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We consider tensor-bispinor equation which describes doublets of particles with
arbitrary half-integer spins and nonzero masses interacting with external electromagnetic
field. We use this equation to describe charged particles interacting with constant
magnetic and electric and magnetic fields.

1 Introduction
Theory of higher spin particles is an important subject of modern theoretical physics.

Theoretically, it is an essential part of modern theories of unification of fundamental
interactions [1]. Experimentally, a number of baryonic resonances with spin 3

2 , 5
2 , 7

2 ,...,
13
2 were indicated, and so particles with higher spins are real physical objects which need
a theoretical description.

The problem of deduction of relativistic wave equation for particles with arbitrary
spins started with the Dirac paper [3]. It attracted attention of great many of inves-
tigators including such outstanding physicists and mathematician as Pauli, Bargman,
Wightman, Wigner and others [4]-[9].

However, till now we do not have a satisfactory theory of a single relativistic particle of
spin s > 1, in as much as all known relativistic wave equations for particles of higher spin
lead to serious difficulties by description of interaction of charged particle with external
fields. Here we mention the causality violation discovered by Velo and Zwanziger [10] for
the Rarita-Schwinger equation, incompatibility of the experimental value of gyromagnetic
ratio g = 2 with theoretical g = 1

s and others [11]-[14].
In papers [15]-[16] the tensor-bispinor equations for particles of arbitrary half-integer

spin were proposed, which do not lead to the above mentioned difficulties. In absence
of interaction these equations are equivalent to ones described in [17]-[20]. To avoid the
difficulty with incorrect value of the gyromagnetic ratio a special interaction with the
external electromagnetic field was introduced, which, in contrast with the usual minimal
interaction, leads to hermitian quasi-relativistic Hamiltonian for a particle of spin s > 1

2 .
In the present paper we consider tensor-bispinor equation with quadratic anomalous

interaction. In Section 2 we formulate a free tensor-bispinor equation for a particle with
arbitrary half-integer spin. Minimal and anomalous interaction is considered in Section 3.
In Section 4 we introduce the generalized anomalous interaction quadratic in strengths of
the electromagnetic field. The problem of interaction of a charged particle of spin s = 3
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with a constant and homogeneous magnetic field is considered in Section 5. In Section 6
we describe motion of a particle with spin 3

2 in electric and magnetic fields.

2 Free equation for doublets
In this section we present a model of a particle with an arbitrary half-integer spin

described in terms of irreducible antisymmetric tensor-bispinor Ψ[µ1,ν1][µ2,ν2]...[µn,νn]
γ of

rank 2n (n = s − 1
2 ). Here the indexes µ, ν take the values 0, 1, 2, 3 and γ = 0, 1, 2, 3

is a bispinor index. More precisely we find a casual equation of motion for two parti-
cles with arbitrary half-integer spin and opposite parity [15]-[16]. The tensor-bispinor
is symmetric w.r.t permutations of pairs of indices [µk, νk] ←→ [µl, νl], antisymmet-
ric w.r.t. permutations of indices µk ←→ νk and has zero convolutions with metric
tensor gµν and absolutely antisymmetric tensor εµkνkµlνl

. In addition, tensor-bispinor
Ψ[µ1ν1][µ2ν2]...[µnνn] satisfies the condition

γµγνΨ[µν][µ1ν1]...[µn−1νn−1] = 0 (2.1)

and solves the Dirac equation

(γλpλ −m)Ψ[µ1,ν1]...[µn,νn] = 0. (2.2)

Here pµ = i ∂
∂xµ and γµ are the Dirac matrices acting on spinorial index γ of

Ψ[µ1,ν1][µ2,ν2]...[µn,νn]
γ which we omit . A consequence of (2.1) and (2.2) is the follow-

ing constraint
pµγνΨ[µν][µ1ν1]...[µn−1νn−1] = 0. (2.3)

Below we consider a particular case of (2.1)-(2.3) for spin s = 3
2 (for the general case

see [15]-[16]). For s = 3
2 equations (2.1)-(2.3) can be written as a single equation

(γλpλ −m)Ψ[µν] +
1
12

(pµγν − pνγµ)(γργσ − γσγρ)Ψ[ρσ]−

− 1
12

(γµγν − γνγµ)(pργσ − pσγρ)Ψ[ρσ]+

+
1
24

(γµγν − γνγµ)γλpλ(γργσ − γσγρ)Ψ[ρσ] = 0.

(2.4)

The Lagrangian corresponding to equation (2.4) has the form

= = Ψ̄[µν]L
[µν][ρσ]Ψ[ρσ] (2.5)

where

L[µν][ρσ] = (γλpλ −m)(gµσgνρ − gµρgνσ) +
1
12

(pµγν − pνγµ)(γργσ − γσγρ)−

− 1
12

(γµγν − γνγµ)(pργσ − pσγρ) +
1
24

(γµγν − γνγµ)γλpλ(γργσ − γσγρ)
(2.6)
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and Ψ̄[µν] = (Ψ[µν])†γ0.
The related propagator reads

G[µν][ρσ](p) =
(γλpλ + m)

p2 −m2
[
1
2
(gµρgνσ − gµσgνρ)−

− 1
12m

(γµγν − γνγµ)(pργσ − pσγρ)+

+
1

12m
(pµγν − pνγµ)(γργσ − γσγρ)+

+
1

24m
(γµγν − γνγµ)γλpλ(γργσ − γσγρ)].

(2.7)

3 Anomalous Interaction Linear in Electromagnetic
Field

The minimal interaction can be introduced into equation (2.4) via the substitution

pµ −→ πµ = pµ − eAµ (3.1)

where Aµ is the vector-potential of electromagnetic field. As a result equation (2.4) takes
the following form

(γλπλ −m)Ψ[µν] +
1
12

(πµγν − πνγµ)(γργσ − γσγρ)Ψ[σρ]−

− 1
12

(γµγν − γνγµ)(πργσ − πσγρ)Ψ[ρσ]+

+
1
24

(γµγν − γνγµ)γλπλ(γργσ − γσγρ)Ψ[ρσ] = 0.

(3.2)

Following Pauli [4] we can generalize (3.2) introducing anomalous interaction

(γλπλ −m)Ψ[µν] +
1
12

(πµγν − πνγµ)[γρ, γσ]Ψ[ρσ]−

− 1
12

[γµ, γν ](πργσ − πσγρ)Ψ[ρσ]+

+
1
24

[γµ, γν ]γλπλ[γρ, γσ]Ψ[ρσ] + Tµν
ρσ Ψ[ρσ] = 0

(3.3)

where T
[µν]
[ρσ] depends on strengths of electromagnetic field.

Contracting (3.3) with i
4 [γµ, γν ] and (πµγν − πνγµ) we come to the following con-

straints
γµγνΨ[µν] =

1
m

γµγνTµν
ρσ Ψ[ρσ], (3.4a)

πµγνΨ[µν] =
ie

m
(Fµν − γλγνFµλ)Ψ[µν]+

+
1

48m
[γρ, γσ]F ρσ[γµ, γν ]Tµν

κλ Ψ[κλ]−

− 1
4m2

πλπλ[γµ, γν ]Tµν
ρσ Ψ[ρσ] +

1
m2

πµγνTµν
ρσ Ψ[ρσ]

(3.4b)
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where Fµν = i(pµAν − pνAµ)
Substituting (3.4a) and (3.4b) into (3.3) we come to the equations which in general in-

clude second order derivative terms. It is not difficult to show [15]-[16] that this equation
is causal and remains first order equation provided Tµν

ρσ satisfies the conditions

γµγνTµν
ρσ = 0, (3.5a)

πµγνTµν
ρσ = 0. (3.5b)

Both conditions (3.5a) and (3.5b) are satisfied if we impose the following restriction

γµTµν
ρσ = 0. (3.6)

Starting with tensor Fµν , εµνρσ, gµν and γµ one can construct the basis of antisym-
metric tensor-bispinors linear in Fµν :

Tµν
1 ρσ = F ν

ρ γµγσ − Fµ
ρ γνγσ − F ν

σ γµγρ + Fµ
σ γνγρ,

Tµν
2 ρσ = Fµ

ρ δν
σ − F ν

ρ δµ
σ − Fµ

σ δν
ρ + F ν

σ δµ
ρ ,

Tµν
3 ρσ = γνγλFρλδµ

σ − γµγλFρλδν
σ − γνγλFσλδµ

ρ + γµγλFσλδν
ρ + γργ

λF ν
λ δµ

σ−

−γργ
λFµ

λ δν
σ + γσγλFµ

λ δν
ρ − γσγλF ν

λ δµ
ρ ,

Tµν
4 ρσ = (δµ

σδν
ρ − δν

σδµ
ρ )γαγβFαβ ,

Tµν
5 ρσ = γ4(F̃µ

ρ δν
σ − F̃ ν

ρ δµ
σ − F̃µ

σ δν
ρ + F̃ ν

σ δµ
ρ ),

Tµν
6 ρσ = γ4(Fµ

α εαν
ρσ − F ν

αεαµ
ρσ + Fαρε

αµν
σ − Fασεαµν

ρ),

Tµν
7 ρσ = (γµγν − γνγµ)Fρσ + Fµν(γργσ − γσγρ),

Tµν
8 ρσ = γνγλFρλδµ

σ − γµγλFρλδν
σ − γνγλFσλδµ

ρ + γµγλFσλδν
ρ − γργ

λF ν
λ δµ

σ+

+γργ
λFµ

λ δν
σ − γσγλFµ

λ δν
ρ + γσγλF ν

λ δµ
ρ ,

Tµν
9 ρσ = γ4(Fµ

α εαν
ρσ − F ν

αεαµ
ρσ − Fαρε

αµν
σ + Fασεαµν

ρ),

Tµν
10 ρσ = (γµγν − γνγµ)Fρσ − Fµν(γργσ − γσγρ),

(3.7)

here F̃µν = 1
2εµν

ρσF ρσ. Then the general form of Tµν
ρσ is

Tµν
ρσ =

10∑
i=1

αiT
µν
i ρσ (3.8)

where αi are arbitrary constants.
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Using (3.6) and taking into account that the Lagrangian corresponding to equation
(3.3) must be real and so Tµν

ρσ = T †µν
ρσ , we come to the conditions

α1 = α6 = −α9 = λ
2

α2 = 2λ

α3 = α8 = λ
4

α4 = α5 = α7 = α10 = 0

(3.9)

Substituting (3.6)-(3.9) into (3.3) we write equation (3.3) as

(γλπλ −m)Ψ[µν] +
ie

m
((1 + λ)(F ν

ρ γµγσ − Fµ
ρ γνγσ)Ψ[ρσ]+

+(1 + λ)(γνγλFρλΨ[ρµ] − γµγλFρλΨ[ρν]) + (1 + 4λ)(Fµ
ρ Ψ[ρν] − F ν

ρ Ψ[ρµ])+

+(1 + 2λ)γ4ε
µνλ
σ FρλΨ[ρσ]) = 0.

(3.10)

Equation (3.10) can be reduced to the Dirac form [15]-[16], [21]. It can be shown
using the substitution

Ψab =
1
2
εabc(Φ(1)

c + Φ(2)
c )

Ψ0c =
i

2
(Φ(2)

c − Φ(1)
c ), a, b, c = 1, 2, 3,

(3.11)

where Φ(1)
c and Φ(2)

c are bispinors. Using (3.11) equation (3.10) can be written in the
form:

(Γµπµ −m +
e

4m
(1− iΓ4)(

i

4
(g − 2)[Γµ,Γν ] + gτµν)Fµν)Ψ(1) = 0, (3.12a)

(Γµπµ −m +
e

4m
(1 + iΓ4)(

i

4
(g − 2)[Γµ,Γν ] + gτµν)Fµν)Ψ(2) = 0 (3.12b)

where g = 2
3 (1 − λ

2 ), Ψ(1) = (Φ(1)
1 ,Φ(1)

2 ,Φ(1)
3 )T , Ψ(2) = (Φ(2)

1 ,Φ(2)
2 ,Φ(2)

3 )T , Sµν =
i
4 [Γµ,Γν ] + τµν and τµν satisfy the relations τab = εabcτc; τ0a = iτa, τaτa = τ(τ + 1);
[τa, τb] = iεabcτc, a, b, c = 1, 2, 3. Matrices Γµ and τa can be represented as

Γµ = γµ ⊗ I3, τa = I4 ⊗ τ̂a, (3.13)

symbol ⊗ denotes the direct product of matrices, τ̂a are 3 × 3 matrices, realizing the
representation D(3) of the algebra AO(3), I3 and I4 are the unit 3×3 and 4×4 matrices
correspondingly.

Constraints (3.4) in the representation (3.11) are reduced to the forms

[(Γµπµ + m)(1 + iΓ4)(SµνSµν − 3)]Ψ(1) = 24mΨ(1), (3.14a)
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[(Γµπµ + m)(1− iΓ4)(SµνSµν − 3)]Ψ(2) = 24mΨ(2). (3.14b)

Thus introducing the anomalous interaction we obtain an additional freedom in def-
inition of the value of constant g. For example, we can choose such value of g which
corresponds to the simplest from of equations (3.12). Thus value is nothing but g = 2!
We see that it is the generally accepted value of g which corresponds to the most compact
version of the motion equations (3.12).

Finally we notice that Hamiltonian corresponding to equation (3.12a) (or (3.12b)) can
be diagonalized using Fouldy-Wouthuysen transformation [21] and reduced to the follow-
ing form in the non-relativistic approximation 3 makes the small parameter 1

c ”invisible”
):

H = m +
π2

2m
− π4

8m3
− eg

~S ~H

2m
+ eA0 +

e

48m2
Qab ∂Ea

∂xb
−

− eg2

16m2
~S( ~E × ~p− ~p× ~E)− 5eg2

16m2
div ~E − (g − 2)e

12m2
(Qab

∂Ha

∂xb
−

−1
3

~S( ~H × ~p− ~p× ~H)).

(3.15)

Here Qab = 3[Sa, Sb]+− 15δab, Sa are 4× 4 matrices realizing irreducible representation
D( 3

2 ) of algebra AO(3), ~E and ~H are vectors of the electric and magnetic field strengths.
The terms m+ π2

2m +eA0 represent the Schrodinger Hamiltonian (with the rest energy
m), π4

8m3 is the relativistic correction to the kinetic energy, eg
~S ~H
2m corresponds to the

dipole coupling with arbitrary constant of interaction g, term eg2

16m2
~S( ~E × ~p − ~p × ~E)

represents spin-orbit coupling, e
48m2 Qab ∂Ea

∂xb
describe quadruple coupling and 5eg2

16m2 div ~E

is the Darwin coupling. The last term, which is proportional to (g−2) is non-Hermitian,
but it vanishes when g = 2.

4 Anomalous interaction quadratic in electromag-
netic field

In Section 3 we considered the anomalous interaction Tµν
ρσ = Tµν

ρσ (F ) linear in Fµν .
Here we introduce interaction quadratic in Fµν .

The simplest way to introduce such anomalous interaction consists in generalization
of equation (3.3) to the form

(γλpλ −m)Ψ[µν] +
1
12

(πµγν − πνγµ)[γρ, γσ]Ψ[ρσ]−

− 1
12

[γµ, γν ](πργσ − πσγρ)Ψ[ρσ] +
1
24

[γµ, γν ]γλπλ[γρ, γσ]Ψ[ρσ]+

+Tµν
ρσ Ψρσ + Tµν

ρσ T ρσ
δε Ψ[δε] = 0

(4.1)

3More precisely we consider non-relativistic approximation up to the terms of order 1
c2

, but using the
units with c = h̄ = 1
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where Tµν
ρσ (F ) was found in Section 3 (see (3.7)-(3.9)). Using (3.11) we come to the

following equations for Ψ(1) and Ψ(2) instead of (3.10)

(Γµπµ −m +
e

4m
(1− iΓ4)(gSµνFµν + g1(SµνFµν)2 − iΓµΓνFµν))Ψ(1) = 0, (4.2a)

(Γµπµ −m +
e

4m
(1 + iΓ4)(gSµνFµν + g1(SµνFµν)2 − iΓµΓνFµν))Ψ(2) = 0, (4.2b)

Equations (4.1) and (4.2) assume the Lagrangian formulation and include two coupling
constants g and g1. The presence of the additional (in comparison with (3.12a), (3.12b))
constant g1 makes it possible to overcome difficulties with complex energy levels for the
particle in constant magnetic field when g 6= 1

s . .

5 Particle with spin s = 3
2 in constant magnetic field

In this section we consider the problem of interaction of a charged, spin 3
2 particle

with a constant and homogeneous magnetic field. We demonstrate that for g 6= 1
s this

problem leads to the known difficulties with complex energies and demonstrate that it
is possible to get over this difficulty using the generalized model (4.2) with a bilinear in
Fµν anomalous interaction.

We start with equation (4.2a), which can be expressed in the form

(πµπµ −m2 +
eg

2
SµνFµν +

eg1

2
(SµνFµν)2)Ψ(1)

+ = 0, (5.1a)

(SµνSµν − 15)Ψ(1)
+ = 0, (5.1b)

Ψ(1)
− =

1
m

ΓµπµΨ(1)
+ (5.1c)

(a similar equation can be obtained starting with (4.2b)).
For the case of the constant and homogeneous magnetic field the vector-potential Aµ

and the field tensor Fµν are

A0 = A2 = A3 = 0, A1 = Hx2

F0a = F23 = F31 = 0, a = 1, 2, 3

F12 = H3 = H,H ≥ 0,

(5.2)

H is the magnetic field strength.
The solution of equation (5.1b) can be represented as [21]

Ψ(1)
+ =


Φ(1)

3
2

0̂

1
m (ε + 2

3Saπa)Φ(1)
3
2

− 2
3mK

3
2
a πaΦ(1)

3
2

 . (5.3)
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Here (K
3
2
3 )mm′ = δmm′

√
9
4 −m2; m,m′ = − 3

2 ,− 1
2 , 1

2 , 3
2 , 0̂ = (0, 0)T , (K

3
2
1 )mm′ ±

i(K
3
2
2 )mm′ = ±δm±m′

√
3
2 ∓m(m∓ 1)± 3m, Φ(1)

3
2

is a four-component spinor which sat-
isfy the equation

[p2 + e2H2x2
2 − eH(gS3 + 2g1S

2
3H + 2x2p1]Φ

(1)
3
2

= (ε2 −m2)Φ(1)
3
2

. (5.4)

So the problem of describing the motion of particle with spin 3
2 in the constant magnetic

field reduces to solving equation (5.4).

Using eigenvectors Ω
3
2
m of matrix S3 we can represent Φ 3

2
in the form

Φ(1)
3
2

= exp(i(p1x1 + p3x3))

3
2∑

m=− 3
2

f
3
2
ν (x2)Ω

3
2
m, (5.5)

where f
3
2
m(x2) are unknown functions. The functions f

3
2
ν satisfy the equation(

d2

dy2
+ y2

)
f

3
2
ν (y) = ηf

3
2 ν(y)

where η = ε2−m2−p2
3

eH + ν(g + 2g1νH), x2 = 1
eH (p1 +

√
eHy).

Requiring f
3
2 ν(y) −→ 0 when y −→ ±∞ we have

η = 2n + 1, n = 0, 1, 2, 3, ...

Then the energy levels are

ε2 = m2 + p2
3 + eH(2n + 1− ν(g + 2g1νH)) (5.6)

and eigenfunctions f
3
2
ν (y) take the form

f
3
2
ν (x2) = exp

(
−eHx2 − p2

2eH

)
hn

(
eHx2 − p2√

eH

)
,

where hn(y) =
Hn(y)
||Hn(y)||

, Hn(y) are Hermitian polynomials.

The eigenfunctions Φ
3
2
ν were obtained in [21].

If the gyromagnetic ratio takes the physical value g = 2 and g1 = 0 the energy
eigenvalues (5.6) can take complex values provided eH

2m2 > 1. However, if the coupling
constant g1 is non-trivial, it is possible to get over this difficulty. Namely, in order that
ε2 ≥ 0 for all H, g and g1 must satisfy the following condition

g1 ≤ −
(3g − 2)2e

72m2
. (5.7)
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Finally let us discuss the physical meaning of (5.6). Expanding it in power series of
1
m we have

| ε |=
√

m2 + p2
3 + eH(2n + 1− ν(g + 2g1νH)) '

' m +
p2
3

2m
+ Ω(n +

1
2
− νg

2
− νg1H).

(5.8)

Here Ω = eH
m and ν = − 3

2 ,− 1
2 , 1

2 , 3
2 .

We see that | ε | contains the kinetical energy of motion of the particle with spin
3
2 in magnetic field and quantum part which includes two parameters, i.e., n and ν. If
g = 2 and g1 = 0, the energy levels (5.8) have a specific degeneration typical for theories
admitting parasupersymmetry with paraquantization parameter p = 3 [23]. And it is
possible to show that the related equation (5.4) indeed admits this parasupersymmetry.

Supposing arbitrary parameter g1 satisfy (5.7) we overcome the inconsistency with
complex energy levels which appears by description of particles with spin 3

2 and g = 2 in
the constant magnetic field.

6 Particle with spin s = 3
2 in crossed electric and

magnetic field.
Extending the results present in the previous section let us use equation (5.1) with

nonlinear anomalous interaction to describe a particle with spin 3
2 interacting with crossed

constant electric and magnetic fields.
We notice that such problem was considered in papers [24]-[26] for particles with spin

0, 1
2 and in paper [27] for particles with an arbitrary spin and minimal interaction.
We can restrict ourselves to the parallel and orthogonal configurations of electric and

magnetic fields (all others configurations can be obtained starting with the mentioned
ones using Lorentz transformations [24]-[26]).

a) ~E|| ~H. For constant and uniform electric field ~E and magnetic field ~H directed
along z axis we may choose ~E = (0, 0, E), ~H = (0, 0,H), Aµ = (x3E, x2H, 0, 0) and
E 6= H. After substituting (5.3) into the related equation (5.1) we obtain

[(p0 − ex3E)2 − (p1 − ex2H)2 − p2
2 − p2

3 −m2

+egS3(H − iE) + 2eg1S
2
3(H − iE)2)Φ(1)

3
2

= 0
(6.1)

Presenting Φ(1)
3
2

in the form

Φ(1)
3
2

= exp(ip1x1 − εx0)f(x2)

3
2∑

ν=− 3
2

gν(x3)Ω
3
2
ν (6.2)

where f(x2) and gν(x3) are unknown functions, we can decouple (6.1) to two separate
equations for f(x2) and gν(x3). Solving these equations with using the results [24]-[26]
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we find Φ(1)
3
2

in the form

Φ(1)
3
2

= exp(ip1x2 − εx0) exp
(
− (p1 + ex2Hj)2

2eH

)
hn(x2)

× exp
(

iz2

2

) 3
2∑

− 3
2

Gj
ν(−iδν , −iz2)Ω

3
2
ν , j = 1, 2,

(6.3)

where p1 and ε are constants, hn(x2) = Hn(x2)
|Hn(x2)| , Hn(x2) are Hermitian polynomials, z =

1√
|eH|

(ε− ex2E), δν = m2−eνg(H−iE)−2eν2g1(H−iE)2

|eH|−(2n+1) , n = 0, 1, 2, 3, ..., G1
ν(−iδν , −iz2) =

F ( 1
4 (1 − iδν), 1

2 ,−iz2) and G2
ν(−iδν , −iz2) = F ( 1

4 (1 − iδν) + 1
2 , 3

2 , iz2)
√

iz2, F is the
confluent hypergeometric function. So, in this case, the energy levels are not quantized.

b) ~E ⊥ ~H. Setting ~E = (0, E, 0), ~H = (0, 0,H), Aµ = (x2E, x2H, 0, 0) we obtain the
following equation for Φ1

3
2

[(p0 − ex2E)2 − (p1 − ex2H)2 − p2
2 − p2

3 −m2

+eg(S3H − iS2E) + 2eg1(S3H − iS2E)2]Φ1
3
2

= 0.
(6.4)

Representing Φ1
3
2

in the form

Φ1
3
2

= exp(ip1x1 + ip3x3 − iεx0)

3
2∑

ν=− 3
2

Pν(x2)Ω
3
2
ν , (6.5)

substituting (6.5) into (6.4) and using transformation P̂ν = Uν,ν′Pν′(x2) we come to the
equation

[(ε− ex2E)2 − (p1 − ex2H)2 +
d2

dx2
2 − p2

3 −m2]P̂ν(x2) =

eUνν′Λν′ν′′U
−1
ν′′ν′′′ P̂ν′′′(x2).

(6.6)

where
Λν,ν′ = eg(S3H − iS2E)ν.ν′ + 2eg1(S3H − iS2E)2ν,ν′

and Uν,ν′Λν′,ν′′U
−1
ν′′,ν′′′ = λνδν,ν′ .

Solution of equation (6.6) have the following form

E = H : P̂ν = Φ(α− 2eHγ(p1 − ε)x2), (6.7)

where Φ is Airy function, α = (p2
3 + p2

1 + m2 − ε2)γ and γ = (4e2h2(p1 − ε)2)−
1
3 . So, the

energy levels are not quantized;

E 6= H : P̂ν(x2) = exp
(

iz2

2

)
Gj

ν(−iαν ,−iz2), j = 1, 2. (6.8)
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Here αν = −
(

p2
3+p2

1+m2−ε2+eλν

eη + (p1H−εE)2

eη3

)
, η =

√
E2 −H2, λν = igνη − 3g1ν

2η2,

z =
√

eη(x2 + p1H−εE)
eη2 ).

If E > H, −iz2 becomes purely imaginary and energy levels, like in the case E ‖ H,
are not quantized. When E < H, −iz2 is purely real and energy levels are quantized:(

ε− p1E

H

)2

=
(

η′

H

)2

((2n + 1)|e|η′ + |e|λν + p2
3 + m2) (6.9)

where η′ = −iη. If we put E −→ 0 we come to formula (5.6). For g1 −→ 0 relation (6.9)
reduces to the form obtained in [27].

Finally we notice that the elements Uνν′ of matrix U can be found from the system
of algebraic equations((

3
2
− ν

) (
3
2

+ ν + 1
)) 1

2

Uνν′+1 + 2 (ν − λν) Uνν′+

+
((

3
2

+ ν

) (
3
2
− ν + 1

)) 1
2

Uνν′−1 = 0,

(6.10)

here Uν 5
2

= Uν− 3
2

= 0.

7. Discussion
We present equations for doublets of particles with arbitrary half-integer spin s, which

describe tensor-spinor wave function and does not heave acausal solutions. Moreover the
equation for particles with spin- 3

2 was considered in detail.
We also show that equations with anomalous interaction and g = 2 generate the

hermitian Hamiltonian at least in the quasi-relativistic approximation and describe spin-
orbit, quadruple and Darwin couplings. These equations are easy-to-use for solving
standard quantum mechanical problems. Moreover, as it was shown in [21] the equation
for doublets in representation (4.2) does not become much more complicated with the
growth of spin value.

Finally, for g = 2 and g1 = 0 the inconsistency with complex energy levels arises for
the problem of motion of particle with spin in the constant magnetic field. Using the
nonlinear anomalous interaction with a non-trivial constant g1 we found the condition
for the parameters g and g1 when energy level for particle with spin s = 3

2 be real for
any magnetic field strength.

References

[1] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Cambridge University
Press. England. (1987).

[2] Particle Data Group, Phys. Rev. D54, 1 (1996).

11



[3] P.A.M. Dirac, Proc.R.Soc. A155, 447 (1936).

[4] M.Fierz, W.Pauli, Proc.R.Soc. A173, 211 (1939).

[5] W.Rarita, J.Schwinger, Phys.Rev. 60, 61 (1941).

[6] V. Bargman, E.P.Wigner, Proc. Nat. Acad. Sci. U.S. 34, 211 (1948).

[7] J.S.Lomont, H.E. Moses, Phys.Rev.118, 337 (1960).

[8] W.J. Hurley, Phys.Rev. D4, 3605 (1971).

[9] L.P.H. Singh and C.R. Haagen, Phys. Rev. D9, 898 (1974).

[10] G. Velo, D. Zwanziger, Phys. Rev. 186, 1337 (1969).

[11] A.S. Wightman, Troubles in the external field problem for invariant wave equations
Proc. Sympos. Pure Math. 23, 441 (1971)(Providence RI: Am. Math. Soc.),New
York: Gordon and Breach (1971).

[12] W-Y. Tsai and A. Yildiz, Phys. Rev. D4, 3643 (1971).

[13] T. Goldman and W-Y. Tsai, Phys.Rev. D4, 3643 (1971).

[14] K. Johnson and E.C.G. Sudarshan, Ann. Phys. N.Y. 13, 126 (1961).

[15] A. Galkin, Tensor-bispinor equation for doublets, in Proceedings of the Institute
of Mathematics of National Academy of Science of Ukraine ”Group and Analytic
Methods in Mathematical Physics” 36, N 12, 67 (2001).

[16] J.Niderle and A.G. Nikitin, Relativistic wave equations for interacting massive par-
ticles with arbitrary half-integer spin, Phys.Rev. D64, 125013 (2001).

[17] C.Fisk and W. Tait, J.Phys. A6, 383 (1973).

[18] M.A. Khalil and M.Seetharaman, Phys. Rev. D18, 3040 (1978).
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