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NONILIE INTEGRALS OF THE MOTION FOR PARTICLES OF ARBITRARY SPIN 

AND FOR SYSTEMS OF INTERACTING PARTICLES 

A. G. Nikitin and V. I. Fushchich 

New integrals of the motion are found for the Kemmer-Duffin-Petiau, 
Rarita-Schwinger, Dirac-Fierz-Pauli, and Bhabha equations describing 
minimal and anomalous coupling of particles of spin s s 2 with the 
field of a point charge and also for a number of relativistic and 
quasirelativistic two- and three-particle equations. These integrals 
belong to the class of differential operators of order 2s with matrix 
coefficients and have a discrete spectrum. 

It is well known that for many equations of quantum theory describing the motion of 
a charged particle in external fields there exist integrals of the motion that are not 
directly related to the geometrical symmetry of the considered system. In the case of 
a nonrelativistic spinless particle in the Coulomb field, there is the Runge-Lenz vector, 
while for the relativistic electron in the Coulomb field there are the Dirac integral [i] 
and Johnson-Lippmann integral [2]. 

These integrals of the motion make it possible to explain the degeneracy of the energy 
spectra of the corresponding physical objects, and the Dirac integral greatly simplifies 
the solution of the equation of motion by the separation of variables, giving rise to a 
decoupling of the equations for the radial functions into uncoupled subsystems. 

The aim of the present paper is to describe additional integrals of the motion for a 
charged particle with spin s ~ 2 in the Coulomb field, and also for systems of interacting 
particles. We shall see that such integrals of the motion exist for all relativistic wave 
equations invariant with respect to spatial inversion and for a large class of two- 
particle equations with spherically symmetric potential. 

We obtain below new integrals of the motion for the Kemmer-Duffin, Stueckelberg, 
Rarita-Schwinger, Dirac-Fierz-Pauli, and Bhabha equations describing the interaction of 
particles of spin s ~ 2 with the field of a point charge, and we give an algorithm for 
constructing such integrals for particles of arbitrary spin. These integrals are 
differential operators of order 2s with matrix coefficients and can be regarded as 
generalizations of the Dirac integral for the case of arbitrary s. 

We find new integrals of the motion for an entire class of two-particle equations -- 
those of Breit [3], Barut and Komy [4], Krolikowski [5], the generalized Breit equation for 
bound quark states [6,7], and other equations. An additional integral of the motion is also 
obtained for the three-particle equation of Krolokowski [8]. 

It must be emphasized that, in principle, the additional integrals of the motion cannot 
be found in the framework of the classical Lie group analysis of differential equations (for 
a modern exposition of the basic propositions and applications of such analysis, see [9-11]). 
We proceed from the generalized non-Lie approach proposed and developed in [12-14]. 
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i. Dirac Integral for the Electrons 

As was first noted by Dirac [i], the Hamiltonian of a particle with spin 1/2 and 
charge e in the field of a point charge qe, 

H=?o?~p~+?om+V, p o = - i  , a=i,2.3, ~x~ �9 

where u Ya are the Dirac matrices, V = qe2/x, x = (X~ + X~ + X~)�89 commutes with the 
operator 

Q=?o(2SoA-'/~) ~7o(2S'S-'A), 

where 

( I . i )  

(1.2) 

(1.3) 

i 
in which Sa-----~-eab0yby~ are the spin matrices. 

In other words, besides the three obvious integrals of the motion - the components 
Ja of the vector of the angular momentum -- the Dirac equation with Coulomb potential has 
the additional integral of the motion (1.2), which is a differential operator with matrix 
coefficients. Such operators are not generators of a Lie group, and therefore in principle 
the Dirac integral cannot be found in the framework of the classical group analysis of 
differential equations. 

Using the identity 

2S.J=J2-L~+S 2, L=x• (1.4) 

we can readily show that in the space of square integrab!e functions the spectrum of the 
operator (1.2) is discrete and given by the formula [i] 

Q~=s(j+i/2)r e=~l ,  7=1/2, 3/2 . . . . .  (1.5)  

By direct calculation we can verify the useful relations 

Q2=p+~/,, [Q, S.p]+~QS-p+S.pQ=0, [Q, S.x]+=0. (1.6) 

Using (1.6), we readily note that the operator (1.2) is an integral of the motion not 
only for a particle that is coupled minimally to the Coulomb field but also for more 
complicated couplings. In particular, the following result, which we give without proof, 
holds. 

PROPOSITION i. The general form of a spherically symmetric potential V=F(x) for 
which the Hamiltonian (I.i) commutes with the operator (1.2) is determined by the relation 

V= V~ + V2~o+ V3~ax~+ V~oT~X~, (1.7)  

where VI, ..., V~ are arbitrary functions of x. 

In the case V I = qe2/x, V 3 = kqe2/x 3, V 2 = V 4 = 0, the relation (1.7) specifies the 
potential of the anomalous Pauli coupling to the field of a point charge, while for V i = V 2, 
V 3 = V~ = 0 it specifies the general form of interaction potential that ensures confinement 
in quark models using the single-particle Dirac equation [15] (we do not particularize the 
explicit form of V 3 and V4, which for our purposes is not important). 

One can show that the condition for symmetry of the Hamiltonian (i.i) with arbitrary 
potential V with respect to the group of three-dimensional rotations 0(3) and with respect 
to the transformation of spatial inversion, 

(xo, x) ~P$(xo, x) =r$ (xo, -x),  ( i .  8) 

where r = u also reduces to the requirement that V have the form (1.7). In other words, 
the requirement of P invariance of the Hamiltonian (i.i) with arbitrary O(3)-invariant 
potential V is a necessary and sufficient condition for the existence of the Dirac integral 
for this Hamiltonian. We shall see below that symmetry with respect to the transformation 
of spatial inversion also entails the existence of additional integrals of the motion for 
other single- and two-particle equations of motion. 

Thus, the Dirac integral is a symmetry operator, i.e., an operator that carries solu- 
tions into solutions -- for a more rigorous definition, see [16]) for an entire class of 
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equations of the form 

L~=0, L=i . . . .  H, 
0xo 

where H is the Hamiltonian specified by (I.i) and (1.7). 
[14,16] 

[Q, L]r 

where ~ is an arbitrary solution of Eq. (1.9). 

2. Integrals of the Motion for Vector Particles 

Indeed, 

(1.9) 

by virtue of the above 

(1.~0) 

We show that for vector particles interacting with the field of a point charge there 
also exist traditional integrals of the motion, and we find them in explicit form. 

We consider the Kemmer-Duffin-Petiau (KDP) equation with anomalous coupling for a 
spin 1 particle in the Coulomb field: 

[ ~a~-m-ekS~F~]  ~ L ~ = 0 .  

s.~=i[y, y], 

(2 .1 )  

(2 .2 )  

(2.3)  

(2 .4 )  

Here, ~, v = 0, i, 2, 3, 

0 qe 
au='i -eA~, A o = - - ,  Aa--=0, 

O X ~ X 

F~v is the tensor of the electromagnetic field, 

F ~ = i [ ~ , ~ ] ,  fo~= qex~, f~b=0, a, bv~0, 
X 3 

~ are ten-row matrices satisfying the KDP algebra, 

}~}~}~+ }x}~}~=g~}~+g~}~, 

and k i s  t he  c o n s t a n t  o f  t he  anomalous coup l ing .  

Equation (2.1) can be expressed in the SchrSdinger form (1.9), where 

H=[~o,~]po+~om+ q e2 iq e2 ~ 2 . ,  ~x~ _~ ikqe2 [ ~  ] + (k+p0 - - 1 ) ~ - - ~ ' ~  , }~pb , ( 2 ,5 )  
X m 

and ~ is a ten-component wave function satisfying the additional condition 

__ ikqe 2 x~ \ 0 ( t_~02+ ~opo ~o~___~o~oT),= 
m 

Obvious symmetry o p e r a t o r s  of  Eq. ( 2 . 1 )  a re  the  g e n e r a t o r s  of  the  group 0(3)  ( angu la r  
momentum o p e r a t o r s ) ,  t h e  e x p l i c i t  form of  which i s  g iven  by ( 1 . 3 )  and ( 2 . 6 ) :  

Sa=ie,bc}o~=. (2 .6 )  

These generators are integrals of the motion, since they commute with the Hamiltonian 
(2.5). 

Using the relations (2.4), we can readily show by direct verification that the 
following result is true. 

PROPOSITION 2. For Eqs. (2.1)-(2.3) there exists the additional integral of the 
motion 

Q= (t-2ffo ~) [2 (S . J )~-2S.J -P] ,  ( 2 .7 )  

where Jiand Slare specified by (1.3) and (2.6). 

The operator (2.7) commutes with both the Hamiltonian (2.5) and the operator L (2.1) 
and, therefore, is a symmetry operator of the equation. Of course, this result is also 
true in the case k = 0, i.e., in the absence of anomalous coupling. 

Like the Dirac integral, the operator (2.7) has a discrete spectrum, which, in contrast 
to (1.5), has the form 

Q~=e](]+i)~. ( 2 . 8 )  
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We arrive at the relation (2.8) by using the representation (1.4) for the operator 
S.L 

The operator (2.7) does not belong to the enveloping algebra generated by the 
generators (1.3) and (2.6). However, the square of this operator can be expressed in terms 
of j2: 

Q~__ (j2),. ( 2 . 9 )  

It is interesting to note that (2.7) is also a symmetry operator for Maxwell's 
equations with currents and charges if they are written in the form of the system [14] 

{ ( i -~ ~) (yp~+~)~=0, 

i 
where  ~ = ~ e ~ p ~ P ~ ,  ~ i s  t h e  column (E~, E2, E3, H~, H2, H~, ]~, ]2, ]3, ]0), E~ and H~ ( a= l ,  2, 3) a r e  

t h e  componen ts  o f  t h e  v e c t o r s  o f  t h e  e l e c t r i c  and m a g n e t i c  f i e l d s ,  j~  (~ = 0, 1, 2, 3) a r e  
t h e  componen ts  o f  t h e  c u r r e n t  4 - v e c t o r ,  and ~ a r e  t h e  KDP m a t r i c e s  in  t h e  s t a n d a r d  
r e p r e s e n t a t i o n ,  t h e  e x p l i c i t  fo rm o f  which  i s  g i v e n ,  f o r  example ,  in  [ 1 4 ] .  I n d e e d ,  as  
i s  r e a d i l y  shown, [Q, (t-~5~)(~"p~fl-t)]--[Q, ~p,~s]=o.  

An additional integral of the motion also exists for the Stueckelberg equation [17], 
which describes the interaction of a quasiparticle (with possible spin values s = 0, i) 
with the field of a point charge. With allowance for the anomalous Pauli coupling, this 
equation can be expressed in the form (2.1)-(2.3), where $~ are Ii x ii matrices (their 
explicit form is given, for example, in [16]), and SU v are the generators of the direct 

sum D ,~- @D(O,O) OD(t,O)@D(O,I) o f  i r r e d u c i b l e  r e p r e s e n t a t i o n s  o f  t h e  L o r e n t z  g r o u p .  

The i n t e g r a l  o f  t h e  m o t i o n  f o r  such  an e q u a t i o n  i s  s p e c i f i e d  by ( 2 . 7 ) ,  where  So=~/~s~boSb~, 
and 60 and Sab a r e  t h e  c o r r e s p o n d i n g  11 • 11 m a t r i c e s .  

The r e l a t i o n s  ( 2 . 8 )  and ( 2 . 9 )  h o l d  f o r  t h e  new i n t e g r a l  o f  t h e  m o t i o n  o f  t h e  S t u e c k e l -  
be rg  e q u a t i o n .  

3. Integrals of the Motion for Particles of Arbitrary Spin 

The above results can be generalized to the case of relativistic wave equations for 
particles of arbitrary spin. 

We consider an arbitrary equation of the form (2.1), where S~ v are the generators of 
the direct sum 

D = Z |  (3.I) 

of finite-dimensional irreducible representations of the Lorentz group, and $~ are 
numerical matrices that satisfy the relations 

[y, s ~1 =~(g~-g~y)  (3.2) 

and e n s u r e  r e l a t i v i s t i c  i n v a r i a n c e  o f  Eq. ( 2 . 1 ) .  

We r e q u i r e  t h a t  Eq. ( 2 . 1 )  be i n v a r i a n t  w i t h  r e s p e c t  t o  t h e  s p a t i a l  i n v e r s i o n  t r a n s -  
f o r m a t i o n  ( 1 . 8 ) ,  where  r i s  a n u m e r i c a l  m a t r i x  t h a t  must  s a t i s f y  [18] 

r2=t,  r~~ ~ r~=--~ar, rS~b=S~br, rSO~=-S~176 (3.3) 

On the matrices ~ it is customary to impose some additional restrictions to ensure 
the possibility of a Lagrangian formulation of Eq. (2.2) and uniqueness of the value of 
the spin of the particle described by it [18]. For our purposes, these additional assump- 
tions are unimportant. 

We restrict ourselves to the case when the external field reduces to the Coulomb 
potential (2.2). By analogy with (1.2) and (2.7), we seek the symmetry operator of the 
corresponding equation (2.1) in the form 

Q=rd, d=d(x, p, S"~), (3.4) 

where r is the matrix of spatial inversion. 
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Requiring that Q (3.4) commutes with L (2.1), and using (3.2) and (3.3), we obtain the 
following equations for d: 

[d, x]=[d, ~o]=0, (3.5)  

[d, So~]+=[d, Soox~] +=0. (3 .6)  

It follows from (3.5) that d depends only on the matrices S~b, a, b~0, and xXp, and it is 
sufficient to consider Eqs. (3.6) for matrices S0a belonging to the irreducible representa- 
tion D(m, n) c D. 

It is convenient to seek a solution of Eqs. (3.6) in the basis of spherical spinors 
(eigenvectors of the commuting operators U,S ~, ~ and L2=(xXp)~), in which the operators 
S0a/X a and xS0aPa reduce to numerical matrices. The explicit form of these matrices is 
given in [16]. 

Essentially, the transition to the basis of spherical spinors is one of the forms of 
realization of the algorithm proposed in [12-14] for seeking nonlocal symmetries of 
differential equations, the basic idea of which is to transform the equations to a repre- 
sentation in which the description of the symmetry reduces to a purely matrix problem. 

Omitting some cumbersome calculations, we give the explicit form of the operators d 
for arbitrary irreducible representations D(m, n): 

m + n integral: 
m + n  s 

d=CF . . . .  ; ( 3 . 7 )  
~ = [ m - - n l  ~ = o  

m + n half-integral: 

2 ( m + n ) - - i  

where F = Z 

m q - n  s 

s = l m - - n [  v=~/2 

v=v~, v~, . . . ,  ( 3 .8 )  

t 
(4J~+i--od), m+nva-n-, and F = 1 for  m + n = 1/2, 

z 

and B~ and N s are operators that satisfy the relations 
s 

Z BF=t,  

C is an arbitrary constant, 

t 
k=ko, ko+l, . . . ,  ;~o=T[t--( - - I )~ ' ] ;  (3 .9)  

~ : B o N  ~ - - ~  N ~ B~ Bs, =6~,~,B~,  ~ ~, --.~, ~ , 
s 

G:=--P: (2S .J-S z) = L  
~,~ ,o  

N~N~,==5x~,(4]2+I)BF, (3.10) 

~N~-%~Bx=). (3.11) 

Here, Ps is the projection operator 

P . = H  S~--s'(s'+l) [m-nl<~s,s'<~m+n, 
,~,~-~ s ( s + l ) -  s' ( s ' + i )  ' 

in which S: is the vector with components Sa=I/2e~bcSb~, SbfiD(m, n). 

For each concrete value of s, the operators B~ and N~ can be expressed in terms of G s. 
For this, it is sufficient to raise successively both sides of Eq. (3.11) to the power 
n = i, 2, ..., 2s and solve the obtained system of 2s + 1 linear algebraic equations for 
the 2s + 1 unknowns B s and N~. In accordance with (3.10), the equations with the numbers 
n = 2k and n = 2k + 1 have the form 

s h I hil 

~ m ~ O  i I ~ O  

2 2 l + i  s 

(3.12) 
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(C~ is the number of combinations of b elements from a possibilities), and the equation 
with number 2s + 1 is given by (3.8). 

Let S = (m + n)ma x be the maximal value of the quantum number s that arises on reduc= 
tion of the representation (3.1) with respect to the group 0(3). We give solutions of 
Eqs. (3.7)-(3.9), (3.12) for d = ds, S S 2: 

dv~=2S.J-~/~; 

d~=2 (S J )  ~ - 2 S . J - P ;  

d,~,=a/a [g~-g~- (7P+S ~) g+ (4S~-6) P]  +3; g=2S.l--~/:;  

Here, 
D (3.1) for S ~ 2. 

The expressions (3.4) and (3.13)-(3.16) define symmetry operators for an entire class 
of relativistic and T-invariant equations of the form (2.1) corresponding to S ~ 2. This 
class includes the equations discussed above in Secs. i and 2, the Rarita-Schwinger equa- 
tions [19] in the formulation given in [20], the Dirac-Fierz-Pauli equations [21,22] 
describing particles with fixed values of the mass and spin, and also the Bhabha equations 
[23] for sets of particles with spins s ~ S and masses m s . The explicit form of the 
corresponding matrices r and S is given in [18,20,23]. 

We note also that the spectrum of the operators (3.13) and (3.14) is given by the 
expressions (1.5) and (2.8) (where Q § ds), and for the operators (3.15) and (3.16) we 
obtain, using (1.4), 

d ~ # = e ( 2 ] - t )  (27+t) (27+3)9, e = •  ]=% % . . .  ; 

(3.13) 

(3.14) 

(3.15) 

d~=~/3[ (S. J)2-2S .J-41 ~] (S.J-t)  (S 4 -3 )  -J~ (J~-2) + 

(~/~S~--2) [(4-3P) (S.J)2+(TP-4)S.J-4P+3/sS~(4J2+I). (3.16) 

is the operator (1.3), and S are the matrices in the corresponding representation 

d ~ , = ~ ( ] - i ) ] ( ] + t )  ( ] + 2 ) r  s = + - L  ] = 0 ,  ~, . . .  . 

4. Integrals of the Motion for Two- and 

Three-Particle Equations 

The above results enable us to construct new integrals of the motion for equations 
describing systems of interacting particles. 

We consider a generalized two-particle equation of the form 

0 
i ~=(H(~)+Hr ( 4 . 1 )  

Oxo 

where H (~) and H (~) are the single-particle Dirac Hamiltonians 

H(~)=7o(c~)4o(~)p~-7o(~)m(~), a=i, 2, (4.2) 

{?0 (I), 4, (o } and {40 (2), 4~ (2)} are commuting sets of 16 • 16 Dirac matrices, and V is an inter- 
action potential of the general form 

V=V AF A + VB'FB~xa+ Vc"Fc~bx~xb. (4.3) 

Here, {FA} (A = i, 2 ...... 16) is the set of matrices {40 (~ (~),7~(')?~(~),O(O~(2),1} and all 

possible products of them numbered in an arbitrary order, ~ =--~eabcTb 4o , {F-~} = 

~i) (~) (~) (~) {?~(~)?o(~)o, (~), ?~(~)o~ (~), 70: 4o 7~ o~ } , . B = i ,  2 . . . .  , 24, (a, ~, v ) = l ,  2, {Pc~ (C=I ,  2, . : : ,  8) i s  t h e  
set of matrices of the form Fc'Oa(~ where {Fc'}={40 (~), ~(~)4~ (2), I, 4o(~)4o(2) , ~(~)?~(2)4o(~) , 
40(~)70(2)74(I)4~(2)}, VA, V.', c are arbitrary functions of x y H 

Equation (4.3) determines the general form of the potential V for which Eq. (4.1) 
remains invariant with respect to the group 0(3) and the spatial inversion transformation 
(1.8) (at the same time r=?0(~)?0(2)). Such a pOtential includes as special cases (obtained by 
a special choice of the functions VA, V~, and V 6) the quasirelativistic Breit potential 
[3], the relativistic potential of the two-particle Barut-Komy equation [4], and also the 
potentials used in the quark models of mesons [5-7]. The corresponding equations (4.1) 
are interpreted as two-particle equations in the center-of-mass system [7]. 
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For Eq. (4.1) with arbitrary potential of the form (4.3), there exists an obvious 
vector integral of the motion -- the operator of the total angular momentum (1.3), where 

. 

S S ( ~ ) + S  (2) ~(=1 ~ (~) c~) =---- . . . . .  =-~-e=bc?b ?~ , CZ=I,?. (4.4) 

However, as for the single-particle relativistic equations considered above, one can find 
an additional integral of the motion of Eq. (4.1). It has the form 

Q = ?o(')?o(~)d~, ( 4.5 ) 

where d z is given by the expressions (3.14), (1.3), and (4.4). 

It can shown by direct verification that the operator (4.5) commutes with the Hamil- 
tonians H(~)iand H(2)~(4.2) with any potential of the form (4.3). Such a verification is 
readily done by using the following representation for Q: 

O='~o(')~o (~) ([Q(~), Q<~)]+-VO, (4 .6)  

where Q~)are operators whose explicit form can be obtained from (3.13) by the substitution 
S-+S (~) (S(=)iare specified in (4.4), J in (1.3) and (4.4)). These operators satisfy the 
conditions 

[Q(~), (~(~)'P]+=~(~')'P, [Qc~), (Y(~)'x]+ =a(~')'x, 
[Q(~), r a(W).x] = [Q(~) ,  x ] = O ,  ~ ' # a .  

Thus, for any two-particle equation of the form (4.1) there exists an additional 
integral of the motion, which is specified by (4.5) and (4.6). One can show that in the 
space of square integrable functions the spectrum of the operator (4.5) is discrete and 
given by (2.8). 

We give one further integral of the motion for the three-particle Krolikowski equation 
[8]:  

i r (i) (i)__ (2) (~)_ (s) (3) 
Here, d~/2 is the operator (3.14)for S~=--~eabct?b ~c -~?b ?c -~?a 4o ), {?(I)}, {?(2)} and (?~(~)} 

are three sets of 64 • 64 commuting Dirac matrices. 

5. Conclusions 

We have seen that additional integrals of the motion of Dirac type exist for a large 
class of single-particle and two-particle equations. The obtained integrals of the motion 
can be used in the solution of the corresponding equations by separation of the variables, 
in the construction of orthogonal bases, and for other purposes. 

In deriving the new integrals of the motion, we have made essential use of the 
symmetry of the equations with respect to the group 0(3) and the spatial inversion trans- 
formation P. The obtained results can be generalized to the case of arbitrary 0(3)- 
and P-invariant equations, which need not necessarily satisfy the condition of relativistic 
invariance. In particular such integrals of the motion can be obtained for Galileo- 
invariant wave equations [24-26,16] and for equations of the form (2.1) with arbitrary 
0(3)- and P-invariant potential A 0. 

It should be emphasized once more that, in principle, the obtained integrals of the 
motion cannot be obtained by the methods of classical group analysis of differential 
equations. Essentially "non-Lie elements" of our approach are the high order of the 
operators of differentiation that occur in the symmetry operators and the reduction of the 
problem to the finding of a general solution of the anticommutation relations (3.6). 

Numerous examples of non-Lie symmetry of the basic equations of quantum theory are 
given in [16]. 
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COLLECTIVE TWO-PHOTON PROCESSES IN THE PRESENCE OF 

A THERMAL ELECTROMAGNETIC FIELD 

N. A. Enaki and O. B. Prepelitsa 

A study is made of a lumped system of emitters (nuclei, atoms, molecules) 
with dipole-forbidden transitions between the first two energy levels in 
interaction with a thermal electromagnetic field. Elimination of the 
boson operators leads to an equation for the statistical operator of the 
system of emitters describing two-photon interaction with the electromag- 
netic field. A Fokker-Planck equation is also obtained and solved in the 
stationary case, and the result is used to investigate the equilibrium 
fluctuations in the populations of the atomic levels. The kinetics of 
the system and the statistical properties of the electromagnetic field 
are considered. 

i. Introduction 

Much attention is currently being devoted to two-photon generation and absorption of 
the electromagnetic field in multilevel systems [1-4]. 

The present paper is devoted to the possibility of collectivization of a lumped system 
(nuclei, atoms, molecules) in two-photon transitions in the presence of an external 
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