the mode with E = cgkA’3, which in the considered model is threefold degenerate in the absence of a field 4],
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RELATIVISTIC PARTICLE OF ARBITRARY SPIN IN A
COULOMB FIELD AND THE FTELD OF A PLANE
ELECTROMAGNETIC WAVE
A.G. Nikitin
Exact solutions are found for the equations of motion of a charged relativistic
particle with arbitrary spin in a Coulomb field and in the field of a plane

electromagnetic wave.

1. Introduction

Exact solutions of relativistic wave equations are widely used in modern physics [1-3], For the
practically important case of the motion of a charge in a Coulomb field, such solutions have been obtained
only for particles with spins 0, % [2], and 1 [4,5].

It is well known that the theory of relativistic equations for particles with higher spins encounters
difficulties of a fundamental nature in the formulation of the problem of motion of a particle in an external
electromagnetic field. The difficulties include superluminal sighal propagation velocities and complex values
of the particle energy, which are predicted by such equations, and the absence of stable solutions in the
Coulomb problem (see [6] and the literature quoted there).

In [7], relativistic equations of motion for a particle with arbitrary spin were proposed; like the
Dirac equation, these do not have the pathological properties listed above. These equations can be written
in the form of the system

1.
[ Tt'—m + Z%({i—in) (T Sw~irpr—v) F] W=0, (Tuv+m) (1—il,) [SuS"—4s (s—1)] ¥ =16ms'V, (1)

where ¥ = ¥(X) is a 8s-component wave function, #=(z,, z, Z2, Z3), Me==—i0/0x"—eA,, 4, is the vector
potential, F,, is the electromagnetic field tensor, I, are 8s X 8s matrices satisfying the Clifford algebra
It =2gu, I'i=0,I LT, and Spy are the generators of the representation [D(/, 0)8D© */,) 18D (s~'/, 0)
of the Lorentz group.

ln the case s = %, the system (1) reduces to the Dirac equation for an electron, and for arbitrary
(integral or half-integral) s Eqgs. (1) describe the motion of a charged particle with spin s and mass m in
an external electromagnetic field,

The main criterion for evaluating a particular formulation of relativistic equations for particles
with arbitrary spin is the possibility of using them to solve concrete physical problems. In [7], Egs. (1) were
used to find the energy spectrum of particles of arbitrary spin in a homogeneous magnetic field. Below, we
obtain solutions of Egs. (1) for the case of a charged particle with arbitrary spin interacting with a Coulomb
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field and with the field of a plane electromagnetic wave.

2. Equation for the Radial Part of the Wave

Function of a Particle of Arbitrary Spin

in a2 Coulomb Field

To solve the problems listed above, it is convenient to go over from Egs. (1) to a system of second-
order equations for a (2s +2)-component wave function, Multiplying (1) by A,='/,(1+iT.) and A-=/,(1—il\)
and expressing ¥_=A_Y in terms of ¥,=A, ¥, we obtain

(n_.m;”~m2 +-_° SWF“”) W_=(, (2a)
4sm
[8,S*—4s (s+1) ] W _=0, 2b)
1
Y, =—Taw¥_ {2¢)
m

Thus, the solution of Egs. (1) reduces to finding functions ¥_ satisfying the system (2a), (2b). The
condition (2b) means that 2s — 1 components of the function ¥_ vanish identically, The remaining 2s + 1
components form a spinor in the space of the representation D(s0) of the Lorentz group [7]1. With allowance
for what we have said above, Eq. (2a) can be rewritten in the form

[ ot —m + % S.(H—iE) ] 0,=0, (3)

where & isa (2s + 1)-component function, S = (S1, S,, S,) are (2s + 1) X (2s + 1) matrices realizing
the irreducible representation D(s) of the Lie algebra of the group O(3):

[Se, Su] =iweS., S*=s(s+1), (4)
and E and H are the electric and magnetic field vectors.

Equation (3) can be regarded as a generalization of the Zaitsev—Feynman~Gell-Mann equation [8]
to the case of particles with arbitrary spin.

We consider Eq. (3) for the case of the Coulomb field, when A = 0, A, = ze/x. The solutions of
Eq. (4) corresponding to a state with energy & can be expressed in the form ®,=exp (—iet)®,(x). Taking into
account the symmetry of the problem with respect to the group O(3), we can conveniently represent the
function ®_(x) as a linear combination of spherical spinors:

D, (x) =" (2) Qjam, z=IxI, (5)

where Qioam=01nm(x/z) form a complete set of eigenfunctions of the operators JZ, J,, and L* (J=L+S=xXp+8
is the operator of the total angular momentum):

Q=i GFD) Qi my Lo nn=mQ mam; L5 m= (1) (G—AT1) Qi s

. . . i i<s,
m=—j, —j+1,...,j; A=—s,—st1,...,—s+2my; mu= .
s, j=s.

Substituting (5) in (3), we arrive at the following equations for the radial functions oMx):

1

Dor=z-2by ", (6)
where
2 d2 2 i(7 i &j
D=(8 +_°‘_) L L 24 U A @) 16w i, a—se?, M
z dz* z dz z* s

X s
and a3}, are the matrix elements of the operator x—=(ze)“z*S-E in the basis {Q~am}:

S~X s 8§ 8
T Q- m= Z ali,ij J—A me (8)
e

Before we turn to the solution of the system (6), it is necessary to determine the values of the
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coefficients a5], . For s = ! and s = 1, these coefficients are given, for example, in [9]. In the following

section, we find the values of ¢§j, for arbitrary spin.

3. Explicit Form of the Operator 5%
z
in the Basis of Spherical Spinors
The spherical spinors Qf,,, are (28 + 1)-component functions with components
(sti—l m) “=Cjin;, m—p 8 _qu—-—A ™m—ps (9)

where C,"fl,,,_“,, are Clebsch—Gordan coefficients, and Y,,._, are spherical functions. Substituting (9)
in (8), setting p=m, x/z=x=(0, 0, 1) , and bearing in mind that [9]

- 2j—2A+1\
o= (222
i M(X) 41!
we arrive at the following system of linear algebraic equations for the coefficients ajj,
Y @i—ntn) @i—an+0)cl =0, (10)
v
where
Sy T ‘21‘ o ,“-7:'2’
7».7»'={ s,—st+1,...,s, j .s. ={ s s+1 .s‘] s (11)
’ —s, —s+1,... —s+2j, i<s, —j, =i, 0, jss.
We give without proof the general solution of the system (10):
s o o o4 yv(div) (do—v) (dje—v) \ 72
a«;’=“1l Sanr s] +6 — sJ vs)=—( d o )
A /z( An'+1@3 42T Oan —1@ +x+1), a p) (djs—2V+1) (djs~2v+3) 12)
v=s+i=0,1,2,..., d&=2j+1, d,=2s+1, d,=d*d,
Sx
Equations (8), (11), and (12) determine the explicit form of the operator 2% in the basis of spherical
xZ
spinors for arbitrary value of the spin. In particular, for s, j = 3/2 we obtain from (12)
i Wi i jt1 i ; i
a’/RJ—‘h:a_z'Jz'/z:-_i/Z; ax? =dojf=—'1/m; aoi—izdfso="VW7 J70;
- . S 13)
B Wi 1 V3(j+1) % i o 1 'll/ 3j %3 hi 1 (2j+3) (2j—1) - 1
Ay, y, =y, 3,==— " N —yy — =Ry, Ly = - iy Ty, = — —_——e / —;
g, ;== g, 5 ; Ay, 3, h Y 9 ) Ay, ~1, =8y, y 5 76+ J p)
as A - A =~_1_ - 0 =0 asi ___aai _m“/ s+1 . asi *an __V s .
1—5 —s —s 1—s 2 ’ Ak ] 28 1~ 1—s 2~3 2S+1 ’ —s5 i—s 1—5 ~s 2S+1 P
s % s 1 3(S+1) sy s % 1 3s
ds—s 2—s=a2—/s s —(—F ———; Qi ~s=a—: === —§ (1 4)
2 s 27 s+t
s % XA 1 (2S+3) (28_1) oy
Qg5 41—~y Z—s'_'—~2— W, N 9.

The remaining coefficients a3, for s = 3/2 and for j = 3/2 are equal to zero,

4. Energy Levels of a Relativistic Particle with

Arbitrary Spin in a Coulomb Field

We turn to the solution of Egs. (6). The matrix |53, | obviously commutes with the operator D (7),
and, at least for @ « 1, can be diagonalized. This means that the system (6), (7) can be reduced to the
following chain of decoupled equations:

Do=z—b%igp, 1s)

where D is the operator (7}, and b¥ are the eigenvalues of the matrix 654, 1l. Each of Eqs. (15) reduces, in
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its turn, to the well-know equation [10]

d’y  dy z k2

z——+-—=+ {8 — .
dz*  dz (

where

£0,

(mi—e)"’

1 ks
N r A e Ko (2 4 (59) s an

2 L mi—g
The solutions of Eq. (15) can be expressed in terms of confluent hypergeometric functions, which in the cage
of bound states (& < m) reduce to generalized Laguerre polynomials. The parameter B can take the
values [10]
p=(k+1)/2+n’, n'=0,1,2,.... (18)
From (17) and (18), we obtain
2

1+ ad "
m[ CEDRE (j+1/2)2—a2+bsv‘]‘/=)2] ' a9

The expression (19) determines the energy levels of a particle of arbitrary spin in the Coulomb
field. The parameter b¥ in (19) takes values equal to the roots of the characteristic equation for the
matrix (7),

det” (A=A (2j+1) —b7 ]84 + —— cearn || =0, 20)
S

where afj, are the coefficients (12).

Equation (20) is an algebraic equation of order (2s + 1) if j = s, orof order 2j + 1 if j = s,
This equation can be solved in radicals only for s = 3/2 or j < 3/2. To analyze the spectrum (19) in the
case of arbitrary s and j, it is sufficient to consider approximate solutions of Eq. (20), which can be
represented in the form

b”'=7»2——7»dj+b;,”oc2+o(oc’*), dJ:2]+1 (21)

Using (12), (20), and (21), we can readily calculate in explicit form the coefficients b;j directly for
arbitrary values of s, j, and A:

L

ow (22)

+ (a;i‘?z ] :
j—rt+1 A—j

where a” are the coefficients (12).

We substitute (21) in (19) and expand the function on the right-hand side of (19) in a series in powers
of @®, To terms of order a' we obtain
o’ -1 3 &
oan*  n'(d—2)) 8 n'

e=m (1~ )- 23)

The expression (23) determines the fine structure of the energy spectrum of a Coulomb particle of
arbitrary spin in the Coulomb field. The parameters by in (23) can be readily calculated from (22). From
(22) and (23) it can be seen that in the general case each energy level corresponding to fixed values of the
quantum numbers n and j is split into k; sublevels, where k; = 2s + 1if j = s and ksj =2j +1ifj = s,
An exception is the case s = §, when b577\' = 2>\/d]., and the corresponding spectrum is degenerate,

Let us consider in more detail the spectra (19) and (23) for the cases s = 3/2 and j < 3. Using
(13) and (14), we obtain from (22)

bO=0, Wm0 b 2N, Akl b=kt 20127 ={1’ 0, =1, 770,
’ ’ " v T g (d-a) di-1 —1, j=0;
(d—260d;—32) (7»2—3—) 3t 13 j#i
W (di+27:0) (AW =1/1) 1 4 _ 2’ 272727 2"’
B S m@—Tay Gy 18 d@+em (d=dy 0 |3 1 =L
27 2 2’ (24)



2s?
d,=2s+1, A'=At+s—1, A==—s —s+1, —s+2.

A ) N 1 dHV 201
bet=0, sy bPmTos s ot b= - ]
W0=0, A s A %5 (2541) 8, —¢§ A A 4. (d—") d21q

From (23) and (24) we conclude that in the case s = 0 Eq. (23) gives the well-known spectrum of
energies of a scalar particle (described by the Klein—Gordon equation) in a Coulomb field {11], and that in
the case s = % (23) is identical to the formula for the fine structure of the spectrum of the hydrogen atom
[11]. For s = 1, the results given in (23) and (24) agree with those obtained earlier in [5] if we denote
A=j—v, A(2j+1—A)=x. Considering the spectrum (23), (24) for j = 1, we conclude that each level corre-
sponding to fixed values of j and n is split into two sublevels if j = % and three for j = 1. The magnitude
of the splitting decreases with increasing spin, In the case j = 0 there is no splitting.

We now turn to the exact expression (19). For s = 3/2 or j = 3/2, Eq. (20), which determines
the values of the parameter b¥, can be solved exactly. For completeness, we give the corresponding
solutions for s = 3/2 and j = 1:

b =t =) (d—hat)”, A==y (25)
b”*—"z/a‘i'ZV—l—l COoS {‘/3 (’Y+2}\/ﬂ)] ’ }\/=0, :L'i, ,7#07 b10227 (26)
where cos y=b/Va®, b="/,0*+/ d*—"/0, a=b+*/n—0?;

b i=be (n, b) =/, (/e A+vV (1+ed)*—2y—e A~ (2y+126—9p)), 27
where € and v independently take the values +1,
1, A=V§—"7ou—2, y=1+/p+2Vc cos (/s%), cos x=k/Ve®, c=13u*+2(u+b)—1, k=35u"+33u>~87pb+
186°+33b—1, p="/,[j (j+1)+2b], b="/;{a/3)*;

\ 1 1 —
b*'=s(st+1), b"’=s(s+1)——2~i2—vs2(2s+1)2—a2, bet=%/+2Vp cos [/s (B+2hm)], A=0, =1;
S

cos B=q/Vp",  q=%s(a/s) +dP ", p=qtlu—(a/s)? b Fe=s(sHL) =/ F by, b)), 28)
wW=*{s(s+1)+26"], b="s(a/s)

Substituting (25) in (19), we arrive at Sommerfeld’s formula for the hydrogen atom. Equations (19)
and (26)-(28) generalize Sommerfeld’s formula to the case of particles with spin 1, 3/2 and to the case of
particles with arbitrary spin for j < 3/2).

Note that our result for s = 1 differs from the result obtained earlier in [5], in which, possibly
due to a misprint, the term 2/3 is absent in the expression for bV (cf. (26) and Eq. (9) in {5]; in [5] b¥ is
denoted by the symbol 2). 1In addition, in [5] there are two extra roots b'° = ta, whereas for s =1 and
j = 0 Eq.(7) becomes the identity bl =2,

5. Particle with Arbitrary Spin in

the Field of a Plane Electromagnetic Wave

We now consider Eq. (3) for the case when the external electric field is a plane wave,
A=A, (), o=ka*, 0,A*=kd4* =0, 29)

where the prime denotes differentiation with respect to @. Substituting 29) in (3), we arrive at the
equation

(’ — 9,0 —ie A, " +e* A, Ab—m? — z— S-F) ®,=0, (30)

where F=kXA—i(k,A'—k4,’). We seek solutions of this equation in the form

O,=exp (—ipa*) ¥ (9), p'=m’. (81)
Then from (30) we obtain the following equation for ¥(e):

2k, M+ [—ZepuA“—i-eZAvAV L S-F] ¥ =0. (32)
S

Equation (32) is readily integrated:
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by
‘{"_-:exp{—i uS [—e——pAV——ez——-—A A7 dcp——ie——S-F U (33)
J hpt Y 2hkypt Y Dskey pt »

where U, is a constant spinor, conveniently chosen in such a way that the functions (31) determine
normalized solutions of Eq. (3) in the absence of interaction (i.e., for 4,=F,=0).

The matrices 8*F in the solutions (33) satisfy the conditions
H [ (S-F)*—AF*]=0; S-FH [ (S-F)*—v*F*] =0, (34)
» v

where A='/,,%,...,8; v=1,2,...,s Since by definition F*=k/k*4,4"=0, the condition (34) can be written in
the form
(S-F)»+'=0. (35)

By virtue of (35), the solutions (31) and (33) reduce to the form

2y 7 ieSFy\"
= - xp (iS) U,

where S is the classical action for a particle moving in the field of an electromagnetic wave:

v
[N

S = — pyr¥ — g

[
0

[ ¢ _p,A° ¢ 44 |d
kup“’ P e 2kup“’ v .

We see that, in contrast to Volkov's well-known solution [12] for an electron in the field of a plane
electromagnetic wave, the solutions of the equations for particles with arbitrary spin depend on the field
intensity as polynomials of degree 2s, and not linearly.
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