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A complete set of symmetry operators of arbitrary finite order admitted by the 
Dirac equation is found. The algebraic structure of this set is investigated 
and subsets of symmetry operators that form bases of Lie algebras and superal- 
gebras are isolated. 

i. Introduction. It is well known that for many equations of mathematical physics 
there exist integrals of motion and symmetry operators that in principle cannot: be found in 
the framework of classical group analysis [i]. Indeed, in the classical infinitesimal ap- 
proach of Lie, the investigation of the symmetries of a differential equation reduces to 
finding the generators of its invariance group, which are first-order differential operators 
in the dependent and independent variables [2]. This leaves outside the symmetry operators 
(SO) of higher orders, which belong to classes of differential operators of order n > !. 

SO of higher orders carry information on the hidden symmetry of the equation, among 
them, the symmetries of Lie-Backlund type [3] and the supersymmetries [4, 5]. One of the 
most important applications of such operators is the description of systems of coordinates 
in which the equation under study admits solutions in separable variables~ 

In the works [8, 9] a set of SO of arbitrary order n was obtained for a scalar wave 
equation (the Klein-Gordon-Fock (KGF) equation). This result opens new possibilities in the 
study of SO of wave equations for fields with spin - the equations of Dirac, Kemmer-Duffin- 
Petiau, and others. 

The present work is devoted to the investigation of higher-order SO admitted by relat- 
ivistic wave equations. Our main result is exhibiting in explicit form a complete set of 
SO of arbitrary finite order for the Dirac equation. We also investigate the algebraic 
properties of this set and we find new superalgebras of hidden symmetries of the Dirac equa- 
tion. 

2. Symmetry Operator of the KGF Equation. Let us write the KGF equation for a complex 
scaler function qr(x), x = (.%, vl .... h, x~), ~ir~ L2(R4) in the form 

L q' O, ( 1 ) 

where L is the linear differential operator given by 

d 
L=p~pt~--x "~. p , ~ = i  u .... 0 , 1 , 2 , 3 .  ( 2 )  

Let F 0 denote the solution set of Eq. (i) (the null-space of the operator (2)), i.e., 

~rE Fo: ~F C L~(R.,), L~F = O. 

Definition. A linear differential operator of order n is called a SO (of order n) of 
the KGF equation if 

[ Q , L ] q r = O ,  ~F~cF o. (3 )  

Well known examples of SO of the KGF equation are the generators of the Poincare group 

;g =p,, ) =xp,,-x,p,. (4) 

Institute of Mathematics, Academy of Sciences of the Ukraine, Kiev. Translated 
from Ukrainskii Matematicheskii Zhurnal, Vol. 43, No. i0, pp. 1388-1398, October, 1991. 
Original article submitted March 27, 1991. 

0041-5995/91/4310-1287512.50 �9 1992 Plenum Publishing Corporation 1287 



A SO of arbitrary finite order j 2 n can be represented in the form [8, 9j 

a l % . , . a  j Q(J) = [[... [ F , paa]+,'p%] + . . . .  1.,  pail +, ( 5 )  

where [A,B]+ = AB+BAandFaza2--'aj are symmetric tensors of rank j. Condition (3) for the 
operators (2), (5) reduces to the following equations for the coefficients of the SO: 

Fa~ ~,'''"/) ( 6 [9 (a i+!  ~ ~ O, 

where symmetrization with respect to the indices closed in braces is understood. 

In [8, 9] the general solution of Eqs. (6) was obtained and the explicit form of the 
corresponding SO was found. The number of linearly independent SO of order n is 

1 (n + 1)(n + 2)(2n + 3)(n 2 + 3n + 4), (7 N ~ I =  4-'-]-" 

and the total number of SO of orders j 5 n is given by the formula 

'V~'~ = 72 ~tz -+- l ) ( n  _L 2)~(t - 3 ) (n  ~ -+- 4n --p 6). (8 

Any SO of order n can be represented in the form [8] 

d~,~ <;, ~'~% .... ~"~+,~',~'"~'.+,,-~J i~ ~ P,,~)~+,~, L.~. ~. (9) 
c=0 

Here p,, Jab are the generators (4), and %=1% .... cl,~+W:~L..[a~o ..... ] are arbitrary parameters 

satisfying the following conditions: 

I) Symmetry and tracelessness with respect to the indices a l, a 2, ..., ac; 

2) Symmetry under permutations of the pairs of indices l<.-]~,I and [~,.:~ Ibl; !, / = I, 

3) antisymmetry under the permutation of the indices ac+ i and bi; 

4) the contraction with respect to any triplet of indices with the completely anti- 

symmetric tensor ~,,v,,~ is equal to zero. 

The tensors %a~... with the properties i)-4) will be referred to the basic tensors. 

These tensors are irreducible, since, generally speaking, they fiave a nonzero trace with res- 
pect to any pair of indices (a~, at,) if ~ > c and (or) ~' > c. The general expression of 
a SO of arbitrary order n for the KGF equation which contains only irreducible parameters 
can be derived from (9) bv decomposing the basis tensors into irreducible ones. Correspond- 

ing rather cumbersome formulas are given in [8, 9]. 

Thus, all SO of an arbitrary order n of the KGF equation are polynomials of order n 
in the generators of the Poincare group (4), which can be expressed in the form (9). 

3. General Form of a SO of Order n for the Dirac Equation~ The Dirac equation, too, 
can be written in the form (i), where P is a four-component bispinor and L is the following 
first-order linear differential operator with matrix coefficients: 

L .,,,~ ( lo)  

where u are numerical matrices of size 4 • 4 which obey the Clifford algebra rules 

(ii) 

As the formal definition of an SO of order n admitted by the Dirac equation one can 
take relation (3), where F 0 denotes the null-space of the operator (10),qr~ Fn:q~6 L2(R4), 

s = 0(Nr~, a : 1,2,3,4 are the components of the bispinor ~). Here one assumes that the 
coefficients of the SO are matrices of dimension 4 • 4 which, generally speaking, depend on 

X. 

Well-known SO for the Dirac equation are the generators of the Poincare group 
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P~ = P.'  Ju~ = x ~ p . - -  x~p~ + S ~' 
(12) 

where 

i 
Su~ = -$ Iv., v3. (13) 

R e f e r e n c e s  [4,  6, 10] g i v e  a d e s c r i p t i o n  o f  a c o m p l e t e  s e t  o f  SO f o r  t h e  D i r a c  e q u a t i o n s  
in  c l a s s e s  o f  f i r s t -  and s e c o n d - o r d e r  d i f f e r e n t i a l  o p e r a t o r s  w i t h  m a t r i x  c o e f f i c i e n t s .  The 
p r o b l e m  o f  d e s c r i b i n g  such  o p e r a t o r s  i s  c o n n e c t e d  w i t h  t h a t  o f  s o l v i n g  a v e r y  t e d i o u s  s y s t e m  
o f  d e f i n i n g  e q u a t i o n s  f o r  t h e  c o e f f i c i e n t  f u n c t i o n s  [ 1 0 ] .  

Below we g i v e  a s i m p l e  p r o o f  o f  t h e  f a c t  t h a t  a l l  SO o f  a r b i t r a r y  o r d e r  n f o r  t h e  D i r a c  
e q u a t i o n  a r e  p o l y n o m i a l s  in  t h e  g e n e r a t o r s  ( 1 2 ) ,  and we f i n d  t h e  e x p l i c i t  f o rm o f  a l l  l i n e a r l y  
i n d e p e n d e n t  SO. The b a s i c  i d e a  o f  t h e  p r o o f  i s  t o  e x p l o i t  t h e  f a c t  t h a t  t h e  s o l u t i o n s  o f  t h e  
D i r a c  e q u a t i o n  s a t i s f y  t h e  KGF e q u a t i o n  c o m p o n e n t w i s e ,  and c o n s e q u e n t l y  t h e  SO f o r  t h e  D i r a c  
e q u a t i o n  mus t  a l s o  be SO f o r  t h e  e q u a t i o n  ( 1 ) ,  ( 2 ) .  

L e t  us s u b j e c t  t h e  b i s p i n o r  $ and t h e  o p e r a t o r  (10)  t o  t h e  i n v e r t i b l e  t r a n s f o r m a t i o n  

~ r - - + W : :  ~ '+~ ,  k - - + f / =  Z ' I~LW7 ~, (14)  

where 

W+_ = e• -- -~7 PTkyupu.) ~ 1 .... m 7"Pu' 

11~'g I = I --  I 1 (I ~- iTj, 3'.~ = i'?o'hg~g.~. i1-7 P~'"P" '  P~ : 7 ' 

(15) 

As a result, using relations (ii), we arrive at the equivalent equation 

L'Y r' = O, L'-----P:m-I P_ (P*'I)~-- m~), 16 

which due to the orthogonality of the projectors P+ and P_ splits into uncoupled subsystems 

(p~*&,  - -  m e) tF_. = 0 ,  

~.F_=O, lit• = p ~ q r ' .  

i7 

18 

The matrix ix4 can be taken diagonal with no loss of generality. Then ~r will have only 
two nonzero components. 

With each SO Q of the Dirac equation one can associate, in a one-to-one manner, an SO 
Q' of Eq. (16): 

Q, = l~+O~a:% ~, Q = W_7~Q'W+, (19) 

where W+ is the operator (15 It is convenient to decompose the operator Q', defined on the 
set of functions P' with two nonzero components, into a complete set of matrices oP: 

] 
Q' = ~Q~, ~ = ~.b~ s~, ~o = 7 %~~ (20) 

f Here Sbc are the matrices (13), b, c = i, 2, 3. Then Q~ must be an SO of the KGF equation 

for a scalar function; a complete set of such operators was described in the preceding sec- 
tion. 

! 

Let Qg be an SO of an arbitrary fixed order n for the Eqs. (i), (2). Then, by (8), (9), 
they depend polynomially on Pu, J~, (4), or on P~,J~v--S~ where Pu, Juv are the genera- 

tors (12). But on the set of solutions of Eq. (16) the matrices S,, are expressible through 
P~ and J~v [I, 4]: 

l 
2S~v ~r' - ( P ~ v  - P  ~ 6- i~,poW~'P~) T ' ,  (21)  hi2 ' ' " v ~ t  
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where 

1 vO o 
Wu = -~  e u v o J  P (22)  

is the Lyubanskii-Pauli vector. From this we conclude that the SO are polynomials in the 
generators (12). 

The operator W+ (15) obviously commutes with the operators Pp, Jpv (12), and hence (19) 
implies Q' = Q, i.e., all SO of arbitrary finite order n for the Dirac equation are poly- 
nomials in the generators of the Poincare group. 

One should remark that in the general case the membership of all SO of arbitrary order 
to the enveloping algebra generated by the generators of the symmetry group of the equation 
under study is by no means necessary. In particular, for the massless Dirac equation there 
exist first-order SO that do no belong to the relevant algebra [4]. 

4. Algebraic Properties of the SO of First Order. In the description of SO of an 
arbitrary order n a key role is played by the case n = I, considered below. According to 
what we proved in the preceding section, a complete set of corresponding SO can be obtained 
by a direct sorting out of polynomials in the operators Pp and Juv; moreover, as we shall 
see below, it suffices to restrict the considerations to polynomials of degree n ! 3. This 
leads to the known [4, 6] 26 linearly independent SO, including the generators Pp, Jpv 
the identity operator I, and the following 15 operators: 

l i 

W~ ----- -~. ?4 (P~ - -  rn?u), W .  = -~- ?4 (?uP,. -- Y,,Pu), 23) 

i 1 
B = iT4 (D - -  nzy'x ). A N = "~  ?4s~v~oJ'"'T ~ q- ~ -  y~. 2 4 )  

3 .  
where  D = x U p . - 4 - T ~ .  

SO o f  h i g h e r  o r d e r s  a r e  e x p r e s s i b l e  t h r o u g h  p r o d u c t s  o f  o p e r a t o r s  ( 1 2 ) .  ( 2 3 ) ,  ( 2 4 ) .  
wh ich  j u s t i f i e s  t h e  i n t e r e s t  in  s t u d y i n g  t h e  a l g e b r a i c  p r o p e r t i e s  o f  t h i s  s e t .  I t  t u r n s  
ou t  t h a t  t h e  o p e r a t o r s  ( 1 2 ) ,  ( 2 3 ) ,  (24)  i n c l u d e  s u b s e t s  t h a t  fo rm b a s e s  o f  L i e  a l g e b r a s  and 
s u p e r a l g e b r a s ,  

A direct computation yields the commutation relations 

[P~,, P..] = 0. IPu. 7. o] = i (gu, Po - -  g~,oP~). 

[Juv. 7xo] = i (g~oJ~.x q- gvxJ~ - -  g u J v o  - -  gvoJ~); ( 25 ) 

[P~, W v] = 0, [P~, Wox] = 0, [ W ,  $vo] = i (gu~Wo-  guoWv). 

(g,c , , p  4 -  gvo Wuo - -  g~.oW,,o - -  g,.oWuo); [J~,,,, Woo j = i W 

i i 
[Wu, W,.] = V ~'~~,~ W~176 [W. .  B] -= 5-  P .  § imAm. 

- - ( 2 6 )  

[W , A.]  --~ iguvB -F i[d x, W~,]+, 

[W> W',~] = -~ (~'o.~.I,.PI,-- e w~kP o) II , 

i J-- 1 ,, } [&,, { 7 ~'~~ - -  (&~176 - -  g.oPz) B -~- IW~, Jxo]+. ' 

�9 x,p rJ [A,.B! = l~u,ooJ A , 

[A,, A.,] - - -  id.,. + is..~o~ (f'~ - -  Wf'~), ( 2 7 )  
i p 

[W,,,, B] = ~- ([ ~, A,]+ -- [P,., AuL_), 

[ P , B ]  = 2iW . IP u, A,,] = 2iWu... 

i p 
IW. . . .  Woo] = --ff (e..,,~,l~ o ,6  e;oo.,.~ P .  - -  s~.,~,kP,. - -  % o u f u  llg~" 

12), 
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Relations (25) define the Lie algebra of the Poincare group AP(I, 3), a basis of which 
is provided by the generators (12). The remaining SO of first order, given by formulas (23), 
(24), do not form a Lie algebra. However, one can indicate a subset of the SO (23), (24) 
which constitutes a basis of a Lie algebra. Such a set is provided by the operators 

~ -  • ~"" + T .,~o l' (28) 

which satisfy the following commutation relations on the solution set of the Dirac equation 
\~-4- = = ~  , (in (28) we take the sign + for definiteness, and we denote -uv -~v). 

% o l - - -  I - . . . , J . ~ ] = ~ i ( g . o Z  4 - -  v --Y ~" --fr X ~), 

[Z~v, P~.} = O. 

We see that the extension of the class of SO allows one to discover a wider invariance 
algebra of the Dirac equation than the well-known Lie algebra of the Poincare group. The 
16-dimensional algebra spanned by the basis (12), (28) includes the algebra AP(I,3) as a 
subalgebra [4]. 

The operators (12), (23), (24) include subsets that possess a structure of Lie super- 
algebra. To isolate such sets let us calculate anti-commutation relations (which will also 
be used for a constructive description of independent SO of the Dirac equation). We have 

[g"~,, WvI_~ = ? (P~P,,- m~g~,v), 

I 
[ IV. .  W,oL : ~11~ ~ [ g .oh  - g .  Po). 

i 
[W~.., We;o] ~ = ~ -  (g~,,P P., -i ~,,,,~ P,,P,, - -  g,,,,P. P,, - -  g..,P,,P~).. 

1 
I t~,"~, O I+ 2 [2~,., D" 

[IF u, A..] ._ = m , , . . . . . .  
, 2 % " ~ J  - - ~ a ; ~ . , ,  ( 2 9 )  

] 
: * c, ~ 7 0 G  [~"u~, B]~ = --mJ.- -'4- ' .v.o ' 

1 [Ao, r, . , h  = 3-  b"~ - -  %.~-~'P~') y"' + g o ) , ~ : " -  &,,.W, 

i i / �9 ~cq; l '\ } 
iA,,, A.j~ : ~- i<,, !<~,,, + T ) -  I:.~., :<,]~ 

[ A > B ] + = O ,  B e ...... 
3 

Using relations (25), (26), (28), and (29) we can isolate several different sets of SO of 
the Dirac equation that constitute the basis of a Lie superalgebra. Let us indicate a set 
which includes the algebra AP(I, 3) and a maximal number of SO operators of first order: 

(30) 

Here left [respectively, right] to the semicolon we wrote the odd (0) [respectively, even 
(E)] elements of the superalgebra. According to (25), (26), (29) the commutation and anti- 
commutation relations of the operators (30) are incorporated in the scheme 

[ E , E ]  ~ E ,  IE, O ] ~  O, [O, O I + N E  , (31) 
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which characterize a superalgebra [11]. The dimension of the superalgebra (30) equals 30. 

Thus, in addition to the known relativistic invariance, the Dirac equation possesses a 
hidden symmetry with respect to various Lie algebras and superalgebras, which include 
AP(I, 3) as a subalgebra. 

Let us give also a series of other relations for the operators (12), (23), (24), which 
hold on the solution set of the Dirac equation 

m Wuv = P~W~. - -  P~W~, 

1 e .ll~VJ g'e 

1 "I> ~<~ I p~; 
2lit 

P~,P~ =: m e, P~,~"~ ::: O, 

lit ~. P . A "  m.  t ~,t ~o. :-: m W x ,  

tgu , ,  W " l l  = mB,  

q~vi>,~Wv~ '~ = O; 

3 
I . lVpo'  == ~ ll~, 

[d. , . ,  WI,o} ' - -  [d~,~, W,~.].~ ~ ---14 it, .oo~P -l- %,~,.~.Po --%,,o~D- %I, ,~P. , . - l~[I_.  

(32) 

(33) 

(34) 

5. A Complete Set of SO of Arbitrary Order n Admitted by the Dirac Equation. Accord- 
ing to the analysis carried out in Sec. 3, the description of all nonequivalent SO of order n 
of the Dirac equation reduces to the sorting out of linearly independent combinators of the 
form 

' ~"cb:c{-  1 " i  I" " " [alc/; le--C I D  D . . .  
Qci< ,~ .G,~<.~.. -'q-<., Pa< ,-;..i ,, .-- d<,:<',~.,-c, (35) 

where Pa, Jab are the generators (12) and ~a#"~ ..... d'c+F'jl...t,J,~'k_d, are arbitrary parameters. 

The index k is allowed to take arbitrary integer values in the interval [0, n], and the pos- 
sibility that k > n is not excluded beforehand. As it will be shown below, it suffices to 
take 0~le~Iz <2, 0~c~le. 

By relations (25), (32), one can consider that the tensors G "'<' ..... A,.',~i',~l...l-.,b, ~i pos- 

sess properties i)-3) formulated above in the explanations to formula (9); however, in 
general they do not possess property 4), i.e., are not basis tensors. The reason for this 
is that for the operators (12) (in contrast to the generators (4)) the Lyubanskii-Pauli vec- 
tor (22) is not equal to zero. 

To give an effective descriDtion of the linearly independent operators (35)it is con- 
venient to decompose q"'"' .... <.l,,<~<I...,~,.'v,._<l with respect to the basis tensors. Let us write 

the first terms of such a decomposition: 

~1%a2"''~ct~c+l/'~]'L~k!u~'-c/ = )~ ")%''''c["c+l/'Jl''t"#u<-c] 7- F uk-lbk-l-caleblc-c X 

>( ~ala,~...ac[~c_~_lDl]...[ak_2Al~__2_c]_ ~'<lllJl~" c :. c/) ~ d l a  ..el.... .ac[~c,72;2I . . . [a /e iqc_ ~ - i -  

O)a , d)ac+O;~ ~ c~-] I~, - 2 , @ 8d lb l ac@ 1 a 1 ~.%a:N �9 ' a c - -  1 [acd I ] t ac+2b, ,  ] . . -  [@,.hk_c I @ ~;dI , d,  

~ ~,d2%'"ac[ac+303]'"[akble--cl< --,-~ c '  I . .  o', ~'a c , .~h u c . 4t, ~,a o . . .a~[~c_i_ODs}. . .[u( '>#_c]~w 
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�9 C-rl L cT~  2 .  3 c - i - '  l 

T ~ Ic'd 1 ~" 

~loC __, [u I dl(ZC*z-gcz~, d.2ac-}-3h 3 X ~, a 2 " ' ' a c - l [ d l a c ] [ a c - ' i - 4 b 4 ] ' ' ' [ a k ! q r  - i -  Ec; t ,b;d " 8 d  3 X 

X 

( 3 6 )  

Here the dots denote terms that include products of three or more completely antisym- 
metric tensors e~v~,o ; also symmetrization is carried out with respect to the indices 

al, a= ..... a c and the pairs of indices [ac+i, bi] , i = i, 2 ..... k - c. Calculating various 

contractions of ~a~... with S ~ v ~ , o  one can invert formula (36), i.e., one can express the 
xal ''- through qa~.... 

Let us substitute (36) in (35) and agree to sort out the possible values of k in their 
increasing order. To the first term in the right-hand side of (36) there corresponds an SO 
of the form 

L' 

P ' , P " ,  " ' "  P"~J~+l~'~ "'" d"',, '~,-e' ( 37 ) 

where Pa and Jab are the generators (12). The order of this operator (which differs from (9) 
only by the substitution J~s--+d,,~} is equal to k; the number of SO of order n is given by 
formula (7). 

Using relations (22), (32)-(34) we obtain the following representation for the operators 
corresponding to the second, third, fourth, and fifth-to-seventh terms in the right-hand side 
of (36): 

k - 2  

k--2 

Q a  = :  k "  / ~  la~ ~c'C~ * lbl] [a'~-2~ k . . . .  ]~ f /a  ] ) e  P . . . .  P a  J a c +  lb I . . .  J a k _ 2 b k _ 2 _ c ;  
I :2 3 C 

r= I 

. o l o , . . . a c l a c ~ V : l J . . . [ d k - - 3 O k _ 3 _ c J  D 
Q.I = :  ~'2 A.I " - - ~  l " ' "  ]gacW'r~c-i " "  ' ] ' ak - -3bk - -3 - -e ;  

= 0 

k- -3  

0 5  ~'~ "/.fl"?.~, . . . .  c [ a c _ l _ I b l ] . . . [ u k _ 3 # k _ S _ c l  l],_al_,:vp �9 " " Po.'/o-c~, . lbl ---  J a k  --3bk --3-- c -~- 

't- ,: i~_..~ 
[ : I .--,',--:', 

V V 
i = 0  c=;O 

- '~r I,--,acI@ !.I,':l-,, a i I 2 i b # - - ' ! - - 2 ~ - - c ]  ) D ~ f . . .  
-!- /<,  F ,q ... L c%_!_iribJac_F2~,., cacq.3t~ ~ 

r  :.1 
t 2 j ~_~_:~ 

j , j  .~L.,,.i \ ,  \~  ,~,h~.,...,~&~-+lL,~]...l%_s_2i~,~._s_~i_c~ 
�9 . ,  a k _ 4 _ 2 i b k _ . l _ 2 t _ c  ~ ; .~d  ) ~ -  ~ ~ ,7 - X 

' J J . -.. ., �9 fa o a X 

&--.i 

"I~ "~ ~ a l a 2 " " a c [ a c - i - l h l ] ' " [ c ~ k - - 4 b # - - 4 - - r  ~tx, o 
X (J~,]"')~ -,- - -  ~,, t~it, , , ,] A D ... P%J"c+r "'" 

C;: [ 

�9 . .  ffak__4bk__4__ c- 

( 3 8 )  

~. )f~ Here W~,W~,,B,A~, are the operators (23), (24), F~,gu,. are the generators (12), L~ , , 

are arbitrary irreducible tensors, and ~'", i= 8,1,2, ...,5 are arbitrary basic tensors 

satisfying the conditions 
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~ a  l % ' " a c [ a c q - l b  l ; ' " [ a l O l - - c l  ~ 
3 g b l b e g a e q _ l a c + 2  : O, 

a l ' ' ' 2 " ' ' a c t a c i l b l ] ' ' ' l a j b ~ - c ] -  " - -  : O,  
3 gaaac+lga=ac+ 2 

~ ao[%~1]ta=02]...[a[*' 1] 
a g a l a , e  : 0;  

a l a o . . . a c [ a c . . k l b l ] . . . [ a l b l - - c ]  _ ~ 
)~.l " galblga~l,z ...g.~_~t,l_ ~ = 0 ,  C > ~  ; 

~41%.. .a~ Iocq_l! 1 ]. ..[albi_cJgac+lac+2gbd,=gac+aac+4gOah4 ... gaf--lalgbf--c--f'i--c 

acz" aa%'"ac[ac+lbl] '"[aibf--cl  g ,qqg<,?= . . .  gacb c : O, C ~-~ f , O~ -~- 5 ,  8.  

= O" 

(39) 

(40) 

(41) 

(42) 

The terms denoted by dots in (36) may be omitted: the corresponding SO include products 
of operators (23), (24), which allows one to reduce them to the form (37) or (38) with smal- 
ler k with the aid of the relations (26), (29). 

Therefore, any SO of order n for the Dirac equation can be represented either in the 
form (37), or as a product of the SO (37) by one of the operators (23), (24). Moreover, in 

(37), (38) one has to put k = n for Ql, k = n + 1 for Q2, Q3, and k =n+ 2 for Q,, Qs. 

Summing the independent components of the tensors kia~~ in (37), (38), it is not 
difficult to calculate the number of linearly independent SO of order n. For operators (37) 
this number (Nl (n)) is given by formula (7), while for the operators (38) we obtain 

N~ "~ :- 1 T n ( n  ,- 1)(2~z + 1)(n ~- + n  +2) ,  (43) 

N(•I -~n(n-!-l)(5n e 3~z-: 13)--n, (44) 

N~>:  NI "' ---~ n(2n ~ + 9zz + 13)--1!I~ + (--1)~], (45) 

N(,,> I n l n _ .  l ) ( n + 3 ) ( n  e + n +  1), 5 (46 

The total number of symmetry operators of order n is obtained by adding the numbers (7), 
(43)-(46):  

a 1 1 )r, \:~'~>=\~N~">=5N~ ~ ' _  ~ ( 2 " +  l)(13n~-=19n ! 18 ) - -T[ I+( - - I .  1 
i = !  

(47 

In particular, N(~ 1, NC1~=25, N ~:= 154, NC~'=:601 

Let us formulate the results obtained as the following assertion. 

THEOREM. The Dirac equation admits N (n) linearly independent SO of order n, where N (n 
is given by formula (47), and the explicit form of the corresponding operators is given by 
formulas (37), (38). 

5. Conclusion. We determined the number and explicit form of all linearly independent 
SO of arbitrary finite order of the Dirac equation. These SO are given up to arbitrary 
parameters, which represent basis tensors satisfying conditions (39)-(42). Decomposing 
these tensors into irreducible ones, it is not difficult to obtain a representation of SO 
depending on indecomposable sets of parameters. 

Let us list the linearly independent SO of second and third order obtained from the 
general formulas (37)-(42) (the SO of order zero reduce to the identity matrix, and the 
SO of order one were listed in (12), (23), (24)): 
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12 2 :  aO ~ a b  c , ab r~ ~ a b = ~ l d ~ b P  , ZI P~P> L1 J~Jb ,  LI ~'~ab~, 

~)lab][cd]Jabdcd, s  ab, h~P~B, )~a~]Bdab, 

ab 
1~,4 W c~C 'S bt 

L~ab]lcd]Wabd~d, ~,5aOP~mb ' ~a[bcja I 

%~abiPaAb, ~a .bc ,~a; A , ~ g a b c d d  z~l 

%~t~162 L~aOl[ca][el]daJeddet ' 

a~ c ~'~[bClJadpdd&;, 'H ~a~"cdO , s PadbcP , ~ [ab]~ [ led 

i abcD r t k ab ~ ah[cd] ? I k l 

~ [ b ~ I p ~ j ~ B ;  afabl[cdlr ~ ~ "~a~ o~n 
�9 g ~ ' 2  d ( l b d C d t ) ~  [t,2~lahF 1 ~  

abc 't a l h c l ( d e J l W  I ! ah ,~ 

) ~ b [ c d J o  r) ~W ~a[bc j laeJ l3  I W~ 
~4 a-a1"-,6 ~'cd~ "~'4 a- ~zd bc W de~ 

)/4dbCJdadPdW~ c )Db)w/ ~ ~ca 
~ ~4 W C l b d C ~ J  

a4 ~ a ~  w 6  ~ 1"4 d f l h 4 0 W  C~]' 

~/~balr~ a I )a-lbc][de]A I ? at, )c 
5 l-,,nb~ cd . . . . . .  r176 KS A,,J~,,,[ , 

k '["ASb~,J~,  Z~A,,.I~,~J "~, ).~U'qP.P~A~, 

)!.alqIcdlp .1 l )io/' )c 
" o  -~,,,e,~c,,, .; ' A j ~ , . F  , 

ah ke ~ n ~ c:[bc] r k e ~ n  r 
, / 0  ~ahr~P l "q dbc* 

(48) 

(49) 

Here P, J=> W, W,~, A~,, B are the operators (12), (23), (24), and kia-~ are arbitrary 

irreducible tensors. As is readily verified, the numbers of the operators (48), (49) coin- 
cide with those given by formula (47). 

We should mention that the set of $0 (48) differs from that found in [10], where part 
of the SO are linearly dependent on the solution set of Eqs. (i), (i0). 

In addition to the applications mentioned in the introduction, the SO operators found 
above may be used to construct superalgebras of hidden symmetries of the Dirac equation. An 
example of such a superalgebra in the class of differential operators of second order was 
considered in Sec. 4. Let us indicate a chain of superalgebras in the class of order n. 

Let {@~, k=-l,2~ .... n be subsets of SO of order k of the Dirac equation which satisfy 

the supplementary condition [Qk, P M= 0. By our theorem, 

where 

fr u , . . ( l ~  U l O  o , . . o  h ,, ,, ~,'.,...",--r 

a l a 2 . . . ~ f r  o o, 0/~, a l a o . . . o  k _ _  ~)~/ . . .  ql = p i p  ~ . . .  p , q~ . _ _  L /~ a p a a ,  

a I . . . . .  represent SO that are irreducible tensors. Regarding q$' andqa as odd, and q~" and P~, 
J~v as even, and using relations (25), (29), we convince ourselves that the con~mutation and 
anticommutation relations for these operators correspond to the scheme (31) characterizing 
a superalgebra, for any k < n and k' <_ 2n. 
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