REDUCTION OF IRREDUCIBLE UNITARY REPRESENTATIONS
OF GENERALIZED POINCARE GROUPS WITH RESPECT TO
THEIR SUBGROUPS

A.G. Nikitin, V.I. Fushchits, and I.I. Yurik

We consider the problem of the reduction of unitary irreducible representations of the
generalized Poincaré groups #(1, ») with respect to their subgroups #(1, n—k). We find
the explicit form of the unitary operator that relates the canonical basis of the repre-
sentation to the # (1, ﬁ}k) basis. The action of the generators in the #(1, n~k) basis
is given explicitly. The case of the inhomogeneous de Sitter group is considered in
detail .

Introduction

The generalized Poincaré group #(1, n). is the semidirect product of the groups SO,(1, n) and T,
where T is the additive group of the n-dimensional real vectors Py Py - u Py and S0O,(1, n) is the
connected component of the identity in the group of all linear transformations of T onto T that preserve
the quadratic form pz0 - pzI e = pn

In {1, 2] it was suggested that the groups #(1, n), (1, 6), #(1, 4) should be used to describe
physical systems with variable mass and spin. An example of such a physical system is one consisting of
two (or three) free relativistic particles. For in this case the energy operator has the form

E=VP+M?, M=(m>+K*) "+ (m +K?)", (0.1

where P = P(i) + P(Z) is the ems momentum of the particles and K is the relative momentum. (For
more detail about this see [2] and the literature cited there.)

It is well known [3, 4] that Eq. (0.1) is obtained by the reduction of the direct product of two
unitary irreducible representations of the group #(4, 3). Since an irreducible representation of #(1, n>3)
is reducible with respect to #(1, 3), it is natural to consider the problem of the reduction of these repre-
sentations with respect to the irreducible representations of the Poincaré group. [In fact one performs
the reduction with respect to representations of the Lie algebra. We denote the Lie algebras and the
groups corresponding to them by the same symbols. In [11], the reduction of reducible representations
of #(1,n) with respect to #(1,3) was considered.] v

Apart from these applications, the generalized groups #(1, 4), #(2, 3) , etc, may also have a
direct bearing on the problem of extending the S matrix off the mass shell [5] and of the description of
particles with internal structure [2, 6]. In all these problems, the primary problem is that of the reduc~
tion of irreducible representations Z(4, n)—>#(1, 3).

In this paper, we perform the reduction of irreducible unitary representations of the group
P(1, n)—~P (1, n~k) for the case when the operator of the square of the "mass" satisfies P.P'=P,'~P’=
®*=0 (k=1, 2,..., n) a,nd the energy operator satisfies P,*>0.

In Sec.1, we give the necessary information about representations of the group .?(1 4) — the
inhomogeneous de Sitter group — and we formulate the problem of the reduction P4, 421, 3). In Sec.?2,
we find a unitary operator connecting the canonical basis of the group #(1, 4) to the #(1, 3) basis. Here
we also give the reduction £(1, 4)—~2(1, 3)~>2(1, 2). Section 3 is devoted to the reduction # (4, n)—>
P, n—1)—... P, n—k).

Institute of Mathematics, Academy of Sciences of the Ukrainian SSR. Translated from Teore-
ticheskaya i Matematicheskaya Fizika, Vol. 26, No. 2, pp. 206-220, February, 1976. Original article
submitted March 18, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

138



1. Basic Definitions and Statement of the Problem

The group #(1, 4) is the most natural generalization of the Poincaré group (1, 3), and we
therefore consider in detail the reduction #(1, 4)—+% (1, 3). Some of the results given for the group #(4, 4)
can be readily transferred to the case of the group #(2, 3). The group £(1, 4) has three basic invariants
{notation given without explanation is the same as in [1]) [1]:

P=P=Pi P =Pl Vi=lhop’, Vi=—"dno®, Ow="sewmusP /. (1.1

The Lie algebra of #(1, 4) is generated by the operators Pu and JW, which satisfy the commutation rela-
tions

[Pv-; P,1=0; [P, Jaﬁ] =i(gwpﬂ'f‘gubpa); {]uv, Jas] '=i(gupfq,+gvaf,‘p—gvp]m~gw]vé) . (1.2)

The generators PH and Jdyp in the canonical basis |Py Pas Js» T3 J, T, %> have the form

. — a 7]
Po=E=VPc2+Pt2+K2, =D, ]ﬂb'_‘ipb —— P + Sﬂb! a, b=17 27 3;
B P 59, " op,

0 SuPytSubs 9 é 8 SuPe
Ja=_- —— Ja=. a—‘-‘—'. L_——+SG7 Jou=—1i T m—
’ o apa E+% ! P 8174 ” 6pn ! 0" P apg E+K
where S,, (k,l =1, 2, 3, 4) are the matrices of the irreducible representation D(j, 7) of the Lie algebra
-of SO0(4)~SU(2)®8U(2). The numbers w, j, 7 characterize the irreducible representations of the class
I (Pfl > 0) of (4, 4). In the space H of the irreducible representation of % (1, 4) the operators

{1.3)

V, EVZ V{ 8V2 Po
'2= = j{7 z,—=———.__-_= - 2= 2 = e—
7 -4;?+ o» JOHOI, T2 = i e+, Pr=xl, ¢ P 1.4

are multiples of the identity operator. The matrices J, and T, can be expressed in terms of the mat-
rices §,, as follows:
]u=’/2(eachbc+S4a) 1 Tﬂ:i/z (eachbc_Séa) . (1 . 5)

The operators (1. 3) are defined on the G&rding space D C H (see the Appendix).
The basis vectors Ip,‘ Pis Js, T3j §, T, x> ¥ are normalized in accordance with
<p1 P, j3’ Ts; j-' T, % 1 p’! p"y j3,7 T-'i,; j’ T, 'K>=2po§(3’ (p——pl)6 (PF“PA,) afa, 13'61'513'1

and the scalar product has the form
. d‘ |
(‘I’,, \Fz) = J"'—Iz qfﬁ(ﬁk, Jas Ta) ‘Fz(Pk, I Ta) .
2po

We shall call the basis of the irreducible representation of #(1, 4), in which the operators of the
square of the mass, M = on - Paz, and the spin, W = W% - Wi, and also the operators P, and S3 are
diagonal the Poincaré basis and denote it by |p, m. s, 555 7, 1, %0.

We normalize the basis vectors in accordance with
<pv m, S, Ss; jv T %lp’v m/7 5,7 331; j! Tv %> =2P06(m’_m,) 63(?"}") 658’65553'1 (1' 6)
and this means that
d!
(CPu (Pz) = 2 J‘ dm j. '2‘p£0¢1+ (31 S3, m) @2 (s, §3, m) .
The eigenvalues of the operators M? and W? correspond to irreducible representations of the group
21, 3).

Our problem is to determine the spectrum of possible values of M? and w2, find the explicit
form of the generators J,,, and P” in the £ (1, 3) basis, and find the unitary operator that relates the
basis |p, P /s, s §, T, > to the basis |p, m, s, 535 7, T, %).

2. The Reduction #(4,4)~#(1,3)

1. The irreducible representation (1. 3) is characterized by %% > 0 and the numbers j and T,
which specify the irreducible representation of the little group SO(4). On the restriction to the subgroup

* We shall say that |p, ps. js, 1s; 7, 7. @ is the canonical basis.
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2(1, 3) , the space H decomposes into the direct sum of #(1, 3)-invariant subspaces H , (one for each
value of p,). The subspaces H, , are irreducible with respect #(1, 3) if and only if the representations
of the little group #(4, 3) are irreducible. The intersection of the groups SO(4) and Z(1, 3) is the little
group in #(4, 3) corresponding to the orbit p"; - pza = pi + %, and this is the group SO(3). It therefore
follows that the space H is decomposed into subspaces corresponding to unitary irreducible representa-
tions of the subgroup #(1, 3), with the following values of the mass m and spin s:

wEmi<oo, |j—1|<s<j+. 2.1)

The operator V, relating the canonical basis to the (1, 3) basis is a certain matrix (which
depends on the variables p and p,) defined in the space of the irreducible representation of #(4, 4) of
dimension (2j + 1) (27 + 1), a.né to find its explicit form it is therefore natural to use -an expansion with
respect to a complete system of orthogonal projectors. We shall seek the operator V ' in the form

V= Z Ea,; (p, p.) A.B., .2

where
Ip Tp .,
—p— —r T —1 .
Ad=1}————, B= —_—_— =71p.? .
| R— ‘ H = e=Tp) 2.3
roer’ Inhl" J‘p T~p
are projection operators onto the eigenspaces of the Hermitian operators r —;—, which satisfy the
conditions of orthogonality and completeness:
i i T
Ip T. b
A Ap=d,r4A,, ;]_Ar:L '—p— = r=_jTAn BB, =8B, ;{Bz:‘i, —Tp = ;tiBz. 2.4)

The inverse operator V4'1 has the form

V=Y Y e @ p) 4B, 2.5)
r i

Since the generators Po P, Ju, Jos in the P (1, 3) basis have the canonical Wigner—Shirokov form, the
operator V4 must satisfy the conditions

VPV =YpSr+m?, mi=x*+pJ, (2.6)
Vl.Pk,V(-‘=ph, (2 . 7)
/] i}
ViV i=ipy———— iPa""“—+ Sabs (2.8)
apz a 123
L} S,
VooV '=—ipy——— b =l 2.9
Opa  potm

where Py, Py, Ju, Jos, Sap are from (1.3). It follows frem (2.6)-(2.8) that the functions a,; and a;i are

scalars under three-dimensional rotations, i.e.,
an(p, p) =a.(p% p.), a7 (B, 1) =070, ). (2.10
Finally, the structure of the functions @, and a;i determines the relation (2.9). We write it in the form

((pXJ)a+ (pXT)u) (”_m) + (Ja_Ta)pk .

~t Ja]Vi=
[V Tl V. (E+m) (E+x%) E+u

(2.11)

From Eq.(2,11), we find the conditions that the functions a,, and a;i must satisfy. To calculate in
explicit form the commutator on the left-hand side of Eq. (2.11), we use the relations [7]

/] 1 X)a 1 . IX
[40 i = —la. (pxx)a1=(—pi;,z)—(zA,—A,_‘—Am)& 7 (=220 @eman,
. ? P (2.12)
a 1 XT). 1 . TX
[B,,i——]= ~ L, pxmy =D (zB,—Bl_,—B,+1)+—(Ta-i——i’) (Bir—Bi-).
0pa P 2p 2p p p

Substituting (2.2) and (2.5) into (2.11) and taking into account (2.12), we arrive at the equation

g - 9 _ (XJ)o+(pXT). [P Oair
[Vé_ ,]oa ]V;: Z [CI,N?'A,';', {—lE-—ﬁ-;;———-—?:‘_—‘m‘————}] (I,IA,-B,=IZ‘ ,{ l..lp)_ apl Ar'Bl'arlArBI—-

el et
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XT) o+ (pX3 ! - ]
’"‘lr [ [{ E""—‘ +(£___)__(£_)_} ’ Ar’Bl’]} a«rzAth = ZI { —pi oar EarlA-rBl“mar'il'arl ([Ar’, i"‘—“‘l By +
3pa E+m = U oy 9pe

7 . Oa,t X1, XT
+[B,.,i—__]A,.)}A,Bl.—= y {iE P da _m[ XD o o=t oo XD
. apa P 8p p p

rl
i . 3 . 1 - -
—@r 131G 1-1) ]+_ [(]a—i—p) (ar—-i i a'r+i )+ ( to— b p) (a, ,i_g-a,- Ii+1) }}A,.Bl=
pp PP

_ [@X8) ot (pXT)o] (x—m) N (Jo—T.) ps
(E+m) (E+x) E+m

Equating in (2.13) the coefficients of the linearly independent vectors i —plA,B,, T.A4,B,, 1. A.B,, (pX¥).4A.8:,
p
and (pXT).4.B;, we obtain

(2.13)

da.~
61: @ T 2p[r(ar—i : ar+i Dantl (af -1~ G "H)d”] 0,
im _ 23 n —1 -1 _ D
ﬁ(a’_‘l ar+1 l)arl E+%’ .—z?(a,- 1—1—r I-fi)arl = E+7,’,’ (2‘ 14)
—(2a,,! ar-_‘ —ar—‘ Qr = —'—“‘_—‘—‘m x '—a, 1o—a, (2 J:—L- *
% z( ! 11 1) z‘ (E+m) (E+u) (2(1’,,-: a: l —a z+1)a = (E¥m) (E+n)

After some simple transformations, the system (2.14) is reduced to

E ag';_ia”-h B (r—=1)=0, ar: n = —%n%%)&=exp(:tiﬁ4),
- wE+miEipp, PO 03 (2.15)
Ar 124lp; = m = exp(F0.), &-—arctg - =2 arctgm.
We show that the general solution of the system (2.15) is given by
a.=Ri.expi(r—1)8,, (2.16)
where R4 is an arbitrary function of p,. To see this, we represent @ _; in the form
a,=B . expliE(r—1)6.,—C,], (2.17)

where BH and C,, are functions of p2 and D, and we obtain from (2.15)
Brl=Br:11=Brl¢(=B' CTZ=CT1£!=CTZ¢1=C' (2. 18)

Denoting Bei¢ by R, and substituting (2.19) into (2.17), we arrive at (2.16). It is easy to see that the

substitution of (2. 16) into (2.17) transforms the last equation into an identity. It follows from (1.6) that
R = ym/p,.

4 4
Taking into account the relation

S aj’a
———~‘pp =Y -nas, (2.19)
and substituting (2.16) into (2.2), we obtain

m , SiaPa 120 )
= = i .20
V 7 exp (l P 2 arctg (E+m) (m+x) @.20)

Equation (2.20) is the required operator of the transformation from the canonical basis to the Z(1,3)
basis.

We now find the explicit form of the generators J04 and J4a in the #(1, 3) basis. Using the
Hausdorff—Cambell identity

eBei= Z{B . BAY=({B, A", 4], {B, A=, (2.21)
we obtain
V4ij—V;"=i—‘?-— PaSisDaDs n PiSie + Sape (m—x) ,
8 pa 3 pa (E+x) (E+m)Em m(E+x) m(E+m) (E+x)
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Sku(mz‘{"%E) +—p—¢ S“,pb(m—x) + SabeP&. V 9 V " 6 %2 %Sﬁbpb Siapa
m(E+x) p mp(E+m) (E+x) m(E+tw)" "l ap. ”apt 2p.m? Em* E(E+x)’

PPiSwPs + PPiSia + Sapep (m—x)
(E+x) (E+m)Em  m(E+x)  m(E+m) (E+x)

Making then the change of variables p.~e.Ym*~»% e.=%1, we obtain the explicit form of the opera-
tors J04 and J4a in the #(4, 3). basis,

VSVt =

VASabprA_i=Subpb +

Thus, we have arrived at the final result.

THEOREM. The space H of a unitary irreducible representation of the group #(1, 4) with »® > 0,
P_ > 0, decomposes into subspaces corresponding to unitary irreducible representations of the subgroup
P(1, 3) with the following values of the invariants M? and W2: w*<m*<oo, |j—t{<s<j+1. The operator of
the transition from the basis |p, pi, js 75 j, T, > to the F(4, 3) basis is given by (2.20), and the operators
and P in the #(1, 3) basis have the form

H.V
=VPz+mz, Pu=pu, P4=8‘vmz+)€z, 8‘=:t1, Jab=ipb»—a-— _— ip“—ag + Sﬂb, 10n=_ip0 é —_— Mb_
apa 0]71; ap,, E+m ’
4 S P
JOA‘—"ZE{QH-Vi_ z’ }_i ‘p [l (2'22)
om m m

x? 0 w: @ ‘KP«SAbe K Sabpb "
Ju=. a{ —Vih_,_-}"“. Vi————_ + —Sa’
R m omf m p,  m(E+m) e Etm m

where {4, B}=AB+BA.

Remark. If we set » = 0 (p, # 0) in (2.22), the operators J,, and P, take the form [1]
(R 9 8 9
P=Yp*+m?, m*=p?, Ju=ip,— Lp,, +Saz,, ]o/,-——lE{BA‘Vl }
apa 6m

_ { V P }—t V1 KD e Sem
= pa € il €1 z 0pu E+m .
2. In the case ®® < 0 the generators of the canonical irreducible representation of the group
P(1,4) are

J— a a a
Po=Vpi—v, Pi=ps, FP'=—10", Ju=ipy———ipa——"1Su, Jou=—ips
6p,, 0p,, 6pu
] _; g _ Lp 0 _ Subpb—SuPo — d SOapa
as=tDs p a p. potn » Jo Do 3 P4+7]

where S, are the generators of the irreducible representation of the group SO.(1, 3). By means of the
isometric transformation
Swp
V=exp (—z 2 arcth ——)
P E

and the subsequent change of variable p.—e.,Vm*—x*, we obtain
P0=Vpaz+m—2, Pa=pa, P;—_—&sz“l"'f]z,

A d 0 SaxPs 8 N SoaPs
=Dy e — [P —— Joa=—ipy ———— ———, —ipgm—t — ——,
Ja=ips Y ipa ap Sa,  Jouw=—1ipo i B Jou=—ip, o
9 NPaSasPo L V 0 Sy
1+ - L U S et S " —_—— .
{V } ie VY mi+q? — Ty (B wtef 1 -

If pi > 112, these equations define the representation of the group #(4, 4) in the #(1,3) basis.

3. In some physical problems in which the #(1, 3) symmetry is broken but there is still sym-
metry under the subgroup #(1, 2), it is convenient to use the (1, 2) basis. In connection with this, it
is of interest to continue the reduction with respect to the subgroup #(1, 2). This means transition to a
basis in which the generators P, Pa, Jos (o, =1, 2) have the canonical form
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—_— g d a SesPs
Py=E=Vp,*+m Z’ Po=pa, 22 2,‘ S Y R By =g = — o, )
0= VP‘ ey Doy Mo =m*+ps’, . Jp=ip, i P apz"‘ 2 o Ipe 9p.  Etms

Let us find the form of the remaining generators of the group £(4, 4). For this, it is sufficient to deter-
mine an operator V3 satisfying the conditions

VPV =E, VP Vs =pa, (2.23)
3 S
ViV st =—ips " Eﬁ’)‘; , 2.24)
where the operators P, Pq, Jo, S« are defined in the % (1,3) basis.
We represent V3 in the form
SE (-4 il S
=R, exp (i_ﬁ— 8, ) iple=V it pot, 2.25)
where R, and 0_ are certain functions of P, b, and |p I3, Py P, respectively. To determine these
functions, we substitute (2.25) into (2.24). Then
6 S‘z Sq. 3 - Sa
[Va",*'po __ ﬁPﬁ]Vaz_ P | {(m~ms)Sasps ' (2.96)
dpa  E+ms Et+m  (E+ms) (E+m)
Using (2.21), we obtain
d  Sasps Pa 08s  Swp SasPe Pe Sspps
Vit —ipy——— ] = Y —my——(1—cos 0;) + —— (Su _— ) in@, (2.27
[ LT T Etms pls 3lpls  Ipls Tols T Tn s 1pls /0
whence .
0,=2 arctg lpis (2.28)

(E+ms) (mg+m)

We choose the factor R s in the form R3 = Vm,/p

; » and then the scalar product in the #(1,2) basis has
the form

(p‘, (pz)—— jdmj.dma j"‘“@x Q2.

Now, using (2.24) and (2.27), we can fmd the action of the generators J,., J,,, J,, of the group
#(1,4) inthe £(1,2) hasis. We have

PRV I .
eV G G )
R W e T

v} [ () [ 1 (2) |2V o () 222

3. The Reduction #(,»n)~2(,n—1)~>...>P, n—k)

1. We show first how a representation of the algebra #(1,n) can be specified in the #(1, n—1)
basis. The canonical irreducible representation of the generators of the group #(4, r) is given by

- a3 ]

Po=E=Vpkz+'/~z, Pk=pk, k:*i, 2, P (N ]abzipb———‘ ipav—_'!+ Sab, a, b<n, (3. 1)
: "~ 0p. dps
X 7l S@pb S».npn
] =—1iPy 7 —,
(9pa P0+x Pn+%
0 Supe 8 8

J —‘“7/ s ]an=. nh—i a‘-'_+Sam (3.2)

Po 0p,, potn’ ks 0P P 3pn

where S,, are the matrices of the irreducible representation D(m,, m,,..., m.z) of the algebra SO(n),

and m; are the Gel’fand—Tsetlin numbers. The operators (3.1) are Hermitian with respect to the scalar
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product
(¥, ¥ 2)———j'-——.\l:’ . (3.3
In the #(1,n—1) basis, the generators (3.1) have by definition the form of a direct sum of the

generators of the canonical representations of the group #(4,n—1). If the representation of the algebra
80(n) is specified in the basis SO(r)>SO(n—1)>..., then these generators have the form

[ d a2 0 Sabpb
e 2 B 2.y, 2 Do J oy ==iDp = — iPg=——T Sas, —— R
Py=E=VPj+m.?, m,=x*+p,? Pi=p,, Ju=ips s ip m Sary  Joa=—ipy—— 617“ Eim. (3.4

The problem of finding the explicit form of the generators P, and J,, in the #(1,n—1) basis reduces to
finding an isometric operator that transforms the generator (3.1) to the form (3.4).

By analogy with Sec.2, we shall seek the transformation operator in the form

V,,=R,,exP('%£“—e,,), | |pl,.=(y_|p:)vz, (3.5)

a<<n

where R, and 0, are certain functions of p, and p,, ipl,, respectively, that are to be found.

The operator V, transforms (3.1) to (3.4) if

Sabpb(%—mn) szpn
Vi Jwel V= + . .
[ ] (E+m,) (E+x)  E+x (3.8)

Substituting (3.4) and (3.5) into (3. 6) and using the identities

Pa Snbpb
ipl. Ipla

V lliv —— a Da aen Snbpb abpb

dp. 9p. Ipl. dp lpl. fpl"
VnSabprn_lzp (anui/,,"-—xa),

1
(1—cos0,) — ( Sha— ) sin 0,,
Ipla

we arrive at the equation

a 66,, S,. a a5 n -
P £ Do m[ b 0b (1—cos 0,) — 1 (SM__ PoSusPs ‘)] __ Sasps (x—m,) + SnaPn
Ipl. ~ @lpla ipla

pl. Ipl. ol 71 (Etm) (E+x)  Etx
Equating the coefficients of the linearly independent vectors ‘p“l Sl""ll"’ S“"’p*l‘ and S.., we obtain a system
Pla [Pla n

of equations for the required functions 0,:

99, M |plups P {x—m.,)

—_ 9,=0, . h =t m,(cos 0,—1) = e — (3.7

0|p(n TR ——sin m,sin 0 ix m,(cos 1) tm.) (E+)
The solution of the system (3.7) is given by

‘ nyen
6,2 arctg e 172 (3.8)

(E+m.,) (matx)’

From the normalization condition of the basis vectors we find that the factor R, = vm,/p,,.

Now, using the explicit form of V,, we can readily find expressions for the generators J w and
J  in the #(1,n—1) basis. Taking into account the identities

an

vl o, 9 PaPnSasDe PaSea SusPy (Ma—x)
m T ope Emn(BEimy) (Etr)  ma(Etw)  m.(E+m.) (E+x)

m, +xE + DS noPs (My—2) + PnSasDo

.—i=
VnSnaVn Sna m,.(E+x) mn (E+m,,) (E+%) mﬂ(E+M) ]

1 in® )

V6V~‘0+S (“ -
g VTSl T Onle T B (Bt 2pam

0Pa 0p,

and making the change of variables p.—e.Vm.*—x*, we obtain

S LY () eV - () &
{8" = ) om S T t= m. ﬁpa

PuS wps ‘l/ ( )z SasPo %
————— ¢ 1— +_Sna1 = n/I 1!!1 (3.9)
M2 (E+m.) m, | (E+m,) m, =Pl 1P
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¥ Sﬂﬂa
Jcn=__E{s"V1 ( ) }——.‘ Pe
dm, m, Mm,

Thus, we have found that the explicit form of the generators of the group #{1,#n) in the #(1, n—1) basis is
given by (3.4) and (3.9). The generators (3.4) and (3.9) are Hermitian with respect to the scalar product

had dan=t
(ps, @2) = jdmn Z 9Ep ¢ {n, m)@.(m, m),

n

where 7 is the set of numbers that characterize the irreducible representations of the group SO(n—1)
contained in the representation D(m,, m.,...,m |-,L] ).

2. We now obtain a representation of the algebra #(4,n) in the #({,n—2) basis. Using the above
results, we conclude that the operator

Np—y . Sas aPa pn—ilpln-i
V- =]/ (z et ) (3.10)
! Dn—1 £xp ' I ;n 1 e (E+mn—-1) (mn+mn—i)

h
where m, ;= (x*+p.2+tpas)®  |plai= ( Z paz) , transforms the generators (3.4) to the form

a<n—1 ———
P0=E= -Vpaz-l—m:_i, Pa=pu, a<n"1, Pn=5nvmﬂ2—’%2‘1 Pn—i=8n—i —l/m:—i'—mnz,
(3.11)

/] 7] 7} Subpb n, 2 7] m, S, D
Jaomipy e — iPam—t Suyy  Jaam iy — g —E{I/L—( . ) } r Zooiebe
s=1Ds T ip i ab o ipe o7 Etm. Jon—1= T o ——

To specify the form of the remaining generators in the #(1,r—1) basis, it is sufficient to find the gene-

rator J, , . [the others can be determined from the commutation relations (1.2)]. Using the identities
- 0 H nprn— Sﬂ“ cra A ki3
Vi BebrSiae  pn
dp. Op, m.m*_E 2 m_,
- 7} m, i im,?
n— -_—Vn—'—:' +Sn- uu( - ) »
i Pk L oy Ty r e ) A,
2
- m“—1+Em Snupapr.—i
ValsSnneiVar i =Sa n-
n e My (BEFm) Moy (E+m,)
we obtain
i % m, 9 < —
Jﬂ"_,=—‘—{1/(1——-—)(1—, )m,._,,———}+—--"m S . (3.12)
2 my Man—y amn mﬂz

The generators (3.11) and (3. 12) are Hermitian with respect to the scalar product

(p1, @2) = jdmn jdm,.- Z _[

where a denotes the numbers that label the 1rreduc1ble representations of the algebra SO (n—2) contained
in the representation D(m,,m,,...,m ,—2] ) of the group SO(n).
2

(pi (mn—h Q) @2 (mnn—h (Z) s

3. Similarly, a representation of the algebra %(4,») in the #(1,n—3) basis can be determined.
Subjecting the generators (3.11) and (3.12) to the transformation

v _V_mn~z ox (2LS ~20[a arct Ipln—zpn—z )
e Pn-2 P | /In—: € (E+mn-z) (mn—z+mn—x) ’

o
Ipln—z=( y p:) \ Mmea= (DD gl )

a<<n—2

and remembering that (3.12) and (3.2) commute, we obtain

————— 2
P,=E, P9=Pa, Pﬂ:snymnz—xz’ P, i=t, an—a"mnzy

. 6 . a 2 2
Jo=i——pp—i==—potSu; @, b<n—2, P, ,=—e.,|m,,—m,,
dpa Ip,
i (P 2 S | [PosPuy 0 6.1
i B My n—2 afla - it n— MMy
Jun—2=—*“—E{ 2 3 }"" ! 2 p ) Jn—in-z—"—{ : zy }+ 2S-r.n—2,
2 Mp—2 amn-—z mn—z My—2 2 mn-i amn mzn_‘
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i (PP, ] KMy
J,,,,,_ =_{ s n—g, }+ n lsnn_ .
i 2 m, Om,_J). m,: !

4. Subjecting the generators (3.13) successively to the transformations

Myey Sn-—l apa Ipln—lpn—l
Vo= V exp (21. arctg —-— )
pn— Ipln—l (E+mn—l) (mn~l+mn—l+l) ’

. s d Y
|p|n—1= ( Z Paz ) y My = ('Kz+ Z‘pnia ) ’ l=31 4, ey
2531

a<n—1

where

and using the results of § 1-3, we obtain

— — . 2 2
PO*Ey Pa"‘pay Pn—a_en—a an—a—m,,_u“, (1,<k,

Joim—ipom Saps a,b<n—k, 1, 9 9 ,+s (3.14)
o= P e — =i e py—i—— patSa, .
o P Ops + E+mu_py * aps P aps ’ e
p,_. i My a1 Si-u afle ] i Pn—apn—a.-l-l 9 HMp—g gy
Ton-a= _—2E{ Moo Om,_ u} T ma. e _3—{ Mo 0mn}'+ O nmak

n—r

The generators (3.14) are Hermitian with respect to the scalar product

(@, 92)= jdm,,_,‘ jdm,,_,m . J-dm,, Z‘ d
L

where A is the set of numbers that characterize the representations of the group SO(n—k) in the repre-
sentation D(m,, ms,...,m [ ,,] ) of the group SO(n).
2

-

p (P1+(P27
9

Thus, the generators of the group #(1,r) in the #(4, n—k) basis have the form (3.14). The

R
operator of the transformation from (3.1) to (3.14) is given by V= HV,.-,.

=1

Appendix

In D one can introduce a topology with the countable system of norms

Z 1 Z .
((Pn (Pz)n‘: (‘Ph (A+1) "‘?Pz), A= puz +—2‘ v’y
A wy

where (.,.) is the scalar product in the space H with respect to which Juv and P, are Hermitian, in
such a way that, completing D with respect to this norm, we obtain a space ¥ which has the following
remarkable properties: 1) ¥ is dense in H; 2) the enveloping algebra E(#(1,4)) is the algebra of con-
tinuous (with respect to the topology of ¥) operators on ¥; 3) ¥ is nuclear.

We give the proof that ¥ is nuclear, Using the results of [8] and the fact that the group #(1, 4)
can be obtained by contracting the group SO, (1,5) in the Indni—Wigner sense [9], it is suff1c1ent to show
that there exists an operator X belonging to E(SO, (1,5)) for which X* = X** and X-! is nuclear.

~ Consider the operator A = (C + 1)*, where C is the Casimir operator of the group SO, (1,5) of
second order. It follows from Nelson’s theorem [10] that C and C” are essentially self-adjoint, and
therefore A* = A**,

We show further that A~ is a Hilbert—Schmidt operator, Obviously

1
P =a

where P, are projectors onto the subspaces H; (H; is the eigenspace of the Casimir operator C with
eigenvalue ¢ i). In addition, it is easy to show that for sufficiently large n

2 (—(_c_'i_j-—l)_"dim H; )z<eo

Thus, A~! is a Hilbert—Schmidt operator. Since the square of a Hilbert—Schmidt operator is always
essentially self-adjoint, we can take X to be the operator ( A~Y)?, Thus, ¥ is nuclear. It follows from
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the properties 1-3 that in our case the nuclear spectral theorem applies and the vectors |p, pi, js, 135 /, T, %
of the canonical basis belong to the space ¥* (¥ cH<=Y").
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