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We consider tensor-bispinor equation which describes doublets of particles with
arbitrary half-integer spins and nonzero masses interacting with external electromagnetic
field. We use this equation to describe charged particles interacting with constant
magnetic and electric and magnetic fields.

1 Introduction

Theory of higher spin particles is an important subject of modern theoretical physics.
Theoretically, it is an essential part of modern theories of unification of fundamental
interactions [1]. Experimentally, a number of baryonic resonances with spin %, %, %,...,
% were indicated, and so particles with higher spins are real physical objects which need
a theoretical description.

The problem of deduction of relativistic wave equation for particles with arbitrary
spins started with the Dirac paper [3]. It attracted attention of great many of inves-
tigators including such outstanding physicists and mathematician as Pauli, Bargman,
Wightman, Wigner and others [4]-]9].

However, till now we do not have a satisfactory theory of a single relativistic particle of
spin s > 1, in as much as all known relativistic wave equations for particles of higher spin
lead to serious difficulties by description of interaction of charged particle with external
fields. Here we mention the causality violation discovered by Velo and Zwanziger [10] for
the Rarita-Schwinger equation, incompatibility of the experimental value of gyromagnetic
ratio g = 2 with theoretical g = 1 and others [11]-[14].

In papers [15]-[16] the tensor-bispinor equations for particles of arbitrary half-integer
spin were proposed, which do not lead to the above mentioned difficulties. In absence
of interaction these equations are equivalent to ones described in [17]-[20]. To avoid the
difficulty with incorrect value of the gyromagnetic ratio a special interaction with the
external electromagnetic field was introduced, which, in contrast with the usual minimal
interaction, leads to hermitian quasi-relativistic Hamiltonian for a particle of spin s > %

In the present paper we consider tensor-bispinor equation with quadratic anomalous
interaction. In Section 2 we formulate a free tensor-bispinor equation for a particle with
arbitrary half-integer spin. Minimal and anomalous interaction is considered in Section 3.
In Section 4 we introduce the generalized anomalous interaction quadratic in strengths of
3
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with a constant and homogeneous magnetic field is considered in Section 5. In Section 6
we describe motion of a particle with spin % in electric and magnetic fields.

2 Free equation for doublets

In this section we present a model of a particle with an arbitrary half-integer spin
described in terms of irreducible antisymmetric tensor-bispinor Wit il val-lunval o
rank 2n (n = s — %) Here the indexes pu, v take the values 0,1,2,3 and v = 0,1,2,3
is a bispinor index. More precisely we find a casual equation of motion for two parti-
cles with arbitrary half-integer spin and opposite parity [15]-[16]. The tensor-bispinor
is symmetric w.r.t permutations of pairs of indices [uk,vr] «— [, ], antisymmet-
ric w.r.t. permutations of indices pr «— v and has zero convolutions with metric
tensor g,, and absolutely antisymmetric tensor €, ,, 4,,,- In addition, tensor-bispinor

Ylramllpevel. lunvn] gatisfies the condition

Yy O]l —1vn ] — (2.1)
and solves the Dirac equation

(yap? — m) Wl villinvn] — @, (2.2)

Here p, = i% and <, are the Dirac matrices acting on spinorial index v of

\I/LM’Vl][“2"/2]"'[”"“1'"] which we omit . A consequence of (2.1) and (2.2) is the follow-

ing constraint
puryV\I][NV][Hl”l]-u[,unfll’nfl] =0. (2.3)

Below we consider a particular case of (2.1)-(2.3) for spin s = 2 (for the general case
see [15]-[16]). For s = 2 equations (2.1)-(2.3) can be written as a single equation

v 1 12 1% lo
(0t = m) T 4 = (P — D) (VY0 — Yoy,) P -

12
1
_E(Wwv _ ’yV’Y”)(pp’yg _pa,yp)\l,[pa]+ (2'4)
1
+ﬂ(’7u’y” — ’}/V’y“),}/)\p)\(,yp,yo_ _ ,yo_,yp)\y[pa] —0.

The Lagrangian corresponding to equation (2.4) has the form
S = \T/[MV]L[’WMPU]\I/[W,] (2.5)

where

12 o o _V vo 1 v 1% o (o
Llleo) = (yyp* —m)(g"7g"* — g"Pg )+ﬁ(p"7 — ') (YPT — )~ 26)
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and levl — (\IJ[I“’])T»YO.
The related propagator reads

A
GIledl (p) = (np” +m) [}(gupgw — ghogrP)—

1 p2 _m2 2
——— (" =) (P = p7yP)+
121m (2.7)
(75 2N 7 ) PACT _ AT AP
+7121m(p V=) (T =7 )+
. (ABAY  AVAMR AN(APAT _ ATAP
Fog (Y =) (7777 = 7).

3 Anomalous Interaction Linear in Electromagnetic
Field

The minimal interaction can be introduced into equation (2.4) via the substitution
Pu — Ty =Pu — €Ay (3.1)

where A,, is the vector-potential of electromagnetic field. As a result equation (2.4) takes
the following form

1% 1 v 1% o
(7 = m) el 4 (™ =) (10 Yoyp) WPl —

— 13" =) (e — Toryp) TP+ (3.2)
1 v v o
57 (7" = Y AYINTA (%0 = 107,) BT = 0.

Following Pauli [4] we can generalize (3.2) introducing anomalous interaction
A ) o Yy v [po]
(™ = m)WH 4 o (= ) [, 76 |7

1
_E[Vua%](ﬂ,ﬂa - WJWp)\II[pU]"‘ (33)

1 . Lo
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where T[[;;]] depends on strengths of electromagnetic field.

Contracting (3.3) with £[v,,7.] and (7,7, — m,7,) we come to the following con-
straints

Yy @ = %VWVT;;WGI, (3.4a)
7TN,YU\I/[W] _ %(FHV _ VA%F/LA)\I,[WM
+48Lm[%7 Yo P [y ) Ty @I — (3.4b)
_ﬁmﬁ)\[%ﬂ »yV]T[)‘:\I/[pU] + #W#%T%f\y[pa]



where FH = i(p*AY — p¥ A*)

Substituting (3.4a) and (3.4b) into (3.3) we come to the equations which in general in-
clude second order derivative terms. It is not difficult to show [15]-[16] that this equation
is causal and remains first order equation provided T satisfies the conditions

YT =0, (3.50)

YTy = 0. (3.5b)

Both conditions (3.5a) and (3.5b) are satisfied if we impose the following restriction
YT}y = 0. (3.6)

Starting with tensor F*¥, ¢#*?? g, and <, one can construct the basis of antisym-
metric tensor-bispinors linear in F'*V:

T{, = Eiviye — Fiyve — FLy"y, + Y,

172 v v v v
Ty o = Ejoy — Fy ol — Fyo, + FJob,

T, = VAN Fpabl — My FpabY — 77y Fordl + 4y Fordl 4+ 7y FY 64—

—Yo Y F{ 68 + ey FY0) — ey FY Ok,

Ty, = (8468 — 6401 ) vays F P,

T, = Va(FUSY — FYo8 — FE§Y + FYom),

T o = 1a(Fhepy — FLeph + Fope®™y — Foge®)), &0
T7hy = (VY = ") Fpo + F (V% = Yop)s
TE = VY Fpadl — Py a8y — 4"y Fordt 4+ Yy  Foxdl — 4y FY 61+
AV FY 08 — e FLL8Y + oy FY Ok,
T o = va(Fh ey — Foet — Fape®y + Fage™),
TiS oo = (V" = VY ) oo = F* (VYo = Yop)5
here F1 = %dp‘ng”. Then the general form of T/ is
10
T = o T, (3.8)
=1

where «; are arbitrary constants.



Using (3.6) and taking into account that the Lagrangian corresponding to equation
(3.3) must be real and so T} = Ti#  we come to the conditions

po
A
041:()[6:70[9:5
042:2)\
N (3.9)
a3 =ag =73
a4:a5:a7:a10:0

Substituting (3.6)-(3.9) into (3.3) we write equation (3.3) as

e
(™ = m) BT — (14 ) (Fy " = Fy70) 27+
F(1 4 N (YA E Bl — A wlevly (1 4 4)\)(}7#\1;@”] _ F:q;[pu])+ (3.10)
(14 20 pue  Fo\wleoly = 0,

Equation (3.10) can be reduced to the Dirac form [15]-[16], [21]. It can be shown
using the substitution

1
ALES §€abc(¢£l) + (DEZ))
) 3.11
g0 = L@@ —aM), abec=123 o
g9 ¢ c b » e

where @£ and &2 are bispinors. Using (3.11) equation (3.10) can be written in the
form:

(D7 — m + ﬁa - iF4)(£(g — [y, Ty + gr) F )00 = 0, (3.12a)

(T = m+ = (1+iT0) (£ (g = [Ty To] + g70) )W) = 0 (3.120)

1 1 1 2 2 2
where g = 2(1 - 3), v® = (@{", o), o{")T, @ = (¥ o) T, 5, =
0w, Ty] + 74 and 7, satisfy the relations 74y = €apeTe; Toa = T4, TaTa = 7(T + 1);
[Ta, Tv] = t€abeTe, @, b, ¢ =1,2,3. Matrices I, and 7, can be represented as

Ty=7, @Iz, 7o=1I4® %, (3.13)

symbol ® denotes the direct product of matrices, 7, are 3 x 3 matrices, realizing the
representation D(3) of the algebra AO(3), I5 and I4 are the unit 3 x 3 and 4 x 4 matrices
correspondingly.

Constraints (3.4) in the representation (3.11) are reduced to the forms

(D +m) (1 +iTy)(S,, 5" — 3)| M) = 24mT ), (3.14a)



(Dt +m) (1 —ily)(S,, 5" — 3)| ¥ = 24mb(2), (3.14b)

Thus introducing the anomalous interaction we obtain an additional freedom in def-
inition of the value of constant g. For example, we can choose such value of g which
corresponds to the simplest from of equations (3.12). Thus value is nothing but g = 2!
We see that it is the generally accepted value of g which corresponds to the most compact
version of the motion equations (3.12).

Finally we notice that Hamiltonian corresponding to equation (3.12a) (or (3.12b)) can
be diagonalized using Fouldy-Wouthuysen transformation [21] and reduced to the follow-

ing form in the non-relativistic approximation * makes the small parameter % ”invisible”
):
2 4 SH e OF,
H= — ——— —eg— +eA ab—_4 _
72n+ 2 sm? Tom 26 ot 48m? @ oxy
€9 2 = . . = S5eg* .. = (g—2)e 0H, 3.15
- S(Exp—pxE)— divE — " - (3.15)
tom2 B} PP B) = qg pdivE = T (Qugy,

Here Qup = 3[Sa, Sp)+ — 150ap, Sa are 4 x 4 matrices realizing irreducible representation
D(3) of algebra AO(3), E and H are vectors of the electric and magnetic field strengths.

The terms m+ % +eAp represent the Schrodinger Hamiltonian (with the rest energy

m), 8’% is the relativistic correction to the kinetic energy, eg% corresponds to the

dipole coupling with arbitrary constant of interaction g, term i§(ﬁ X p—p X E)

16m?2
e abOE, . . 5692 1
1@ Do describe quadruple coupling and g5 divE

is the Darwin coupling. The last term, which is proportional to (g — 2) is non-Hermitian,
but it vanishes when g = 2.

represents spin-orbit coupling,

4 Anomalous interaction quadratic in electromag-
netic field

In Section 3 we considered the anomalous interaction T}y = T} (F') linear in F#.
Here we introduce interaction quadratic in F'*V.

The simplest way to introduce such anomalous interaction consists in generalization
of equation (3.3) to the form

1
(1™ = m) Wil (' — )y, 3] U7
1 1
_Ehw '7V](7Tp7o - 7707/3)\1][[]0] + ﬂhﬁu VV]WAW)\[’YP7’VU]\I/[I)U]+

v o v o de|
HTE P + T TET WP = 0

(4.1)

3More precisely we consider non-relativistic approximation up to the terms of order C%, but using the
units with c=h =1



where T4 (F) was found in Section 3 (see (3.7)-(3.9)). Using (3.11) we come to the
following equations for ¥(1) and ¥(?) instead of (3.10)

(D —m + ﬁ(l — L) (S, F™ + g1 (S F*)2 — T, T, F#N)TD =0, (4.24)

(T —m + ﬁu +iT4) (g F™ + g1 (S FM)2 — il T, F* ) U@ =0, (4.2b)

Equations (4.1) and (4.2) assume the Lagrangian formulation and include two coupling
constants g and g;. The presence of the additional (in comparison with (3.12a), (3.12b))
constant g; makes it possible to overcome difficulties with complex energy levels for the
particle in constant magnetic field when g # % .

5 Particle with spin s = % in constant magnetic field

In this section we consider the problem of interaction of a charged, spin % particle
with a constant and homogeneous magnetic field. We demonstrate that for g # % this
problem leads to the known difficulties with complex energies and demonstrate that it
is possible to get over this difficulty using the generalized model (4.2) with a bilinear in
F,,, anomalous interaction.

We start with equation (4.2a), which can be expressed in the form

(mur = m? o S P+ S P =0, (5.1a)
(S5 —15)w') = 0, (5.1b)
1
o® _ 1 g 51
= el ML S8 (5.1¢)

(a similar equation can be obtained starting with (4.2b)).
For the case of the constant and homogeneous magnetic field the vector-potential A,
and the field tensor F),, are

A():AQ:Ag:O, A1:H132
FOa :F23 :F31 :O, a = 1,2,3 (52)
Fio=H;=H,H >0,

H is the magnetic field strength.
The solution of equation (5.1b) can be represented as [21]

o

2

3
2

%(s + %Saﬂa)tb

3
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o 3
a%a%a 0 = (OaO)Ta (Klz)mm’ +

N

3
3 _ /9 ) r_ 3
Here (K3 )mm' = Ommry/3 —m? m,m' = —5,—

(K3 )mm: = £0mam \/% Fm(m F1) £ 3m, CD(%I) is a four-component spinor which sat-

(5.4)

isfy the equation
[p? + e2H?x3 — eH(gS3 + 291 S5 H + 23;‘2])1]‘1)(;) = (e2 - m2)®(§1).
2 2

So the problem of describing the motion of particle with spin % in the constant magnetic

field reduces to solving equation (5.4).
3
Using eigenvectors €17, of matrix Ss we can represent @ 3 in the form
3
(5.5)

2 3 3
oY) = exp(i(pi21 + psws)) D fE (@2)0,

—_3
m=—3

3
are unknown functions. The functions f? satisfy the equation
d2 3 3
( + y2> £2(y) =nf2u(y)

dy?
= 5(291 +VeHy).

where 1 = % +v(g+201vH), 29 =
Requiring f%l,(y) — 0 when y — +00 we have

n=2n+1, n=0,1,23,..

where f,% (z2)

Then the energy levels are
e2=m?+pi+eH?2n+1—v(g+20vH))

and eigenfunctions f,j% (y) take the form
3 . 7€H$2—P2 h eHxo — po
fV (IQ)exp< 2€H n \/E )

H,
where h,(y) = HHnEz;H, H, (y) are Hermitian polynomials.
3

The eigenfunctions ®2 were obtained in [21].
If the gyromagnetic ratio takes the physical value ¢ = 2 and g; = 0 the energy
el - 1. However, if the coupling

eigenvalues (5.6) can take complex values provided o -
constant gy is non-trivial, it is possible to get over this difficulty. Namely, in order that

€2 >0 for all H, g and g; must satisfy the following condition
39 — 2)%
g < 392 972m2) . (5.7)



Finally let us discuss the physical meaning of (5.6). Expanding it in power series of

L we have
m

le|=m2+pi+eH2n+1—v(g+2g1vH)) ~
2

p3 1 vg (58)
=~ 7+Q + - — = — g H).
m —+ m (n B Vg1 )
_ eH 3 113
HereQ— andy__§7_§’§’2.

We see that | € | contains the kinetical energy of motion of the particle with spin
% in magnetic field and quantum part which includes two parameters, i.e., n and v. If
g =2 and g1 = 0, the energy levels (5.8) have a specific degeneration typical for theories
admitting parasupersymmetry with paraquantization parameter p = 3 [23]. And it is
possible to show that the related equation (5.4) indeed admits this parasupersymmetry.

Supposing arbitrary parameter g; satisfy (5.7) we overcome the inconsistency with
complex energy levels which appears by description of particles with spin % and g =2 in

the constant magnetic field.

6 Particle with spin s = % in crossed electric and
magnetic field.

Extending the results present in the previous section let us use equation (5.1) with
nonlinear anomalous interaction to describe a particle with spin % interacting with crossed
constant electric and magnetic fields.

We notice that such problem was considered in papers [24]-[26] for particles with spin
0, # and in paper [27] for particles with an arbitrary spin and minimal interaction.

We can restrict ourselves to the parallel and orthogonal configurations of electric and
magnetic fields (all others configurations can be obtained starting with the mentioned
ones using Lorentz transformations [24]-[26]).

a) E Hﬁ . For constant and uniform electric field E and magnetic field H directed
along z axis we may choose E = (0,0, E), H = (0,0,H), A, = (x3E,22H,0,0) and
E # H. After substituting (5.3) into the related equation (5.1) we obtain

[(po — exsE)* — (p1 — ex2H)? — p3 — pj — m®

6.1
+egSs(H — iE) + 2eg1 53 (H — z'E)2)<I>(%1) —0 (6.1)
Presenting <I’(§1) in the form
2
%
3
(D(%l) = exp(ip171 — €x0) f(2) Z gy (z3)822 (6.2)

—_3
v=—3

where f(z2) and g, (z3) are unknown functions, we can decouple (6.1) to two separate
equations for f(xz2) and g,(z3). Solving these equations with using the results [24]-[26]



we find CIJ(;) in the form
2

Hj)?
<I>(§1) = exp(ip1x2 — £x() €Xp _—(p1 + exaHlj) hi(x2)
2 2eH

in2 3 ' B (6.3)
X exp <2> ZGI]/(_i(SV’ —iz))Q2, j=1,2,
3
-3

where p; and ¢ are constants, h, (z3) = |ZE§3|’ H, (x2) are Hermitian polynomials, z =

2 . 2 . 2

\/‘%H‘(g —exsE), 6, =™ ‘6”9““’;1;"3)(—;;1)9“’{—“) ,n=0,1,2,3, ..., GL(=id,, —iz?) =
F(3(1—146,), 3,—i2?) and G%(—ib,, —iz?) = F(5(1 —ib,) + %, 2,i2?)Viz?, F is the
confluent hypergeometric function. So, in this case, the energy levels are not quantized.
b) E_LH. Setting E= (0, E,0), H= (0,0,H), A, = (x2F, 22H,0,0) we obtain the

following equation for ®%
2

[(po — ex2E)* — (p1 — exoH)? — p3 — p3 — m?

. o 2l (6.4)
+eg(SsH — iSoE) + 2eg1 (SsH — iS2F) ]q)% =0.
Representing ®% in the form
2
%
3
<I>1% = exp(ip1x1 + ipsx3 — i€xo) Z P,(z2)022, (6.5)

2
2
substituting (6.5) into (6.4) and using transformation P, = U,,' P, (x2) we come to the

equation
2

d .
[(e — exoE)? — (p1 — esz)2 + — p% — mZ]P,,(mg) =

. d51722 (6.6)
eUVI/' AV’V” U;/ly/// PI/”’ (1‘2)
where
Au,l/ = 69(53H - iSQE)V-V’ + 2691(S3H - iSZE)zzl,l/
and Uy Ay o Ut i = Ay
Solution of equation (6.6) have the following form
E=H: P,=(a—2eHy(p —)x2), (6.7)

where @ is Airy function, a = (p2 + p? + m2 —£2)y and v = (4e2h%(p; —€)?)~ 3. So, the
energy levels are not quantized;

122

E+H: p,,(m)—exp( 5

> GI (—icy,, —iz?), j=1,2. (6.8)

10



2 2 2 2 2
Here a, = — (BHPLEsicds o TSR ) - VB2, 0, = igun — 3g10%°,

&= Jen(wy + ),
If E > H, —iz? becomes purely imaginary and energy levels, like in the case F || H,
are not quantized. When E < H, —iz? is purely real and energy levels are quantized:

2 N 2
nE n
(= B7) = (%) (ot Dl + e, 428+ m) (69)
where ' = —in. If we put E — 0 we come to formula (5.6). For g; — 0 relation (6.9)

reduces to the form obtained in [27].
Finally we notice that the elements U,,, of matrix U can be found from the system
of algebraic equations

((2 — l/> <;) +v+ 1)) Uw/’+1 +2(V_ /\l/) U+
. (6.10)

3 3 2
+ ((2 +V> <2 —V+]->) Uppr—1 =0,

here U,s =U,_3 =0.

v—3
7. Discussion

We present equations for doublets of particles with arbitrary half-integer spin s, which
describe tensor-spinor wave function and does not heave acausal solutions. Moreover the
equation for particles with spin—% was considered in detail.

We also show that equations with anomalous interaction and g = 2 generate the
hermitian Hamiltonian at least in the quasi-relativistic approximation and describe spin-
orbit, quadruple and Darwin couplings. These equations are easy-to-use for solving
standard quantum mechanical problems. Moreover, as it was shown in [21] the equation
for doublets in representation (4.2) does not become much more complicated with the
growth of spin value.

Finally, for g = 2 and g; = 0 the inconsistency with complex energy levels arises for
the problem of motion of particle with spin in the constant magnetic field. Using the
nonlinear anomalous interaction with a non-trivial constant g; we found the condition
for the parameters g and g; when energy level for particle with spin s = % be real for
any magnetic field strength.
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