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The story is based on the papers

I Yves André, Galois theory, motives and transcendental
numbers, 2008

I Maxim Kontsevich and Don Zagier, Periods, 2001
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N =
{

1, 2, 3, . . .
}

Z =
{
. . . ,−2,−1, 0, 1, 2, . . .

}
Q =

{p

q

∣∣∣ p ∈ Z, q ∈ N, g.c.d.(p, q) = 1
}

R

C =
{

x + i · y
∣∣∣ x , y ∈ R

}
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A number x ∈ C is called algebraic if it satisfies a polynomial
equation with rational coefficients:

xn + a1x
n−1 + · · ·+ an−1x + an = 0 , ai ∈ Q

Notation: x ∈ Q

Choose the equation of minimal possible degree. Its complex roots
are then called the conjugates of x :

x1 = x , x2 , . . . xn
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Example 1: x2 − x − 1 = 0, x1,2 = 1±
√

5
2 .

Example 2: x = e
2πi
5 = cos(72◦) + i sin(72◦)

=

√
5− 1

4
+ i

√
5 +
√

5

8

x5 = 1

x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1) = 0

x1,2 =

√
5− 1

4
± i

√
5 +
√

5

8
, x3,4 = −

√
5 + 1

4
± i

√
5−
√

5

8
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Example 3: There are three sets of conjugates among 9th
roots of 1.

x9 − 1 = (x − 1)(x2 + x + 1)(x6 + x3 + 1)
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N ⊂ Z ⊂ Q ⊂ Q
∩ ∩
R ⊂ C

Numbers which are not algebraic are called transcendental.

π = 3.141592653589793238462643383...

is transcendental (F. Lindeman, 1882)

e = lim
n→∞

(
1 +

1

n

)n
= 2.718281828459045235360287471...

is transcendental (Ch. Hermite, 1873)
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Basic question: Is there anything analogous to conjugates for
(some) transcendental numbers?

Naive approach: look for a formal power series with rational
coefficients as a substitute for the minimal polynomial.

E.g.

∞∑
n=0

(−1)n

(2n + 1)!
x2n = 1− 1

6
x2 +

1

120
x4 + . . . =

sin(x)

x

vanishes at x = π, but also at

x = m π for all m ∈ Z ,m 6= 0 .
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A.Hurwitz:
For any α ∈ C, there exists a power series with rational coefficients
which defines an entire function of exponential growth, and
vanishes at α.

However, it turns out that there are uncountably many such series.
In fact, such a series can be found which vanishes not only at α,
but also at any other fixed number β.

Naive approach fails.
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Periods

A period is a complex number whose real and imaginary parts are
values of absolutely convergent integrals of rational functions with
rational coefficients, over domains in Rn given by polynomial
inequalities with rational coefficients.

Examples:
√

2 = 1
2

∫
0≤x2≤2 dx , log(2) =

∫ 2
1

dx
x .

All algebraic numbers are periods. Logarithms of algebraic
numbers are periods. Periods form an algebra, i.e. the sum and
the product of two periods is a period again.

π =

∫ ∫
x2+y2≤1

dx dy =

∫ ∞
−∞

dx

1 + x2
∈ P



Basic question Periods Algebraic numbers revisited: Galois theory Homology Motivic Galois group Motives

Many infinite sums of elementary expressions are periods. E.g. all
values of the Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns

at integer arguments s ≥ 2 are periods. E.g.∫ ∫ ∫
0<x<y<z<0

dxdydz

(1− x)yz
=

∫ 1

0

∫ z

0

1

yz

∞∑
n=0

∫ y

0
xn dxdydz

=

∫ 1

0

∫ z

0

1

yz

∞∑
n=0

yn+1

n + 1
dydz

=

∫ 1

0

1

z

∞∑
n=0

zn+1

(n + 1)2
dz =

∞∑
n=0

1

(n + 1)3
= ζ(3)
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Values of the gamma function

Γ(s) =

∫ ∞
0

ts−1e−tdt

are closely related to periods:

Γ
(p

q

)q
∈ P p, q ∈ N

For instance,

Γ
(1

2

)2
= π , Γ

(1

3

)3
= 2

4
3 3

1
2 π

∫ 1

0

dx√
1− x3

.
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Identities between periods

(1) additivity (in the integrand and in the domain of integration)∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx

(2) change of variables∫ f (b)

f (a)
F (y) dy =

∫ b

a
F (f (x))f ′(x) dx

(3) Newton-Leibniz formula∫ b

a
f ′(x) dx = f (b) − f (a)
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Conjectural principle: if a period has two integral representations,
then one can pass from one formula to another using only
(multidimensional generalizations) of the rules (1)-(3).

As an example, let us proof the identity

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
.

The following proof is originally due to E.Calabi: we start with the
integral ∫ 1

0

∫ 1

0

1

1− xy

dxdy
√

xy
=

∞∑
n=0

(n +
1

2
)−2 = 3ζ(2)
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On the other hand, the change of variables

x = ξ2
1 + η2

1 + ξ2
, y = η2 1 + ξ2

1 + η2

has the Jacobian∣∣∣∂(x , y)

∂(ξ, η)

∣∣∣ =
4ξη(1− ξ2η2)

(1 + ξ2)(1 + η2)
= 4

(1− xy)
√

xy

(1 + ξ2)(1 + η2)

and therefore∫ 1

0

∫ 1

0

1

1− xy

dx dy
√

xy
= 4

∫ ∫
ξ,η>0,ξη≤1

dξ

(1 + ξ2)

dη

(1 + η2)

= 2

∫ ∞
0

dξ

(1 + ξ2)

∫ ∞
0

dη

(1 + η2)
=

π2

2
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For a normal extension of fields K ⊂ L the Galois group is defined
as

Gal(L/K ) = { authomorphisms of L that preserve K} .

For an algebraic number x with the conjugates x1 = x , x2, . . . , xn

one considers the field

Q(x1, . . . , xn)

and the group

G = Gal
(
Q(x1, . . . , xn)/Q

)
.
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Fundamental observations of Galois theory:

I Elements of G permute the numbers x1, . . . , xn.

I An element y ∈ Q(x1, . . . , xn) is preserved by all
automorphisms g ∈ G if and only if y ∈ Q.

It follows that G is a subgroup of the group of permutations of
x1, . . . , xn. Regarding V = Q(x1, . . . , xn) as a Q-vector space, we
then have that at the same time

G ⊂ Sn (the group of permutations of n elements)

G ⊂ GL(V ) (the group of linear transformations of V )
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Finally, every algebraic number x ∈ Q comes along with the
following structure:

I the set of conjugates x1, . . . , xn

I a finite dimensional Q-vector space V = Q(x1, . . . , xn)

I a finite group G , which is a subgroup of permutations of the
above set and acts in the above vector space by Q-linear
transformations:

G ⊂ Sn , G ⊂ GL(V )

P appears to be a natural set of numbers for which one could
expect to generalize this structure.
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P =
{

integrals of rational functions with algebraic coefficients

over domains given by polynomial inequalities

with rational coefficients
}

=
{

integrals of rational differential forms ω

on smooth algebraic varieties X defined over Q
integrated over relative topological chains σ

with the boundary on a subvariety D ⊂ X of codimension 1
}
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2πi =

∮
dx

x
X = C× ∼= {(x , y) ∈ C2 | xy = 1}

ω =
dx

x
σ = a counterclockwise loop

around the puncture

D = ∅
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∫ ∫
v2(x3 − 3x2 + 2x) ≤ 1

1 ≤ x ≤ 2

dx dv = 2

∫ 2

1

dx√
x3 − 3x2 + 2x

=

∫
σ
ω

X = {(x , y) ∈ C2 | y2 = x3 − 3x2 + 2x}

ω =
dx

y

σ = a loop through the points (1, 0) and (2, 0)

D = ∅
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Homology and Cohomology

X a smooth manifold of dimension n

k-chains in X : formal linear combinations with rational coefficients
of smooth embeddings of the k-dimensional simplex ∆k into X
Notation: Ck(X )

The boundary map: ∂ : Ck(X )→ Ck−1(X ).

A simple computation shows that ∂ ◦ ∂ = 0.



Basic question Periods Algebraic numbers revisited: Galois theory Homology Motivic Galois group Motives

Homology and Cohomology (continuation)

The k-th homology

Hk(X ) =
Kernel(∂ : Ck(X )→ Ck−1(X ))

Image(∂ : Ck+(X )→ Ck(X ))
=

k − cycles

k − boundaries

is a finite-dimensional (!) vector space over Q.

Its dual vector space is called the k-th cohomology:

Hk(X ) = Hk(X )∗ = {linear functionals on Hk(X )} .

βk(X ) = dim Hk(X ) the Betti numbers of X
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X = C∗

β0 = β1 = 1 , β2 = 0

X = compactification of {(x , y) ∈ C2 | y2 = x3 − 3x2 + 2x}
≡ 2-dimensional torus

β0 = 1 , β1 = 2 , β2 = 1
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With a period

w =

∫
σ
ω , σ ∈ Hk(X )

we associate a finite-dimensional Q-vector space

V = H•(X ) = ⊕n
r=0Hr (X )

and a subgroup of the group of linear transformations of this space

G = Galmot(X ) =
{

linear transformations of V which preserve

all elements in the tensor algebra
∞⊗

m=0

V⊗m

which correspond to algebraic cycles in

multiple products X × · · · × X
}
⊂ GL(V )
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Künneth formula:

Hr (X × Y ) =
⊕

i+j=r

Hi (X )⊗ Hj(Y )

Algebraic subvariety Z ⊂ X of dimension k can be triangulated
into a chain σZ ∈ C2k(X ) without a boundary, i.e. ∂(σZ ) = 0, and
its class in the homology group [Z ] ∈ H2k(X ) is independent of the
triangulation.

A k-dimensional algebraic subvariety Z ⊂ X × · · · × X︸ ︷︷ ︸
m

then

defines a class

[Z ] ∈
⊕

i1+···+im=2k

Hi1(X )⊗ · · · ⊗ Him(X ) ⊂ H⊗m
• .
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The motivic Galois group of an algebraic variety X is

Galmot(X ) =
{

linear transformations of H• which preserve

all classes of algebraic cycles

in the tensor algebra
∞⊗

m=0

H⊗m
•

}
⊂ GL(H•(X ))

The conjugates of a period w =
∫
σ ω are then all periods

wg =

∫
g σ
ω , g ∈ Galmot(X ) .
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For example, for an elliptic curve

X : y2 = x3 + ax2 + bx + c

= (x − α1)(x − α2)(x − α3) αi 6= αj

we consider

H•(X ) = H0(X )⊕ H1(X )⊕ H2(X ) ∼= Q⊕Q2 ⊕Q .

Both H0(X ) = Q · [pt] and H2(X ) = Q · [X ] are spanned by

algebraic classes [pt] and [X ] correspondingly. For a generic elliptic
curve there are no nontrivial algebraic cycles in X × · · · × X , and
therefore

Galmot(X ) = GL(H1(X )) ∼= GL2(Q) .
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The period

w1 =

∫ α2

α1

dx√
x3 + ax2 + bx + c

has a conjugate

w2 =

∫ α3

α2

dx√
x3 + ax2 + bx + c

,

and the whole set of its Galois conjugates is given by{
α1w1 + α2w2 | α1, α2 ∈ Q , not both zero

}
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It remains to consider also “nongeneric” elliptic curves. For any
curve one can show that w1/w2 ∈ C \ R. In particular, the ratio of
two periods w1/w2 is never rational. “Nongeneric” curves are
those for which w1/w2 satisfies a quadratic equation with rational
coefficients, so called curves with complex multiplication. These
have extra algebraic cycles in X × X , which the motivic Galois
group must preserve.

Consider the field K = Q(w1/w2). It is a quadratic extension of Q
and Galmot(X ) in this case is the normalizer NK of a Cartan
subgroup of GL(H1(X )) ∼= GL2(Q) isomorphic to the multiplicative
group K× = K \ {0} (vieved as a 2-dimensional torus over Q).
The answer for the set of conjugates of a period in this case is
exactly the same.
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Motives

Var(Q) the category of algebraic varieties defined over Q
One expects existence of an abelian category MM = MMQ(Q) of
mixed motives over Q with rational coefficients, and of a functor

h : Var(Q)→ MM

which plays a role of universal cohomology theory. Its full
subcategory NM (pure or numerical motives) has a simple
description in terms of enumerative projective geometry: up to
inessential technical modifications (idempotent completion and
inversion of the reduced motive Q(−1) of the projective line), its
objects are smooth projective varieties and morphisms are given by
algebraic correspondences up to numerical equivalence.



Basic question Periods Algebraic numbers revisited: Galois theory Homology Motivic Galois group Motives

Motivic Galois group

Cartesian product on Var(Q) corresponds via h to a certain tensor
product ⊗ on MM, which makes MM into a tannakian category.
There is a ⊗-functor

H : MM → VecQ

such that H(h(X )) = H•(X ). For any motive M one denotes by
〈M〉 the tannakian subcategory of MM generated by a motive M:
its objects are given by algebraic construction on M (sums,
subquotients, duals, tensor products). The motivic Galois group
is the group-scheme

Galmot(M) = Aut⊗H
∣∣∣
〈M〉

of automorphisms of the restriction of the ⊗-functor H to 〈M〉.
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2πi is a period of so-called Lefschetz motive Q(−1) = H1(P1).
Galmot

(
Q(−1)

)
= Q× and the conjugates are all nonzero rational

multiples of 2πi .

log q for q ∈ Q \ {−1, 0, 1} is a period of so-called Kummer
1-motive Mq. Grothendieck’s conjecture for M would imply that
log q and π are algebraically independent. If so, the conjugates are
log q + Qπi .

ζ(s) for an odd integers s > 1 is a period of so-called mixed Tate
motive over Z. Grothendieck’s conjecture would imply that
ζ(3), ζ(5), . . . are algebraically independent and the conjugates are
ζ(s) + Q(πi)s .
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