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1 Introduction

Lie groups of transformations which conserve the shape of differential equations present

powerfool tools for construction of their exact solutions. The related Lie algebras and

their invariants are the main instruments used to find the Ansätze which make it possible

to find such solutions in explicit form.

In the present paper we search for exact solutions of reaction-diffusion equations using

a specific Ansätz which can be related to the classical Lie symmetry and conditional

symmetry as well.

The nonlinear reaction-diffusion equations play fundamental role in a great number of

various models of heat and reaction-diffusion processes, mathematical biology, chemistry,

genetics and many, many others. Thus, one of the corner stones of mathematical biology

∗ E-mail: nikitin@imath.kiev.ua



A.G. Nikitin, T.A. Barannyk / Central European Journal of Mathematics 2(5) 2005 840–858 841

is the Fisher equation [1]

ut − uxx = u(1 − u) (1)

where u = u(x, t) and subscripts denote derivatives w.r.t. the corresponding variable:

ut = ∂u
∂t

, uxx = ∂2u
∂x2 .

Equation (1) is a particular case of the Kolmogorov-Petrovskii-Piskunov (KPP) equ-

ation [2]

ut − uxx = f(u) (2)

where f(u) is a sufficiently smooth function satisfying the relations f(0) = f(1) =

0, fu(0) = α > 0, fu(u) < α, 0 < u < 1.

The reaction-diffusion equation with the cubic polynomial nonlinearity

ut − uxx = α(u3 + bu2 + cu) (3)

where α = ±1, b and c are constants, also has a large application value and includes

as particular cases the Fitzhugh-Nagumo equation [3] (α = −1, b = −c − 1, 0 < c < 1)

which is used in population genetics, the Newell-Whitehead [4] (for c = α = −1, b = 0)

and Huxley [1] (for α = b = −1, c = 0) equations. Notice that the Fitzhugh-Nagumo

equation also belongs to the Kolmogorov-Petrovskii-Piskunov type.

A nice property of equations (1)-(3) is that they admit plane wave solutions which

in many cases can be found in explicit form. Existence of such solutions is caused by

the symmetry w.r.t. translations t → t + k, x → x + r with constant parameters k and

r. For some special functions f(u) equation admits more extended symmetry groups [5]

and, as a result, have exact solutions of more general type than plane waves. We notice

that group analysis of (2) for f(u) = 0 was carried out by Sophus Lie more than 130 year

ago [6]. The group classification of systems of nonlinear heat equations was presented in

papers [8].

The conditional (non-classical) symmetry approach [9], [10], [11] enables to construct

new exact solutions of partial differential equations which cannot be found in the fra-

mework of Lie theory. In application to the equations of type (2) this approach was

successfully used for the case of cubic polynomial nonlinearity (3) only [12], [13].

An effective algorithm for construction of travelling wave solutions together with a

number of interesting examples was proposed in the recent paper [14]. However the

nonlinear heat equations of the general type (2) were not analyzed in [14].

In our paper we present a specific ”universal” Ansätz which enables to make effective

reductions of an extended class of equations (2) which includes (1) and (3). Being applied

to (3) this Ansätz makes it possible to obtain all exact solutions found earlier [12], [13].

Moreover, we present solutions of (3) (effectively, an infinite number of them) in explicit

forms, i.e., in terms of the Jacobi elliptic functions. In addition, using the unified algebraic

method [14] we select such equations of the type (2) which admit solitary wave solutions

and construct these solutions explicitly. Finally, we present solutions for the Fisher

equation and propose such generalization of it which admit the same exact travelling

wave solution as (1.1), but with any ad hoc given velocity of propagation (for solutions of
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(1.1) this velocity is fixed and equal to 5√
6
). In spirit of Hirota’s method [15] to achieve

these goals we use a special Ansätz which leads to a uniform formulation for all considered

equations (which, however, is tri-linear). In addition to equations (1) and (3), this Ansätz

makes it possible to reduce an extended class of equations of the type (2).

In the following section we discuss the Ansätz which will be used to reduce a class of

nonlinear heat equations. In Section 3 we present an infinite set of exact solutions (given

explicitly in terms of the Jacobi elliptic functions) for the heat equation with the cubic

and cubic polynomial nonlinearity.

In Section 4 we describe plane wave solutions for special classes of equations (2). In

Section 5 solitary wave solutions for equations (2) are found. Finally, in Sections 6 and

7 we present exact solutions for the Fisher equation and propose a generalization of this

equation.

2 The Ansätz and related equations

We start with the reaction-diffusion equation with a power nonlinearity

ut − uxx = −λun, λ =
2(n + 1)

(n − 1)2
(4)

where n is a constant, n 6= 1.

For convenience we choose a special presentation for the coupling constant λ. Scaling

u one can reduce λ to 1 or to -1 for n > 1 and n < 1 respectively.

For any n 6= 1 we set

u =
(zx

z

)k

, k =
2

n − 1
(5)

and transform (4) to the uniform equation

z
(

zxztx − zxzxxx − (k − 1)z2
xx

)

= z2
x (zt − (2k + 1)zxx) . (6)

In contrast with (4) equation (6) is homogeneous with respect to the dependent varia-

ble and includes the cubic non-linearities only while (4) includes u in an arbitrary (fixed)

power n. We will show that formulation (6) is very convenient for effective reductions.

Ansätz (5) is a particular case of a more general one

u = zk
xϕ(z) (7)

where z is an unknown function of independent variables t, x and ϕ is a function of z. It

will be shown in the following that the change (7) presents very effective tools for reduc-

tions of equations (2) which cover both classical and conditional symmetry reductions.

We notice that (4) is not the only nonlinear equation of type (2) which can be reduced

to the tri-linear form via Ansätz (5). A more general equation (2) which admits this

procedure is

ut − uxx = k
(

−(k + 1)un + λ1u + λ2u
n+1

2 + λ3u
3−n

2 + λ4u
2−n
)

(8)
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where λ1, . . . , λ4 are arbitrary constants.

Formula (8) defines special but rather extended class of the nonlinear heat equations,

which includes all important models enumerated in Introduction and many others. The

change (5) transforms (8) to the following form

z(zxztx − zxzxxx − λ3zzx − λ4z
2 − (k − 1)z2

xx)

= z2
x(zt + λ1z + λ2zx − (2k + 1)zxx).

(9)

In contrast with (8) equation (9) is homogeneous w.r.t. the dependent variable and

is much more convenient for searching for exact solutions.

3 Infinite sets of solutions

Consider a particular (but important) case of (8) which corresponds to n = 3, λ1 = λ2 =

λ3 = 0:

ut − uxx = −2u3. (10)

The related equation (9) takes the form

z(żx − zxxx) = zx(ż − 6zxx). (11)

Equation (11) is compatible with the condition Xz = 0 where

X =
∂

∂t
− 3

x

∂

∂x
. (12)

It means [10] that this equation admits conditional symmetry , thus it is reasonable to

search for its solutions in the form

z = ϕ(y), y = x2 + 6t (13)

where y is the invariant variable for symmetry (12). Substituting (13) into (11) we come

to the third order differential equation for ϕ

ϕϕyyy = 3ϕyϕyy. (14)

Dividing the l.h.s. and r.h.s. of (14) by ϕϕyy and integrating we obtain

ϕyy = cϕ3, c = ±2 (15)

where c is the integration constant which can be reduced to 2 (for c > 0) or to -2 (for

c < 0) by scaling the dependent variable ϕ. We make such scaling to simplify the following

formulae.

In accordance with (5), (13), any solution ϕ of (15) generates a solution for (10) of

the following form

u =
2xϕy

ϕ
. (16)
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An explicit solution of equation (15) for c = 2 is the Jacobi elliptic function

ϕ(y) = ds

(

y,
1√
2

)

, y = x2 + 6t (17)

so (16) can be represented as

u = u1 =
2xcs

(

y, 1√
2

)

dn
(

y, 1√
2

) . (18)

The case c = −2 leads to the same solution as given in (18).

The plot of this solution is given by Fig. 1.

Fig. 1 Solution (18) for equation (10), 0 < t ≤ 200.

To construct more elliptic function solutions for (10) we exploit some properties of

the elliptic functions formulated in the following assertions.

Proposition 3.1. Let ϕ = ϕ(n) be a solution of equation (15) for c = 2 or c = −2. Then

ϕ(n+1) =
ϕ

(n)
y

ϕ(n)
(19)

also satisfies this equation for c = 2.

Proof of this and the following propositions is reduced to a direct verification. We

notice that equation (15) is equivalent to the following one

(

ϕ(n)
y

)2
=
(

ϕ(n)
)4

+ Cn (20)
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where Cn is the integration constant. Then ϕ(n+1) of (19) satisfies the equation

(ϕ(n+1)
y )2 = (ϕ(n+1)

y )4 + Cn+1, Cn+1 = −4Cn.

Proposition 3.2. Let ϕ(n) be a solution of equation (20) for Cn > 0. Then this equation

is solved also by the following function

ϕ̃(n) =

√
Cn

ϕ(n)
.

Proposition 3.3. Let ϕ(n) be a solution of equation (20) for Cn = −Bn < 0. Then the

function

ϕ̂(n) =

√
Bn

ϕ(n)
(21)

satisfies equation (15) for c = −2 and the following relation

(

ϕ̂(n)
y

)2
= −

(

ϕ̂(n)
)4

+ B2
n. (22)

Using Propositions 3.1 and 3.2 and starting with (18) we obtain infinite sets of solu-

tions for equation (10):

un = 2xϕ(n), n = 0, 1, 2, · · · , (23)

and

ũ2k+1 =
2k+1x

ϕ̃(2k+1)
, k = 0, 1, 2, · · · (24)

where ϕ̃(2k+1) and ϕ(n) are defined by (21) and the following recurrence relations

ϕ(n) =
ϕ

(n−1)
y

ϕ(n−1)
, ϕ(0) = ds

(

y,
1√
2

)

. (25)

For n = 1 we have the solutions (17), while for n = 2, 3, · · · and k = 0, 1, · · · we obtain

u2 = 2x





cd
(

y, 1√
2

)

− dc
(

y, 1√
2

)

sn
(

y, 1√
2

) − cn

(

y,
1√
2

)

ds

(

y,
1√
2

)



,

u3 =
2x
(

cs4
(

y, 1√
2

)

− dn4
(

y, 1√
2

))

dn
(

y, 1√
2

)

cs
(

y, 1√
2

)(

9
4

√
2cn2

(

y, 1√
2

)

− ds2
(

y, 1√
2

)) ,

· · · ,

(26)
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and

ũ1 =
2xdn

(

y, 1√
2

)

cs
(

y, 1√
2

) ,

ũ3 =
4xdn

(

y, 1√
2

)

cs
(

y, 1√
2

)(

9
4

√
2cn2

(

y, 1√
2

)

− ds2
(

y, 1√
2

))

cs4
(

y, 1√
2

)

− dn4
(

y, 1√
2

) ,

· · · .

(27)

Formulae (19), (26) , (27) and the recurrence relations (25) present an infinite number

of exact solutions for equation (10). Moreover, taking into account the transparent in-

variance of (10) with respect to displacements of independent variables t and x we can

write more general solutions changing x → x + k1, t → t + k2 with arbitrary constants k1

and k2.

We stress that all these solutions belong to the class found in [12], [13]. Here we

present the explicit analytical expressions for these solutions in terms of the Jacobi elliptic

functions. The plots of solution ũ1 is given in Fig. 2.

Fig. 2 Solution ũ1 (27) for equation (10).

Propositions 3.1 and 3.2 make it possible to construct infinite sets of exact solutions

for other equations of the type (8).

Consider first equations (8) for n = 3, λ2 = λ3 = λ4 = 0, i.e.,

ut − uxx = −2
(

u3 + λ1u
)

(28)

where without loss of generality we can set λ1 = ±1. For λ1 = −1 (28) is equivalent to
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the Newell- Whitehead [4] equation up to scaling variables t and x. The Ansätze

u = ξxϕ(ξ), ξ = k1 cosh(x + k2) exp(3t), λ1 = 1, (29)

u = ηxϕ(η), η = k1 cos(x + k2) exp(3t), λ1 = −1 (30)

reduces (28) to the form (15). Thus repeating the arguments which follow equation (15)

we come to exact solutions for (28). The explicit form of these solutions can be obtained

from (18), (23)-(27) via the changes y → ξ, 2x → ξx for λ1 = 1 and y → η, 2x → ηx for

λ1 = −1.

Finally, we notice that Proposition 3 makes it possible to construct infinite sets of

exact solutions for the equations (8) with n = λ4 = −1, λ2 = λ3 = 0, i.e., for the

equations

ut − uxx = 2u3 (31)

and

ut − uxx = 2
(

u3 + εu
)

(32)

which differ from (10) and (28) by the sign of the l.h.s. terms. Indeed, Ansätze (18) and

(29) or (30) reduce the corresponding equations (31) and (32) to the following equation

for ϕ

ϕ′′ = −2ϕ3 (33)

where the double prime denotes the second derivative w.r.t. the corresponding variable

(i.e., y, ξ or η).

In accordance with Proposition 3, exact solutions for (33) have the form (21) where

ϕ(n) are solutions of equations (25) for even n. The related list of exact solutions for

equation (31) is given by the following formulae:

û0 = xsd
(

y, 1√
2

)

,

û2 =
4xsn

(

y, 1√
2

)

cd
(

y, 1√
2

)

− dc
(

y, 1√
2

)

− cn
(

y, 1√
2

)

dn
(

y, 1√
2

)

sn
(

y, 1√
2

) ,

· · ·

û2k = 2kx
ϕ(2k)

(34)

where ϕ(2k) are defined by recurrence relations (25).

The plots of solutions (33) are given in Figs. 3, 4.

Solutions for (32) can be obtained from (34) by changing y → ξ, x → ξx and y →
η, x → ηx for ε = 1 and ε = −1 respectively.

4 Solutions for arbitrary n

Let us consider equation (8) with arbitrary n and construct its exact solutions. In this

section we restrict ourselves to the case λ3 = λ4 = 0 and use a reduced version of the
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Fig. 3 Solution ũ0 (27) for equation (10).

Fig. 4 Solution ũ2 (27) for equation (10).

related potential equation (9) i.e.,

(n − 1)zt = (n + 3)zxx − (n − 1)(λ1z + λ2zx), (35)

4zxzxxx + (n − 3)z2
xx − (n − 1)(λ1z

2
x + λ2zxzxx) = 0. (36)

Any solution of the system (36) satisfies (9) with λ3 = λ4 = 0, the inverse is not true.

To solve (35), (36) we introduce the new variable y = zxx

zx
. Then, dividing (36) by z2

x
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and using the identity zxxx

zx
= yx + y2 we transform this equation to the Riccatti form

yx +
n + 1

4
y2 − (n − 1)

4
(λ2y + λ1) = 0. (37)

Differentiating y w.r.t. t and using (35) and (37) we obtain the following differential

consequence

ẏ = Ay3 + By2 + Cy + D (38)

where

A =
1

8

(n + 3)(n − 3)(n + 1)

n − 1
, B = λ2

(

1 − 3

16
(n2 − 1)

)

,

C =
1

16

(

(n − 1)2λ2
2 − 2(n + 3)(n − 3)λ1

)

, D =
(n − 1)2

16
λ1λ2.

For arbitrary n the system of equations (37), (38) is compatible but has constant

solutions only. In three exceptional cases n = ±3 and n = −1 the compatibility conditions

for (37), (38) are less restrictive in as much as the related coefficient A in (38) is equal

to zero.

Let n 6= ±3 and n 6= −1, then y = c1 = const, and equations (37), (38), reduce to the

only condition

λ1 = −c1λ2 + (k + 1)c2
1, k =

2

n − 1
.

The corresponding solution for the system (35), (36) is

z = ec1x+kc21t + c2e
(λ2c1−(k+1)c21)t (39)

and the related exact solution (5) takes the form

u =
ck
1

(

1 + c2e
−c1x−((2k+1)c21−λ2c1)t

)k
. (40)

Thus we find exact solutions (40) for the equation

ut − uxx = −k(k + 1)un + λ2ku
n+1

2 + ((k + 1)c2
1 − λ2c1)ku. (41)

This equation belongs to the Kolmogorov-Petrovski-Piskunov type provided

λ2 = (k + 1)(c1 + 1). (42)

The corresponding plane wave solution (40) propagates with the velocity

v = k + 1 − kc1.

In special cases n = ±3 and n = −1 equations (35), (36) admit more extended classes

of exact solutions. In particular, for n = 3 we can recover exact solutions for (3) caused

by conditional symmetry and classical Lie symmetry as well. We will not study these

special cases here.
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5 Solitary wave solutions

Consider now the general equation (6) with arbitrary parameters λ1, λ2, λ3 and λ4.

It seems to be impossible integrate in closed form the related potential equations (9).

Here we search for particular solutions which belong to soliton type and so have good

perspectives for various applications.

Let us consider solutions for (6) of the form z(t, x) = U(ξ) where ξ = µt + x and µ

is an arbitrary (nonzero) constant. Then we come to the following ordinary differential

equation for U

U [U ′(µU ′′ − U ′′′ − λ3U) − λ4U
2 − (k − 1)(U ′′)2]

= (U ′)2[(µ + λ2)U
′ + λ1U − (2k + 1)U ′′]

(43)

where U ′ = dU
dξ

.

Let us follow [14] and search for solutions for (43) in the form

U = ν0 + ν1ϕ + ν2ϕ
2 + · · · , (44)

where ν0, ν1, · · · are constants and ϕ satisfies equation of the following general form

ϕ′ = ε
√

c0 + c1ϕ + c2ϕ2 + · · · (45)

where ε = ±1. In order (44) be compatible with (43) we have to equate separately the

terms which include odd and even powers of the square root given by (45). In view of

this we come to the following system

U ′(µUU ′′ − λ3U
2) = (U ′)3(µ + λ2), (46)

U(U ′U ′′′ + λ4U
2 + (k − 1)(U ′′)2) = (U ′)2((2k + 1)U ′′ − λ1U). (47)

Dividing any term in (46) by µU2U ′ we come to the Riccatti equation

Y ′ − λ2

µ
Y 2 =

λ3

µ

for Y = U ′

U
, whose general solutions are

Y =
√

−λ3

λ2
tanh

(√
−λ2λ3

µ
ξ + C

)

,

Y =
√

−λ3

λ2

(

tanh
(√

−λ2λ3

µ
ξ + C

))−1

, if λ2λ3 < 0,
(48)

y =

√

λ3

λ2
tan

(
√

λ2λ3

µ
ξ + C

)

, if λ2λ3 > 0, (49)

y = − µ

λ2(ξ + C)
, if λ3 = 0 (50)

where C is the integration constant.
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Thus all solutions for (43) which can be obtained with using the algebraic method

[14] are exhausted by hyperbolic, triangular and rational ones presented by relations (48)-

(50).

Solutions (48), (49) and (50) are compatible with (47) provided

µ = −λ2, λ1 = −k
λ3

λ2
, λ4 = (1 − k)

(

λ3

λ2

)2

, λ2λ3 6= 0

and

λ1 = λ4 = 0, λ3 = 0

respectively. Using variables

τ =
2

(n − 1)2
t, y =

√
2

n − 1
x, σ = −λ2(n − 1), ν =

λ3

λ2

we can rewrite the related equation (8) as follows:

uτ − uyy =
(

1 + νu1−n
)

(

−(n + 1)un + ν(n − 3)u + σu
n+1

2

)

. (51)

The corresponding solutions (5), (48) for equation (51) have the following form

u = (−ν)
1

n−1

(

tanh
(

b
(

y − σ√
2
t
)

+ C
))

2
n−1

, (52)

u = (−ν)
1

n−1

(

tanh
(

b
(

y − σ√
2
t
)

+ C
))

2
1−n (53)

where ν < 0 and b = (n − 1)
√

−ν
2

,

u = (ν)
1

n−1

(

tan

(

b

(

y − σ√
2
t

)

+ C

))
2

n−1

(54)

where ν > 0 and b = (n − 1)
√

ν
2
, and

u = 2n−1

(

(n − 1)

(

y − σ√
2
τ + C

))
2

1−n

(55)

if ν = 0.

For 2
n−2

> 1 formula (52) presents nice solitary wave solutions which propagate with

the velocity σ√
2
. In the case n = 2 we come to the bell-shaped solitary wave solution

which will be discussed in Section 7.

If 2
n−2

< −1 then (52) is a singular solution whose physical relevance is doubtful.

However, in this case equation (51) admits another solitary wave solutions which are

given now by relation (53).

We see such solutions exist for the extended class of the nonlinear reaction-diffusion

equations defined by formula (51).



852 A.G. Nikitin, T.A. Barannyk / Central European Journal of Mathematics 2(5) 2005 840–858

6 Exact solutions for the Fisher equation

Let us return to Section 4 and consider in more detail the important case n = 2. Setting

in (41) λ2 = 0, c1 = −1 and making the change

τ = 6t, y =
√

6x (56)

we come to the Fisher equation (1) for u(τ, y):

uτ − uyy = u(1 − u). (57)

Thus the Fisher equation is a particular case of (41) and so our solutions (40) are valid

for (57) provided we make the above mentioned changes of variables and set c1 = −1 in

accordance with (42). As a result we recover the well-known Ablowitz-Zeppetella [16]

solution

u =
1

(

1 + c2e
y√
6
− 5τ

6

)2 . (58)

This solution can be expressed via hyperbolic functions

u = u1 =
1

4

(

1 − tanh

(

y

2
√

6
− 5

12
τ − c

))2

, c =
1

2
ln |c2|, (59)

u = u2 =
1

4

(

1 − coth

(

y

2
√

6
− 5

12
τ − c

))2

(60)

for c2 > 0 and c2 < 0 respectively.

Taking into account the symmetry of (57) w.r.t. the discrete transformation u → 1−u

we obtain two more solutions: u3 = 1 − u1 and u4 = 1 − u2. Finally, bearing in mind

the symmetry of (57) w.r.t. the space reflection y → −y we come to four more exact

solutions by changing y → −y in u1, u2, u3 and u4.

Thus starting with our general formulae (39) and (40) we come to the family of eight

exact solutions for the Fisher equation. All of them are plane waves propagating with

the velocity ± 5√
6
.

To find additional exact solutions we use the Ansätz (7) for n = 2, i.e.,

u = 3z2
yϕ(z) (61)

where ϕ and z are functions to be found. Substituting (61) into (57) we come to the

following reduced equations

zτ = 5zyy,

4zyzyyy − z2
yy = 1

2
z2

y

(62)

and

ϕzz = 3ϕ2. (63)
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We see that ϕ has to satisfy the Weierstrass equation (63) which we rewrite in the

following equivalent form

ϕ̃2
z = 4ϕ̃3 − C, ϕ̃ =

1

2
ϕ (64)

where C is the integration constant.

Starting with (61) and choosing the following exact solutions of (62) and (64):

z = exp

(

− 1√
6
y +

5

6
τ

)

, ϕ =
2

z + k
(65)

we come to the Ablowitz-Zeppetella solutions (58) for the Fisher equation.

We notice that relations (65) present only a very particular solution of (64) which

correspond to zero value of the parameter C. In addition, there exist the infinite number

of other solutions corresponding to non-zero C. The related functions (61) are:

u =
1

2
z2℘(z, 0, C), z = exp

(

− 1√
6
y +

5

6
τ + k

)

(66)

where ℘(z, 0, C) is the Weierstrass function satisfying equation (64) for C 6= 0.

In order to solutions (61) be bounded it is sufficient to restrict ourselves to the case

when − 1√
6
y + 5

6
τ + k > 0. Such conditions can be satisfied, e.g., for arbitrary positive

y and negative τ and k. The related solutions can be interpreted as ones describing the

history of the process because the time variable takes arbitrary negative values. The

graphics of solutions (61) for some values of the parameter C are given by Figures 5-7.

Fig. 5 Solution (66) with k = 0, C = 102 for the Fisher equation (57).

Thus the Fisher equation admits the infinite set of exact solutions which include the

Ablowitz-Zeppetella solutions (58) and also solutions (66) enumerated by two parameters,

C 6= 0 and k. All these solutions are plane waves propagating with the same velocity

v = 5√
6
.
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Fig. 6 Solution (66) with k = 0, C = 104 for the Fisher equation (57).

Fig. 7 Solution (66) with k = 0, C = 106 for the Fisher equation (57).

In the following section we consider generalized Fisher equations which admit exact

solutions with arbitrary propagation velocities.

7 Generalizations of the Fisher equations

Let us consider equation (51) for n = 2, which takes the following form

uτ − uyy = (u + ν)(−3u + σ
√

u − ν). (67)
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Relation (67) is a formal generalization of the Fisher equation in as much as in the

case σ = 0 (67) is equivalent to (1). However, for σ 6= 0 equation (67) admits soliton

solutions (52) and (or) solutions (53)-(55) and so has absolutely another nature then (1).

Nevertheless for small σ it would be interesting to treat (67) as a perturbed version of

(1).

Consider equation (67) in more detail. Let ν < 0 then scaling dependent and inde-

pendent variables we can reduce its value to the following one

ν → ν ′ = −3

2
, if ν < 0. (68)

Setting then

ũ =
3

2
− u, σ = 3ε, t = 3τ, x = −

√
3y (69)

we come to the following relation

ũt − ũxx = ũ

(

1 − ũ + ε

(

3

2
− ũ

)
1
2

)

. (70)

In the limiting case ε → 0 equation (70) reduces to the Fisher equation in the canonical

formulation (1).

In accordance with Section 5 equation (67) admits nice bell-shaped traveling wave

solution (52) which transforms via changes (68), (69) to the following form

ũ =
3

2 cosh2
(

1
2

(

x − ε√
6
t
)

+ C
) . (71)

Consider now equation (67) for νσ = 0 = 0 and set u = ũ
3
. As a result we reduce (67)

to the simplest form

ũτ − ũyy = −ũ2. (72)

The Ansätz

u =
z2

x

6z2
+

1

3

(

1 + ε

√

3

2

)

zxx

z
, ε = ±1

leads to the following reduced equations

zxxx = 0, zt = κzxx, κ = 5(3 ±
√

6).

Thus we have z = x2

2
+ κt and the related exact solution for (72) is

u =
(3 ±

√
6)x2 + 10(12 ± 5

√
6)t

3
(

x2 + 10(3 ±
√

6)t
)2 .

We notice that this solution can be found also using the classical Lie reduction.

Finally, let us consider one more generalization of the Fisher equation given by relation

(41) for n = 2. Using notations (56) we rewrite it in the following form

ũτ − ũyy = ũ(−c1 + (c1 + 1)ũ
1
2 − ũ). (73)
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For c1 = −1 equation (73) reduces to the Fisher equation (57).

In accordance with the results presented in Section 4 equation (73) admits exact

solutions (40) which in our notations can be rewritten as

ũ1 = 1
4

(

1 + tanh
(

c1
2
√

6
y + c1(2c1−3)

12
τ − c

))2

,

ũ2 = 1
4

(

1 + coth
(

c1
2
√

6
y + c1(2c1−3)

12
τ − c

))2

.

(74)

Two more solutions can be obtained by changing y → −y in (74).

Formulae (74) present the analogies of solutions (59), (60) for equation (73). In

contrast with (59), (60) these solutions describe a wave whose propagation velocity is

equal to 2c1−3√
6

Thus changing parameter c1 in (73) we can obtain solutions (74) with any

velocity of propagation given ad hoc. In other words we always can take this velocity in

accordance with experimental data.

Thus equation (73) reduces to the Fisher equation if the parameter c1 is equal to −1.

Moreover, both equations (57) and (73) admit the analogous exact solutions, (59), (60)

and (74), which, however, have different propagation velocities.

8 Discussion

There exist well known regular approaches to search for exact solutions of nonlinear

partial differential equations - the classical Lie approach [6], the conditional (non-classical)

symmetries method [9], [11], [10], [12], generalized conditional symmetries [17], etc. These

approaches present effective tools for finding special Ansätze which make it possible to

reduce the equation of interest and find its particular solutions.

However, sometimes it seems that the Ansätze by themselves are more fundamental

than the related symmetries. First, historically, the most famous Ansätze (like the Cole-

Hopt one for the Burgers equation) was found without a scope of a symmetry approach.

Secondly, some of Ansätze are effective in rather extended classes of problems characteri-

zed by absolutely different symmetries. In addition, in some cases the direct search for the

Ansätz is a more straight-forward and effective procedure than search for (conditional)

symmetries. We remind that the conditional symmetry approach presupposes search for

solutions of nonlinear determining equations which in many cases are not simpler than

the equation whose symmetries are investigated [18].

The present paper is based on using special Ansätze (7) which appear to be very

effective for the extended class of nonlinear reaction-diffusion equations. In particular,

they make it possible to find new exact solutions for the very well studied heat equations

with quadratic polynomial non-linearities. Moreover, such Anaätze can be used to reduce

wave equations of another type, e.g., hyperbolic equations. We plane to discuss the related

results elsewhere.

We propose a generalization of the Fisher equation which preserves the type of its

exact solutions, but predicts another propagation velocity. This property distinguishes

(73) from numerous other generalizations of the Fisher equation refer, e.g., to [19] and
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references cited therein.

Finally, we find soliton solutions for a number of nonlinear equations (8). To make this

we use the algebraic method [14] which however was applied not directly to the equation

of interest (8) but to the potential equation (9). By this we extend the class of non-

integrable equations which have soliton solutions to the case of appropriate quasi-linear

heat equations (2).

We stress that all these results were obtained with essential using the Ansätz (7). It

seems to be an intriguing problem to find a regular way for searching such ”universal”

Ansätze.
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