogolyubov, V. S. Viadimirov, and A, N, Tavkhelidze, Teor. Mat. Fiz., 12, 1, 305 (1972).
15. R. Chisholm, Proc. Cambridge Philos. Soc., 48, 300 (1952).
16. A, V. Efremov and I. F. Ginzburg, Fortschr. Phys., 22, 575 (1974).
17. A, V. Efremov and A, V. Radyushkin, Teor. Mat. Fiz., 30, 168 (1977).
18, N. F. Ginzburg, A. V. Efremov, and V. G. Serbo, Yad. Fiz., 2, 451, 868 (1969),
G
s
M

EQUATIONS OF MOTION FOR PARTICLES OF ARBITRARY
SPIN INVARIANT UNDER THE GALILEO GROUP

A.G. Nikitin and V.I. Fushchich

Systems of differential equations of first and second order are derived that are invariant
under the Galileo group and describe the motion of a particle with arbitrary spin. These
equations admit a Lagrangian formulation and describe the dipole, spin—orbit, and Darwin
couplings of the particle to an external electromagnetic field; traditionally, these have
been regarded as purely relativistic effects. Examples are given of infinite-component
equations that are invariant under the Galileo group. The problem of the motion of a non-
relativistic particle with spin s = £ in a homogeneous magnetic field is solved exactly.

Introduction

Relativistic equations of motion for particles with arbitrary spin stimulate great and sustained
interest among physicists and mathematicians (see [1] and the literature quoted there). On the other hand,
remarkably little literature has been devoted to equations invariant under the Galileo group. But as early as
1954, Bargmann [2] showed that by means of the central extension of the Galileo group the concept of
particle spin ecan be introduced consistently in nonrelativistic quantum mechanics as well.

In [3,4], Galileo invariant differential equations of first order describing the motion of a nonrela-
tivistic particle of arbitrary spin were obtained. These equations describe the dipole interaction of a particle
with an external field bui do not take into account well-known physical effects such as the spin—orbit and
Darwin couplings.

In the present paper, using the method developed in [1, 5, 6] to derive Poincaré invariant equations,
we obtain Galileo invariant equations of motion for a particle with arbitrary spin s, these being capable of
describing the above couplings., This is achieved by an extension of the Galileo group G to the group G’,
which includes the transformation of simultaneous reflection of the coordinates and the time. The obtained
equations have the Schriédinger form

10V (t, x)[0t=H,(p) ¥ (t, x), p.=—10/0z, (0.1)

(where H_(p) is a differential operator of second order, and ¥ isa 2(2s + 1)-component wave function),
permit a Lagrangian formulation, and describe the dipole, spin—orbit, Darwin, and quadrupole couplings of
a particle of spin s to an external electromagnetic field, This means, in particular, that the listed interac-
tions, which are usually introduced as relativistic corrections, can be treated consistently in the framework
of nonrelativistic quantum mechaniecs.

In the paper, we also obtain Galileo invariant differential equations of first order describing the
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motion of a particle with arbitrary spin, After the minimal coupling p.—~p.—ed,, these equations also describe
the spin—orbit and Darwin couplings of the particle to a field. We also give an example of infinite-component
equations invariant under the Galileo group.

1. Basic Definitions and Formulation of the Problem

The Galileo group G is the set of transformations of the coordinates z. (=1, 2, 3) and the time t
of the form
Za—> 2’ =Rupwst Vol Fbe, 1t/ =8+by, 1.1)

where R, is an operator of a three-dimensional rotation, and V  and bu are arbitrary real parameters.

The representation of the group G is uniquely determined by specifying the explicit form of the

infinitesimal operators P, dJ, and G, corresponding to displacements, rotations, and Galilean boosts.

DEFINITION, We shall that Eq. (0.1) is invariant under the Galileo group if the Hamiltonian H_ = E,
and the generators P, J , G, satisfy the commutation relations

[P., P,]=0, [P, Ji]l=ica.P., (1.2a)

[Goy Go]1=0, [Ge, Js]l=teuwcCe, (1.2b)

[P, G, )=ibuM, [M,P,)=[M, I]=[M,G.]=0, (1.2¢)
[H,, P]=[H,, J.]=0, {1.2d)
[H,, G l=iP,, a,b=1,23 n=01,2,3. {1.2e)

The relations (1.2) define the Lie algebra of the Galileo group. The algebra (1.2) has three invariant
operators (Casimir operators):

2MC,=2MP,~P,P,, C,=M, Cy=(MJ.—2w.P,G.) (MI—e..P.G.). (1.8)

The eigenvalues of the operators Ci, C,, and C, are associated with the internal energy, spin, and mass of
the particle described by the invariant equation (0.1).

We shall solve the problem of finding all possible (up to equivalence) Galileo invariant equations of
the form (0, 1) in two approaches, which are in general inequivalent. In approach I, the problem is formu-
lated as follows: to find all Hamiltonians HIS such that the operators

JI=H,  Ple=p,=—i0/0x, J,=(xXp)atSs Gu=tp,—mz,tAS 1.4)

satisfy the Lie algebra of the extended Galileo group (1.2). Here

S, = (‘B“ 0 ), {a,b,¢) is cyclic perm, of (4,2,3); (1.5)
Se

s, are the generators of the irreducible representation D{s} of O{3}, m is the parameter which specifies

the particle mass, and xla are numerical matrices whose explicit form will be determined below.

Equations (1.4) define the general form of the generators of the Galileo group corresponding to the
local transformations of a 2(2s + 1)-component wave function on the transition to a new coordinate system
(1.1),

W (g, x) W' (¢, x')=explif(, x) 1D’ (R, v.) ¥ (2, X), (1.6)

where Ds(Rab, va) is a numerical matrix that depends on the transformation parameters (1.1), and f(¢, z)
is a phase factor [2]:
£, X) =mvRoxy " smUes. (1.7

We shall see below that the operators HL can always be chosen to make Eq. (0.1) also invariant under the
antiunitary transformation of reflection of the coordinates and the time:

Iy(tv X) —»rﬁ}f’(—t,—x), r12=17 (1.8)

where r, is a matrix,

In the approach I, the problem reduces to determining all possible differential operators HISI
such that the generators

PlU=HY PlM=p ——id0%s, Jo=(xXP)atSs G'=tpa—0smz, )" (1.9



satisfy the algebra (1.2). Here, o, is one of the Pauli matrices

G_(IO) _OI) ~_O—I) _(I O)
*“\o1/) "1—(10’ 02“‘(1 o) “T\o-1)

and T and 0 are (2s + 1)-row square unit and null matrices, respectively, and KIQI are certain operators
(in the general case they depend on p,) that we must also find. One can show that Egs. (1.9) give the general
form of the generators of G for which Eq, (0.1) is invariant under the unitary transformation ¥ (¢, x) —r,¥
(=1, =X}, 120,

We require that the generators (1.9) be Hermitian under the scalar product usually adopted in
quantum mechanics:

(w,, %):j &z W AW, 1.10)

An important difference between the representations (1.4) and (1.9) is that the generators HL and Gl
are non-Hermitian under (1,10) but are Hermitian in the Hilbert space with scalar product

(¥, ¥,)= jd% Y AW, (1.11)

where M is some positive-definite differential operator, or with respect to the indefinite metric when M in
{(1.11) is some numerieal positive-indefinite matrix. The explicit form of M will be found below. Thus, the
complication of the metric is the price that must be paid for the local transformations (1, 6) of the wave
function. The situation is the same for relativistic equations [1].

We require HlsI to satisfy the condition
(H M) 2= (m~+p*/2m)*, (1.12)
This is equivalent to the requirement that the internal energy of the particle be equal to its mass.
Thus, the problem of finding Galileo invariant equations of the form (0.1) reduces to the solution of

the system of relations (1.2) for the operators (1.4) and (1,9).

2. Explicit Form of the Hamiltonians HL

We give the solution to problem I in the form of a theorem.,

THEOREM 1, All possible {up to equivalence) Hamiltonians HIS satisfying together with the
generators {1.4) the commutation relations (1.2) and (1.4) are given by the formulas

1
Al =0mm—2inko,Sp+ 5 CaPePs, a,b=1,2,3, 2.1a)

m

2
Hl=cm+ ;m — 2k (6,—i0)S P, (2.1b)

where Co=8u—20k"(0:1i6,) (S.5,+5:5.), n, k, and 7 are arbitrary parameters.

Proof. We determine first the explicit form of the matrices AL in (1.4). From (1.2b), we obtain
for AL the equations
[7\«1], }\fbl] =0, [)Val, Sb] =i8abc?\4c17 [Sm, Sb] :igacho (2 . 2)

From (1.5} and (2.2) we conclude that, without loss of generality, the matrices 7\2 can be represented in the
form
ha'=k(0s+i6,) S, (2.3)

where k is an arbitrary coefficient.

We find the general form of the Hamiltonian HIS in the representation in which x, = 0. The transi-
tion to such a representation is made by means of the operator [7]

V=exp (iA1-p/m) =1+iM -p/m. 2.4
Using (2.4), we obtain
(HNY'=VHIV-, (P]Y=VP V'=p, I/ =VIV-'=l, (G})'=VGV=tp,—maz. (2.5)
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. From (2.5) and (1.2) we conclude that the general form of the operator (HIS)’ is given by the
formula
(HY) =p*/2m+A, A=qc,a'm, (2.6}

where a. are arbitrary coefficients and, without loss of generality, we can set ,=0.

We can show that by means of transformations that do not change the general form of Afl (2.3) the
matrix A (2,6) can be reduced to one of the forms

A=cym or A=cmm. 2.7

Substituting (2.7) in (2.6) and using the inverse of the transformation (2.5), we arrive at Eqgs. (2.1).
This proves the theorem.

Equations (2.1) define nonrelativistic Hamiltonians for particles with arbitrary spin. In the case
s=/,, k=—i,n=1, Eq.(0.1), 2.1a) can be written in the compact form

(Y —m) ¥ = (1+yi—y,) — W, (2.8)
2m

where Yo=0;, Yo=—2i0.5, Y. =i{o71127s are Dirac matrices.

Note that all the Hamiltonians (2.1) belong to the class of second-order differential operators, which
was not required a priori. In the framework of the Poincaré group, the Hamiltonians of particles with
arbitrary spin are, as a rule, integro-differential operators [1, 5].

The parameters k, n, and % can always be chosen to make Eqgs. (0.1) and (2.1) invariant under the
antiunitary operation (1.8) of reflection of the coordinates and the time. A necessary and sufficient condition
of such invariance is the simultaneous fulfillment of the relations

nWF==n, k*==k or ﬁxzﬁq fe¥ =P, 2.9

A" 0

where r,=0,A, if n¢=—n, k*=—Ff or qr=n, k¥=k, r=A, if n*=n, k¥=k A= ( 0 A’

), where A are matrices
defined up to the phase by the relations [8]
Nlsi=—s A, (A)=(—1)",

Thus, under the restrictions on the parameters 7, 7, and k imposed by Egs. (2.9), Egs. (0.1) and
{2.1) are invariant under the extended Galileo group including the transformations (1.8).

The Hamiltonians (2.1) and the operators (1.4) and (2.3) are non-Hermitian in the scalar product
(1.10). However, these operators are Hermitian in the metric (1.11), where M is a positive-definite
operator:
M= (V- V=14 [i(k—k*) 05— (k+E*) 0,18 p/m-+ 2 (k*k) (1+0,) (S-p)*/me. 2.10)

In addition, if %, k, and % satisfy the conditions (2.9), the Hamiltonians (2.1) are Hermitian in an
indefinite metric of the form (1.11), when

M == {63’ iow'=n, K=k, q=-7, 2.11)
o, if n=-—n, k'=—Fk, §'=—1.
If (2.11) is satisfied, Eqs. (0.1) and (2.1) can be obtained by means of a variational principle. The
corresponding Lagrangians have the form

L(t7x)=i(@ﬂ_—ﬁiw) — o To, W — nk(‘?ci&z or —ﬂciSa‘\F> NPk (2.12a)
2 ot at 2 Oz, 2m dz. dxy
when HL is given by Eq. (2.1a), and
L(t,x =—;—{‘T’—0—(;~f—‘—%—‘{f—2iﬁm¢’ml}’ + Zﬁk[‘T’(oz'—icg)Sa%—%j—n (02— i0s) SaW ]}_% ‘;j ‘;‘;’ . @.12b)
if the Hamiltonian has the form (2.1b). Here W =WiE.
The Lagrangians (2.12) are scalars under the transformations (1.1) and (1.6), where
D (Ra, Vo) =(1+iA"-v)D*(Ra), (2.13)

and DS(R ) are matrices that realize the direct sum D(s)®D(s) of two irreducible representations of SO(3).
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3. Explicit Form of the Hamiltonians HLI

We solve problem II, i.e., we find differential operators that satisfy together with (1.9) the
relations (1.2) and (1.12).

THECREM 2. All possible (up to equivalence transformations) differential operators HISI that are

Hermitian in the metric (1.10) and satisfy the conditions (1.2), (1.9}, and (1.12) are given by the formulas

(SaSb'FSbSa.) papb Si
2mS®

2 Sp
H.=g, [m+5])~—_ " es] + 0. V2sin 0, + 0, [ p +-——— (8.8,+8,8. )pap,,] (3.1)
m

2m  4m
where
ay=sin 20y, by=0, a,=1, b;=sin26,, ay=by >/, sin 205,=—"/s sin 26,,—°/, sin 8, (1—"/, sin® 6;,) *,
a,;=b,=0,=0, s>°/,,
and 6y, 0, 65, are arbitrary real parameters,

Proof. We show first that the operators HII can include derivatives of not higher than second order.
Indeed, suppose A= ZH” where H, contains derivatives of only i-th order; then from (1.12), we obtain

Hyll y=H*Hy=0 or Hy=0, if N>2. (3.2)

We represent the required differential operators HISI in the form of an expansion with respect to
the spin matrices and 2(2s + 1)=row Pauli matrices (1.9):

3
2 S-p)?
”=Z[d”Serbps-%-f—ch-p—l—dps (275) ]ou, (3.3)
where q,, b, ¢, d° are arbitrary real coefficients. Using the orthogonal projection operators [1, 5]
(Sp)pt—r Py
A = H PP o orr=—s,—st1, ..., 8 AvAr=6,, ZA’:‘» y rzAT=(S_p)
e r—r’ : P P !

we can rewrite HLI in the form

3 5 9
_ Z Z [a,ﬁm + (b;+r2d;)_2?i_ + rpc;] 6. A (3.4)
m

p=0 r=—s

The operators (3.4) obviously satisfy the conditions (1.2d) and (1.10). We require that (1.12) hold.
Substituting (3.4) in (1.12), using the orthogonality of the operators A, and equating the independent terms,
we find that g, b°, ¢, d° must satisfy one of the system of equations

3 3 3 3 3
Z (a) =0, Z [FPley2+as (b +rdys) [=1, Z ref (b +rtdf) =0, Z‘ resfa; =0, Z‘ (b+r2d;f) =1,

1meg ot i—t Y i—1 (3.5

a’=b =d =c,*=0
or
avos=ng:1, dos=cos:dis:bis'zcis:dfs:()’ i=17 21 3. (3' 6)

The general solution of Eqe. (3.5) and (3.4) (up to equivalence transformations realized by numerical matrices)
is also given by Egs.(3.1). One can show that the solution (3.6) is incompatible with (1,2a), (1.2b), and
(1.2e),

To complete the proof of the theorem, it is now sufficient to indicate the explicit form of the
operators ALl for which the operators (1.8) satisfy Eqs. (1.2b) and (1.2e). It is easy to show that ALl can
be chosen in the form
A=, 052, )0, (8.7
where

Us=(E+o,H,") /| V2E(E+Y,H 0, +"7,0,HT), E=m+p*/ 2m, {3.8)
is the operator that diagonalizes the Hamiltonian (3.1) and the generators (1.8):

UtHMU=¢g,E, UG, U=tp,—0cymz,. (3.9
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The theorem is proved.

In the case 0,=n/4, Eq.(0.1), (8.1a) takes a particularly simple form (cf. Eq. 2.8)):

2

(yupt+m) =iy, é)m v, (3.10)

Equation (3.10) differs from the relativistic Dirac equation only by the presence of the term on the right-hand
side, which obviously destroys the invariance under the Poincaré group but preserves the invariance under
the Galileo group.

4, Nonrelativistic Particle in an

External Electromagnetic Field

To go over to the description of the motion of a charged particle in an external electromagnetic field,
we make in Eq. (0.1) the usual substitution

Pur=pu—ed,, 4.1

where Ap is the four-vector potential of the external field, We then arrive at the equations

P
iﬁqf(t, z)=H ", A) ¥ (t,z), oa=I,1I, 4.2)

where H2(n, 4,) is one of the Hamiltonians obtained from (2.1) and 3.1) by the substitution (4.1):

2 2

k
H (m, 4) = onm + g— — 2inko,S-wted, — (03+i02)im—[ (S)° + ,eS H], (4.3a)
n

nZ

HY(w, 4)=aqm+ T 20k (6,—ic:) S -m+ed,, (4.3b)
m

mt (S-@)* | S -H
sin® B,—e 7

2 (Sm)? SH —S.
sinzﬁs]-f-ci[asi%—b,( ) +ebs———]+02V2-——n—sines+er, (4.3¢)
2m 2ms? 4mst K

H (n, Ay) =0, [m +

2

2m ms ms®

In (4.3) Ho=—iga.mn. is the magnetic field intensity.

Equations (4.2} and (4.3) are obviously invariant under gauge transformations. In addition, as they
were before the introduction of the interaction, Egs. (4.3) with the Hamiltonians (4,3a) and (4.3b) are invariant
under transformations in the Galileo group (1.6), (2.13), if the vector potential transforms in accordance
with the law [3]

A= A)=R, A, A;—~A/=A, v, 4.4)

It is convenient to analyze Egs. (4.2) in the representation in which the operators (4.3) are quasi-
diagonal (i.e., commute with one of the ¢ matrices}). As in the case of the Dirac equation, the Hamiltonians
{4.3) can be diagonalized only approximately. Below, we implement such a diagonalization and represent
the Hamiltonian of a particle with arbitrary spin in the form of a series in powers of 1/m, which is convenient
for calculations in perturbation theory.

Diagonalization of the Hamiltonians (4.3) up to terms of order 1/m’ is implemented by means of
the operators

1 dB~ , ~
“= exp (1o g ) exp (B.) exp (14.5), @=L 11, V'=exp (iC.) exp (B.7) exp (iA.2), (4.5)
nemo
where
S. ¥2sin#, E (1
A= ok 22 A=, 22 g =y, =1, BGI=01-——,~{—[S<a,n2]+ik[2(S-n)2+eS-H]+—e—S»E},
2ms 2m* \2n 7

B 2tk
Cr= OZ—m—B{—%-(S-n)S-Hek[Sﬂ, S-HI, +[ (S-)?, eds] }

b, Y2sin 6,
BSIIzdzz—T{asn2+ : Z[Z(S-n)2+eS-H]+i——SI—n—-—-S-E},
m* s s
1 [ V2sin6, esin? 6, 2 sin® 6, jeb,
Cl'=0i—— {“—»— [S-n, m— 220 S'H] - ﬂ—zﬂ‘—(Sa)Lieas[ﬂz,Ao]—L[(Sﬂ)sz“]}’
8m s st N s® st
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ik i 0B
2(02—i0'3)S'E» Cl=— s (Gz"‘iﬁa) [nz’ Sﬂ]_";_‘ .
2am 4nm? 2nm 9t

S
Z,’=—ik(02—i03)7, Bl=

By direct calculation, we obtain

2
CH= (o, A0) 1V =VEHLE (0, Ag) (V9= = A®m+B* (’2’ + eAa) +
m

cseC“g—H—-i" ¢ D"‘S-(nXE~EXJ‘r)+‘-€——-F°‘s(s+1)diVE+
m 4m? 6m?
E. @ L aH, 1
b e, 2B S (axH—HX) + 2 O +0(——3~),
12m* Oz m? m* 0xs m
4.6
. - w’ 1
8.}, 40) ) =P, A3) (P) =0y + o+ edoto( ).
2m m?
where
A=gm, B'=1, C'=—nk?, —D'=F'=G'=k, nl=—3L1=nk (4.7a)
e B
> 28 9 S o4sr )’ 24s*
s u 4.0

Qab: (6/2) {3[Saa Sb]+"“26ab3(3+1)}.

The operators {4.6) and (4.7) contain terms corresponding to dipole (~S.-H), spin—-orbit (~S- (xX
E—EXn)}, guadrupole (~Qu0F./8z;), and Darwin (~divE) couplings of the particle to the field. The last two
terms in @.6) and 4.7) can be interpreted as the magnetic spin—orbit and magnetic quadrupole couplings.
"The approximate Hamiltonians obtained from relativistic equations [5, 6] have a similar structure. In the
case s=/,, n=1, k2=—1, 8,=n/4, the first seven terms in (4, 6) and (4.7) are identical with the Foldy—
Wouthuysen Hamiltonian (9] obtained by diagonalizing the Dirac equation. Thus, in the l/m2 approximation
the nonrelativistic equations (4.2), (4.6), and (4.7) describe the motion of a particle with spin s = % in an
external electromagnetic field with the same accuracy as the relativistic Dirac equation.

Note that for some classes of external fields Eqgs. 4,2) can be solved exactly, We give without
proof the eigenvalues of the Hamiltonian (4.3b) for a particle with spin interacting with a constant homogeneous
magnetic field [10]:
H‘/;H (ﬁ, AO) ¥ ssmm:Eesanpaqr esanpsy
(§2+332)2+(6H3
4m?
where g2=(2n+1)eH,, H,=H,=0,n=0,1,2,..., e==*1, s;==",.

(E*+p,")* ]‘/2}”2 ’

¢ H
) +e i) [mZ cos® 20, +E* + .
m m

Essa'nm:e { m2+§2+p32 +
2m

5, First-Order Equations

We consider briefly the problem of describing Galileo invariant differential equations of the form
F¥=0, F=p,p"+Bsm, p.=—1i0/0z,, (6,1)
where B, §; are numerical matrices,
By definition, Eq. (5.1} is invariant under the Galileo group if
[F, Qul=1.F, A=1,2,...,10, (5.2)

where Q, is an arbitrary generator of the group G: {Q.)= {P,, P., Go, 1.}, and [s are certain operators
defined on the set of solutions of Eqg. (5.1).

Setting f,=0 and choosing the generators P, /i, G. in the form (1.4), where S, and A, are arbitrary
matrices (which corresponds to local Galileo transformations (1.6) for the function ¥), we obtain from (5.2)
the following system of commutation relations for the matrices B, Bs, Ae, Sa:

[Sa, BE:‘:[SM ﬁO]:‘Ov [Sa-; Bb] zisa.baﬁcy [7\1117 Bﬁ]zipm [7\«1: 6b]:i625501 [7""7 BDK]ZO’ (5'3)
where A, and §, are matrices satisfying Egs. (2.2),

Thus, the problem of describing Galileo invariant equations of the form (5,1) reduces in our formu-
lation to finding matrices S, ., B, B, satisfying the conditions (2.2) and (5.3).
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We give a special solution of the system (2.2), (5.3), which makes it possible to obtain equations of
the form (5.1) for nonrelativistic particles of arbitrary spin. We denote by S,, &, =1, 2, 3, 4, 5, 6, the
generators of the irreducible representation of the group SO(6). Then the matrices

Sa=1/23achbca }\fazl/z(iSSa"E_Ssa), a=1, 2, 3, Ba=25m, ﬁD=i54s+S45, B5=2(l+iS;s“‘S45) (5.4:)
satisfy the commutation relations (2.2) and (5.3), i.e., Eqgs. (5.4) solve the posed problem.

Setting in (5.1), (5.4) Su=(i/4) [1x, Y1, Se='/2Y:, Where vy, are Hermitian four-row Dirac matrices,
we obtain an equation equivalent to Levi-Leblond’s equation [3] for a particle with spin s =%. Choosing other
representations of the Lie algebra of the group SO(6), we obtain from (5,1) and (5.4) equations for particles
with other values of the spin.

Equations (5.1) and (5.4), like the second-order equations considered earlier, make it possible to
describe the spin—orbit interaction of the particle with an external field., For example, setting Sy—i[Bu, Bl
Ss;FBk, where Bk are the ten-row Kemmer-Duffin matrices (which can be chosen, for example, in the form
given in the monograph [12}), and making in (5.1) the substitution p,~>mn, where m.=p.,, m,=p,—ed,, we obtain
after simple but somewhat lengthy calculations an equation for the three-component wave function ¥® :

2
i Lo gt edbe S (5.5)
at 2m 4m

where S, are spin matrices for s = 1. By means of the transformation H — H = VHV'I, where V =
exp(iS-7/m), the Hamiltonian (5,5) can be reduced to a form analogous to (4.6),

n’ 1 1 dF, 4 1
H=—_+ed ————[s- - e Qoo — — - di E]+ (—) (5.6)
v ed, o (nXE—EXm) 3 Qus Fe 3 div 0 —

The operator (5.6), like (4.6) and (4.7), contains terms describing the Darwin, spin-orbit, and
quadrupole couplings of the particle to the external electric field.

6. Concluding Remarks

1. We have obtained systems of differential equations of first and second order which are invariant
under Galileo transformations and gauge transformations and describe dipole, quadrupole, spin—orbit, and
Darwin couplings of particles of arbitrary spin to an external electromagnetic field. Thus, these interactions
are not purely relativistic effects and can be treated consistently in the framework of nonrelativistic quantum
mechanics (see also [10, 11]).

2. Equations (2.8) and (3.10) have a structure such that their left-hand side is identical to the
relativistic Dirac equation, while the right-hand side contains terms which destroyed a symmeiry under the
Poincaré group and ensure invariance of the equation under the Galileo group. Such a method of destroying
the Poincaré symmefry is one of the possible approaches for obtaining Galileo invariant equations of motion
for particles with arbitrary spin. Thus, proceeding from the relativistic equations without redundant com-
ponents given in [1, 6] we can, adding terms that destroy the Poincaré invariance but preserve the symmetry
under the group E(3), obtain Egs. (1.2) and (2.1a).

?

3. Equations of the form (0.1) and (5.1} do not, of course, exhaust all possible linear differential
equations that are invariant under the Galileo group. For example, to describe the motion of a nonrelativistic
particle with spin s = 1 one can use the Galileo invariant analog of the Proca equations

(2mpo——p2) 1{’1:0, 'VZO, 1, 2, 3, ml}’a*—p.ﬂ’a=0, £l=1, 2, 3.

4., The non-Hermiticity of the generators (1.4) with respect to the usual scalar product (1.10) is
due to the non-Hermiticity of the finite-dimensional representations of the algebra (2.2) (which is isomorphic
to the Lie algebra of the Euclidean group E(3)). A similar situation obtains in relativistic theory, in which
nonunitary representations of the homogeneous Lorentz group are always realized on the solutions of equations
of motion that are finite dimensional with respect to the spin indices, the requirement of unitarity of such
representations leading to infinite~component equations, It is therefore of interest to consider infinite-
component equations invariant under the Galileo group. We give an example of such equations.

We denote by S, (4, v=0, 1, 2, 3, 4, 5) the generators of the unitary infinite-dimensional representation
of the group O(1, 5). Then an equation in the form of (5,1}, (5.4), where S,=S8. (k, I=1, 2, 3, 4, 5), Sux=1Su,
is invariant under the Galileo group.
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QUASIPOTENTIAL MODELS OF A RELATIVISTIC OSCILLATOR

N.M. Atakishiev, R.M. Mir-Kasimov,
and Sh.M. Nagiev

Two exactly solvable one-dimensional models of a relativistic oscillator are investigated
in the quasipotential approach in quantum field theory, and coherent states are constructed
for them and the dynamical symmetry groups are found.

1. The harmonic oscillator, being one of the few exactly solvable problems in nonrelativistic quan-
tum mechanics, has been widely used in different branches of theoretical physics such as statistical
mechanics, superconductivity theory, nuclear physics, and so forth, The interest in the harmonic oscillator
was sharpened after the appearance of the quark models, by means of which one can describe the basic
properties of hadron structure. The further development of the quark models led to the need to construct
relativistic wave equations of composite particles and, in particular, relativistic models of an harmonic
oscillator [1-5].

A characteristic feature of the harmonic oscillator is the presence of a class of solutions in the form
of coherent states. The use of coherent states makes it possible to employ a perspicuous classical language
to describe quantum phenomena, Initially, coherent states were introduced for quantum systems with
quadratic Hamiltoniang, i.e., for systems that can be represented in the form of a finite or infinite set of
harmonic oscillators, Coherent states of quadratic systems are defined as eigenstates of non-Hermitian
boson annihilation operators [6] and are Gaussian wave packets that minimize the uncertainty product of the
coordinate and momentum and preserve their form with the passage of time. A definition of coherent states
for arbitrary quantum systems as eigenfunctions of the integrals of the motion was proposed in [7].

The representation of coherent states has also proved to be convenient in the investigation of
hadron interaction at -high energies. For example, in [8] a study was made of a high-energy model in which
the excited states of the colliding hadrong have a coherent nature, and in [9] the method of coherent states
was used to obtain a factorization of dual amplitudes of a semimultiperipheral type. The problems that arise
in a gystematic formulation of the quantum field theory in the representation of coherent states was studied
in [10].

In the present paper, we study two exactly solvable one-dimensional models of a relativistic
oscillator in the framework of the quasipotential approach in quantum field theory [11,12]. We construct
coherent gtates and find the dynamical symmetry groups for these models.

The cne~dimensional quasipotential equation for the wave function in the p representation in the case
of equal masses has the form
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