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Higher Kronecker ““limit” formulas
for real quadratic fields

By Maria Viasenko and Don Zagier at Bonn

Abstract. For every integer k = 2 we introduce an analytic function of a positive
real variable and give a universal formula expressing the values {(%4, k) of the zeta func-
tions of narrow ideal classes in real quadratic fields in terms of this function and its deriva-
tives up to order k — 1 evaluated at reduced real quadratic irrationalities associated to 4.
We show that our functions satisfy functional equations and use these to deduce explicit
formulas for the rational numbers {(#,1 — k). We also give an interpretation of our for-
mula for {(4, k) in terms of cohomology groups of SL(2, Z) with analytic coefficients and
describe a “twisted” extension of the main formula that allows one to treat zeta values of
zeta functions of ray classes rather than just ideal classes. Finally, we use our formulas to
compute some zeta-values numerically and test that they are expressible as combinations of
higher polylogarithm functions evaluated at algebraic arguments.

Introduction

Let K = Q(v/D) be a real quadratic field of discriminant D and % € C1*(K) be a
narrow ideal class. The {-function of # is defined for Re(s) > 1 as

1

C(ﬂ,s) = Z%W7

where the summation is over all integral ideals in the class %#. This function can be contin-
ued to a meromorphic function on lthe whole of C with its only singularity at s = 1, where it
has a simple pole with residue D~ log(e). Here ¢ is the smallest totally positive unit of K
with the property ¢ > 1. The Kronecker limit formula (hereafter abbreviated as KLF) for
real quadratic fields is an expression for the Oth Laurent coefficient of {(4, s) at s = 1. (The
original KLF, of course, was for imaginary quadratic fields.) Such a formula was given in
[13]: there is an analytic function P(x, y) of x > y > 0 such that for all narrow ideal classes
in all real quadratic fields

(1) lilrll(Ds/ZC(@J)—lOg(S)): ST P(w,w').

s—1 weRed(%)
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O(X,Y)=AX?>+BXY + CY? (4,C >0, A+ B+ C < 0) of discriminant D which be-
long to the class 4. Recall that narrow ideal classes correspond to PSL(2, Z)-orbits on the
WiW5 — wawy

VD

is in the corresponding orbit. The set Red (%) is

Here Red(#) is the set of larger roots w = of all reduced quadratic forms

set of integer quadratic forms: if b = Zw; + Zw, € # with > 0, then the
N(Xwi + Yws)
N(b)
obviously finite and every w € Red(#) satisfies w > 1, 1 > w’ > 0. Sometimes we identify
Red(#) with the set of reduced forms themselves and write Q € Red(#) for such a form.

We denote /(#) = #Red(#) in the sequel.

quadratic form Q(X,Y) =

The function P(x, y) mentioned above is defined as
(Y 7w X 1 1. x
P(x,y)=F(x)— Z(y) + Lip (;) — F—i— <log;> (y ~3 log(x — ) +4_1 log;>,
where y is Euler’s constant,
on

0
Lir(z) =X —, [z <1
n=17

is the dilogarithm function, and

(mzinwmmm

2 7
(2) 2 »

)

with (x) =T"(x)/T'(x) (digamma function). The sum defining & converges since
Y(x) =logx+ O(1/x) as x — oo, and defines an analytic function on R, that satisfies the
functional equations

F(x)+F ! ——n—z x+1 —I—llo 2x+C
5 =% x) T2 o8 ’
3

F (v — T~ _ a"x_l__'l_n_zl
F(x) — F(x 1)+/< . )- L12<x 6+2C’ x>1,

with the real constant C ~ 1.45738783... given explicitly in terms of the derivative of
{(s) — (s—1)"" at s = 1. In [13] these functional equations were used to deduce Meyer’s
theorem from the Kronecker limit formula (1), namely

where %™ is the class of any ideal ab with any b € 4 and o € K, aa’ < 0.

In the present paper we generalize formulas (1) and (4) to the higher zeta values
((#,2),((%,3),.... We begin by generalizing the function (2).
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Definition 1. For every integer k > 2 and real number x > 0 let

Y

(5) Filx) = 32 2Y)

=

Here we do not need to subtract log(px) from (px) since the estimate
Y(x) = O(logx) suffices for (absolute) convergence, and the functions %, are analytic
on R,. They already occurred incidentally in [17]. We also introduce a collection of differ-
ential operators &, (n=0,1,2,...) that turn differentiable functions of one variable into
differentiable functions of two variables:

(Z0F)(x,y) = F(x) = F(y),

(), ) = Fx) + F(y) - 222 =20,
(22F)(x, ) = FO(x) . FO(y) L F'() + F'(y) | ¢ F() = F(zy) ’
rY (x—»)

where the coefficients, given explicitly in Definition 6 below, are chosen so that &, Kkills
polynomials of degree < 2n and sends F(x) = x***! to (x — y)""". Then we have

Theorem 2. For any narrow ideal class % € C1*(K) and integer k = 2,

(6) DK (B k)= S Pr(w,w'),
weRed(%)

where Pi(x, y) is the function of two variables x,y > 0 defined by
(7) Pi(x,y) = (Dr—1F %) (X, ).

We call this formula the higher Kronecker “limit”” formula because it has a form sim-
ilar to (1). The reason for the quotes is that for £ = 2 no limit is involved, since the series
defining {(4, k) converges.

For any differentiable function ¥ on R one can also consider the two-variable func-
tion Z,F as a homogeneous function of degree —n — 1 on the space 27 of real quadratic
forms with positive discriminant by setting

) (9,F)(Q) = D% (,F) (_BJA@’ _Bz_Aﬁ)

for Q(X,Y) = AX?+ BXY + CY? with B> —4A4C = D > 0. (This is defined whenever F
is smooth near the roots of Q.) Here v/D denotes the positive square root and D~"+1/2 is
defined as (vD) "', but because Z,F is (—1)""-symmetric the right-hand side of (8) is
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actually independent of the choice of the square root. By Proposition 7 below we have the
equivariance property

In(F|_2,9)(Q) = (detg)"'(2,F)(Qog) VgeGL(2,R),
‘cl Z)) (x) = (ex + d)‘”F(

With this notation, Theorem 2 can be rewritten in the form

. b
where |, for we Z is defined as usual by | F |W< i )

ex+d

(B.k)= > (D17%)(0).

QeRed(%)

In the first part of the paper we prove Theorem 2 and study the functions Z. In
particular we show that they (and their derivatives) can be computed easily to high accu-
racy and satisfy functional equations analogous to (3). These functional equations turn out
to be sufficient to deduce from our higher KLF explicit formulas, analogous to (4), for the
numbers {(4, k) + (—=1)*¢(#*, k) e 1 D~'/2Q, or equivalently, if one uses the functional
equations for {(4,s) + {(#",s), for the numbers {(#,1 — k) € Q, where the rationality
statement is the well-known theorem of Klingen and Siegel. One of the formulas we obtain
was already proved in [14].

The second part of the paper is devoted to the interpretation of the higher KLF in
terms of (co)homology of PSL(2, Z). We construct a cocycle class

(4] € H' (PSL(2,Z), V)

with coefficients in the space 7%, of continuous functions of weight 2k on the projective real
line and use the functional equations satisfied by %5, to show (Theorem 13) that [¢,] has
the rational image

3([¢e]) € H' (PSL(2,2), 1 Va2 (Q))

under the integral map J3: f — [ f(x)(X —)C)Zk*2 dx from 77, to the space Vo;_p of
real polynomials of degree < 2k — 2. These [¢,] and 3([¢;]) turn out to be the two peri-
ods of the non-holomorphic Eisenstein series according to the definition given in [6], [1].
The class 3([¢,]) itself is the well-known Eisenstein cohomology class studied e.g. in [9]
and for the general linear group of degree n in [8], [10]. That is why we call our [¢,] the
generalized Eisenstein cocycle class. Further, for each narrow ideal class 4 we define
a cycle class 5, € H;(PSL(2,Z), 75 5) and show that evaluating [¢;] on it gives the
value {(%4,k) (Theorem 16). Then the rationality of 3([¢,]) implies the Siegel-Klingen
theorem again.

In the third part of our paper we consider the twisted version of our functions #¢{
for a Dirichlet character y and & = 2. Such twisted functions can be used to compute zeta
values for ray classes. We should mention that a KLF was given for ray classes in real
quadratic fields in full generality by Yamamoto [12], but even for this case (k = 1) our
formulas are different. We do not present everything in complete detail but consider a



Viasenko and Zagier, Higher Kronecker “limit” formulas for real quadratic fields 27

particular example, where we compute Stark’s unit and its “higher” version (for k = 2),
which involves dilogarithms instead of logarithms.

We mention that there are similar “higher Kronecker limit formulas” also for imagi-
nary quadratic fields. Let K be an imaginary quadratic field of discriminant D < —4 and %
an ideal class of K. Then ((%,s) = |D/4|*/*E(w, s), where w is the root in $ (upper half-
plane) of any quadratic form of discriminant D in the PSL(2, Z)-orbit corresponding to %
and

A

S _r z=x+iye9,
ez |mz +n|*

©) E(z,5) =

l\)l'—‘
3

is the non-holomorphic Eisenstein series. For k € Z>, we have

E(z,k) = 20) (D162 (z, 2),
where %1 is the same differential operator as in Theorem 2 and

G() = c 1 — 2 0N o

h—1
p=1 p"

Therefore |D/4|"*¢(B,k) = Di_ 1% (w, w). The relation between %, and %, (which is
defined in all of C\(—o0;0] by the sum (5)) is simply

Fi(2) - Fil—2) = LW+ 1/2) - G (2).

(This is an immediate consequence of ¥(x) — (—x) = mcot(nx) + x~'.) The reason that
the real quadratic case is more complicated than the imaginary quadratic case is that there
one has to work with “half-Eisenstein series”, i.e. sums over lattice points in a quadrant
rather than a whole lattice. This is discussed in Section 2.

1. The functions % and zeta values

1.1. Properties of the functions ;. We begin by giving the expansions of the func-
tions F(x) defined in (5) near x = co, 0 and 1. The result will involve the double zeta
values

1
(mn)= > ——, m=22,n=1.
p>q>0pmqn

They satisfy the well-known shuffle relations

{(m, ke —m) + {(k —m,m) = {(m){(k —m) = {(k),

(10) :2((;:1)+<kj};1_1>)é(n,k—n)ZC(m)C(k—m)
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for each m=1,...,k— 1. Here and everywhere below the divergent values {(1) and
{(1,k — 1) are to be interpreted as y (Euler’s constant) and {(k — 1,1) 4+ {(k) — y{(k — 1),
respectively. We denote by B, the nth Bernoulli number, defined by the expansion

n

X o0
=Y B,~—
e¥ —1 ,gonn‘

or alternatively by By = 1 and B, = (—1)"_1nC(1 —n)forn=1.
Proposition 3.  The function Fy(x) has the asymptotic expansions

(I=rlk+r-1)

x}’

F1(0) ~ Le = Dlogx— k= 1)+ 3

as x — oo,
), &

X r=lL,r£k—1

+ (=Dl = 1)(y = logx) — {'(k — 1)]xF2

(=1)"¢n Lk = r)x"!

e971(()6) ~

as x — 0, and

k-1

Fi(x) ~ = L [Llrk = r) + ()L = x)

r=1

1 r—k / r— k + 1 —1
—Z r—k—i—llz;)( 1)( ; )B/C(k—kl—l)}(l—x)
as x — 1.
(By an asymptotic expansion f(x) ~ Z ay,(x —a)" as x — a we mean that
n=ng

N-1

f(x) = Yax—a)"=0(x-a)")

n=ngp

when x — a for every N. We do not require that the series be convergent in any neighbor-
hood of a. For a = oo one replaces x — a by 1/x.)

Proof.  The standard asymptotic expansion of the digamma function at infinity,

W(x) ~ logx+zc(1_r) X — o0

=1 X!

(the derivative of Stirling’s formula), immediately gives the first asymptotic expansion
for Z;. For the second, we use the expansion

W) = 1=+ S 0<x<l,
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and apply the Euler—Maclaurin summation formula following the method explained in
detail in [18] (see [18], Proposition 6.5, and the second remark after it). When x — 1, we

use the recursion (x + 1) = (x) + x~! and the expansion of ¥ near 0 again. []

Proposition 4.  The function F(x) satisfies the two functional equations

AW+ (TR G) = A(x) + C(K) <(—x)k—1 - i)

and

k—1
(12) %(x)—%(x+1>+<—x>k-2fk(le):Bk<x>+c<k><<;’21 —%)

where Ay (x) and By (x) are the polynomials of degree k — 2 given by

k—1

A) = =5 Lk - (=), Bul) = —kzll (h — ror) (=)

r=1

and related by
B + (028 () = o+ e (-0 - 1),
(13)
Bie(x) + Be(x + 1) = (—x)* 24, (x j; 1) .
Proof. From
Vo) = q—0(1—+q X + q)
we get
(—l)k (k1) & 1
LA L
and hence
(D" k-, _ 1
(k—l)!/k ) pziaz0 (px +q)~




30 Viasenko and Zagier, Higher Kronecker “limit” formulas for real quadratic fields

and

(—1)k (k=1 o (k=1) I gy (x+1
=) T, (x) — F, (x—l—l)—F,/fk .

1 1 1
B <17>(%20 - qu:>0 _pgq:>0> (px+ ‘I)k = (F - (x+ 1)k>'

Integrating these equations k — 1 times" we obtain formulas (11) and (12) for some poly-
nomials A; and By of degree k — 2, whose coefficients are then determined by the asymp-
totic expansions given in Proposition 3. The relations (13) between By and A are equiv-
alent to the shuffle relations (10), and also follow easily from equations (11), (12) and (11)
with x replaced by 1/x. [

Finally, we would like to mention that, although the series in (5) converges only poly-
nomially quickly, we can compute values of the function % (x) (or its derivatives) to high
accuracy with little effort. To this end, for integers M, N = 1 we define

Fi) = 32 VLR8P ) gt — 1) g

P (£

m=1 xm p=1

which can be computed in time O(MN ), the calculation of the digamma and zeta functions
being standard. Then

| Tt (x) — T v, (X)| =

5 (v~ togo - 32 S0

p=N+1 pk_ m=1 (px)m

| Cu (k+M—1)Cy
M S XM+ N k+M—1

IA

SN PR (px)
. MM . .
with Cyy = |{(1 - M)| =0 M2 <2—> by Stirling’s formula. From this we find that
e

for a given time 7= MN the best accuracy is O(T ihemV/8mT/ ¢), achieved by choosing
eM ~2nxN.

1.2. The functions 7 and polylogarithms. For m,n = 1 consider the function

(14) Fpon(x) = (—x)"f Lip (™) Lis(e ™) di, x>0,

D Here we use Bol’s identity to write x’kfk(k*l)(c + 1/x) as (=d/dx)* " (x*2F (¢ + 1/x)).
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o0
where Li,,(x) = > x"/n™ is the mth polylogarithm function. Integrating by parts and using
n=1

xLi/ (x) = Li,_1(x), we obtain

Frer.ax) = —<—x>";fLim+l<e-”>d Ly (™)
= (=x)"C(m+ 1){(n+ 1) + Fp pi1(x).

Hence if one fixes the sum m + n, then there is essentially one such function up to a poly-
nomial. Let us set for k = 3

Fk(x) = Fk—2, 1 (x)

Then
1 r—1
Enn(x) = Fie(x) = 3 {(r)¢(k — r)(=x)
r=2
t.
with k = m + n + 1. Substituting 1 — — 1n the integral (14) we get the equality

_ 1
Fm,n(x) + (_x)n+m an,m (;) =0.

Expressing F,, , and F, ,, in terms of the function Fj yields

(15) A + ('R (1) = £ 0tk - -0,

This functional equation is very similar to (11). And indeed, Fj is the same as our old %
up to sign and the addition of simple functions:

Proposition 5.  For k > 2 one has

Flx) = ~#(s) — ¢tk — 1) - =

Proof. From

et e o0 1 1 »
(T_l—e_7> dt and y—J(l_e_[—?>e dt

([11]) we get

W)+t =t 1) 4y = jlej_e_lx

dt = —[ (1 —e)dLij(e").

0%8
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Therefore
T —Xxt : —t 1
x [ e Lij(e )dz:lp(x)_|_y_|_)_c7
0
SO
0 o0 efxrp ) B o x k
Fi(x) = =x | 30— Lin(e ) dr = =3 (151) —pl(k—1) —&. O
0 p=1P p=1 D X

This proposition together with (15) gives an alternative proof of (11). Let us also
sketch a similar proof of the second functional equation (12). The double polylogarithm
functions ([4], [3]) are defined for |z;| < 1 by the series

This integral is also convergent for m = 0 and n = 2. Integrating for m = 0, n = 1 the
equality

d _. PP . IR . et
EL1m+l,n+l(e xt,e t) = _XL1n1,n+l(e xt,e t) _L1m+l7n(e M’e [)7

we get the relation

Gni1n(x) = (=%)"Cn+ Lm + 1) + G nir (%)
So, there is one such function G, , up to a polynomial for a fixed sum m + n. We claim this
function is again F,.,.1. Let kK = m + n+ 1. Careful integration (paying attention to the
singularity at ¢ = 0) of the equality

Lik_170(e_XZ, €_l) = Lik_l(e_<x+1>’) Lio(e_’)

yields G_» 1(x) = Fp(x + 1) + {(k — 1,1) + {(k). Hence
Gonn(¥) = Fielx+ 1) + 9Lk — 1) - z] Lk — ) (=)

Now expressing everything in the equality

o g-tlpxa)
Fpn(x) = 30 ()" ——dt =30+ 30 + 32
pqzl o P9q p<q q<p p=q
g (1 ("
m+n—1
= Um,n -\~ n,m\ 1
Gin,n(x) — (—x) G, <x)—|—C(m+n+ )x+1
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in terms of F gives the functional equation

Fe(x) — Fe(x + 1) + (—x)2F, <xi 1)

= etk — (-0 + - 1

which, together with Proposition 5, yields (12).

1.3. The differential operator &,,.

Definition 6. Let &, for every integer n = 0 be the differential operator from func-
tions of one variable to functions of two variables defined by

& 2n—i\ FO(x) — (-1)'FO(y)
@b =5 (7, ) S

This can be written as (Z,F)(x, y) = (2, F)(x, y) + (=1)""(2} F)(y, x), where

no(2n—i @) (x
(16) (@2 F)(x, ) =z(2 ),(F4

i=0 n

(The operator &, will be also used later in this article.) However, note that, unlike Z,F,
the function &, F is not differentiable, because it has an nth order pole along the diagonal

x = y, whereas, as we shall see, (Z,F)(x, y) and even (Z,F)(x, y)/(x — y)""" remain finite
near x = y.

: b :
Proposition 7. (i) For any matrix g = (a d) € GL(2,R) and any smooth function
F we have ¢

. m.fax+b B oo ax+b ay+b
(@n (ex+d) F(Md)])(x,y)—(detg) 0B 20,

and similarly with 9" replaced by 9.

(i) For any T € C we have

(_1),,(2;1) ((T_X)H>n = i%o(—l)’" <Z>9;(x”7)T2ﬂm'

n X—) =

(iii) For all integers m = 0 we have

B

r+s=m—1
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In particular, 2,(P) = 0 for all polynomials P of degree < 2n and
(18) @ ( 2n+1) (X )n+l.

(iv) For any T we have

()~ (75 —)

(v) If F is continuously differentiable 2n + 1 times between x and y then

(19) (2,F)(x,y) uJ"(%)”F(an)(t) dr

y

Proof. All of the parts of the proposition follow from the machinery of differential
operators given in the appendix (see the remark after Proposition 22). Here we give more
direct proofs.

(i) The formula

1 /0 2 0 4 0 2n
2 R _ =
(20) I n!<6‘x+y—x><6‘x+y—x> <6x+y—x>

can be verified by induction. The intertwining property (i) for ,", and hence also for Z,,

. . . 0 . . .
follows immediately since the operator — + intertwines between weights —k and

k
weight 2 — k in the variable x. Ox  y—x

2
(ii) From (16) one has obviously %, (1)= ( :) (y —x)™". Applying (i) with

0 1
F(x)—landg—(1 —T> we get

(T =0 = -1y (2 (L2222,

which is equivalent to (ii).

(iii), (iv) We first prove the special case (18). Directly from the definition of &, we

find
%(x_ D g, = g, (xf y) + gn <x—_yy>
with
ant) =321 (1)
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Since g, (u) = u"(1 — u)" is symmetric under u < 1 — u, the expression g, (u) + g,(1 — u) is
constant. Its value is given by

1 12

n0) + 9a(1) =0+ [ (1 )" du= 3 F iy

beta integral). This gives (18). Now (iv) follows using (i) with F(x) = x**! and
( g g g

0 1
9= ( 1 T>' To get (iii) one lets 7 — oo and expands both sides of (iv) as series in 1/7".

Finally, for (v) we note that equation (19) can be rewritten as

(2,F)(x,y) = (x—n—!yz)nﬂjt”(l —0)"F(tx+ (1 —1)y) di

0

(proving the divisibility by (x — y)”Jrl mentioned above). This formula is true if F is a
polynomial by (17) and the beta integral, and then in the general case by polynomial

approximation. []
1.4. The higher Kronecker limit formula.

Proof of Theorem 2. The proof is almost immediate from Proposition 7 and the
results of [13], where it was shown that the partial zeta function {(%,s) has the decom-
position

(21) L(B,s) =D S Zyw,w'),

weRed(4)

where

_ ) A
Zy(x,y) = p>%20<(px +q)(py + 61)> '

In [13], the function P(w,w’) from the Kronecker limit formula (1) was obtained as the
limiting value of Z(w,w’) after its pole has been removed. Here there is no pole and we
can simply set s = k. By part (iv) of Proposition 7,

((px +xq)_(1fy + q)>k B <m>’

and since

1 1 1
fzk X) = ( - )7
) p>(§gop2"*l l4+q px+gq

we find that Zy(x, y) = (Zk—1%%)(x,y). O
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We illustrate the theorem with a numerical example. The field K = Q(+/3) has two
narrow classes, %4y and %), with the corresponding sets of reduced quadratic irrationalities
being

VA2

Recall that we can compute the values of % and its derivatives with high accuracy. In

Red(%) = {2+ V3}, Red(%) = {1 P */g}.

Table 1 we give the values involved in the higher KLF for {(%;,2).

x Zi(x) 7 ()
2443 1.6300186927097819021 ... 0.3642242838863980846. ..
23 —4.1957798770335434426 ... | 16.6663730167640755318. ..
1+ 1/\/§ 0.3693130036419609196. .. 1.0208418261452850428 . ..
1 — 1/\/§ —2.4934462840079526270 . . . 7.3791974289140308912. ..
3+ \/§)/2 0.9894426455775365625 ... 0.6173597187715989196. ..
(3—1/3)/2 | —1.3887304669486036967 ... | 3.7664407174461445334 ...
Table 1
x Z5() 7() 7 ()
2443 1.2518745037778042 . .. 0.3175540356781837 ... —0.0965606430551642 . ..
2-3 —3.9986990011103493 ... | 15.4134269703386953 ... | —107.1707338224315422 . ..
1+ 1/\/§ 0.1460504335512779... 0.9019022568593455. .. —0.7493154998661828 . ..
1- l/\/§ —2.4317204973004163 . .. 6.7529054090681804 . . . —27.9768290236134814 . ..
3+ \/g)/Z 0.6918347553446228 . .. 0.5414072943018742 . .. —0.2773058112199031 . ..
3- \/§)/2 —1.4261182127652868 . .. 3.4079868563585469 . .. —8.6985660821795807 . ..
Table 2

With Table 1 we compute the zeta values at kK = 2 by Theorem 2:

{(%y,2) = 1.1389225773470523300. . . ,
((%,2) = 0.4232764484862273545 .. . .

Similarly, to compute {(%;,3) we need the values in Table 2. Therefore

{(%,3) = 1.0233279526833285 ... ,
{(%1,3) = 0.1667564870865704 . . . .

With the zeta values computed above one can check numerically that

7174

(22) {(%0,2) +{(%1,2) BTNV
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and

6

T
23 Bo,3) — ((%),3) =——.
One sees that the combinations (2, k) + (—1)¥¢(#*, k) in both cases belong to 7%v/DQ.
This statement is true in general and is equivalent to the Siegel-Klingen theorem by the
functional equations for L-functions. Now, we show how to deduce explicit formulas for
such rational combinations from our higher KLF.

1.5. Rational zeta values. Let us briefly recall the relation between ideal classes and
continued fractions given in [13]. Any real quadratic irrationality w has a continued frac-
tion expansion

with b; € Z (all i), b; = 2 (i # 1) and {b;} eventually periodic. The condition of being a root
of the quadratic form in a given class % fixes the “tail” of {b;}. The condition of being a
larger root of a reduced quadratic form, i.e.

(24) w>1, 1>w >0,

is equivalent to {b;} being purely periodic. Let us denote by (by,...,b;) the period of the
continued fraction expansion. It is actually defined up to a cyclic shift, so we will say it is a
cycle of integers. Then the numbers in Red(#) are exactly

1
1 )
biv1 ——

w; = b; — ieZ]lZ,

where b; with i € Z stands for b; mod ).

Wide ideal classes .«7 € CI(K) correspond to GL(2,Z) orbits on the space of integer

b
) € GL(2,Z) acts on quadratic forms by

. N a
quadratic forms of discriminant D, where < J
¢

O(X,Y) — +0(aX +bY,cX +dY) if ad —be = +1.

The quadratic form Q = AX? + BXY + CY? is said to be reduced in the wide sense if
—B+ D

A>0,C<0and |4+ C| < —B or, equivalently, when its root x = 1 satisfies

(25) x>1, 0>x'>-1.
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As in the case of narrow classes, the condition of being a root of the quadratic form in the
class .o/ fixes the “tail” of {;} in the ordinary continued fraction expansion

1
71, aiGZ,aigl(i#l),
a +—

X =a; +

while condition (25) is equivalent to {a;} being purely periodic. Thus to .o/ there corre-
sponds a cycle of integers (a, ..., an,) with ; = 1 and a cycle of numbers

1
Xp=dit——1 ieZ/mZ,
aiy1 +—

just in the same way as (by,...,b;) with b; =2 and wy,...,w; were assigned to a narrow
ideal class. Further, since x| satisfies (25), w; = 1 + x; satisfies (24) and w; > 2, so w; has

a purely periodic “minus’ continued fraction w; = by —

with by = a; + 2 = 3. The
y— e

narrow ideal class % corresponding to wy then lies in the wide class .o corresponding to Xx;
(since both contain the ideal Zx; + Z = Zw; + Z) and we can reproduce all the numbers
(by,...,by) as follows. We consider the minimal even period (ay,...,as), where r = m if
m is odd and r = m/2 if m is even. The b’s and a’s are related by

b1:a1—|—2, bzz-'~:ba2:2,
ba2+l — a3 + 2) ba2+2 = ba2+a4 = 2)
(26)
bl—aZ, =ay_1 +2, bl—a2,+1 =--=b= 2,

1.e.

(bl,.. b;)_(a1—|—22 .. 2a3—|—2,2,...,2,...,a2,.,1—|—2,2,...,2).

u2—1 a4—1 azr—l

In particular, /(%) = a, + as + - - - + ay,. If we started with the cyclic shift (ay, a3, . .., a2, a1),
we would get instead the cycle

(@ +2,2,...,2, . an+2,2,...,2).

az—1 a;—1

This cycle corresponds to the conjugate narrow class #* and [(#") = a; + a3 + - - + az—1.
In particular, we have /(%) + [(#") = Z a;. Notice that if the minimal period length m is

odd, then # = #*; this happens if and only if the fundamental unit of K has negative
norm.
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Let us denote by Redy (%) for a narrow ideal class # the set of those larger roots
of the quadratic forms in % reduced in the wide sense. (Equivalently, Redy, (%) consists
of the numbers w — 1 where w € Red(#), w > 2.) Then in the notations above we have
Redy (%) = {x1,x3,...} and Redyw(%") = {x2,x4,...}. We will also write Q € Redy (%)
for such a form.

Lemma 8. Let % +— J(#) be an invariant of narrow ideal classes defined by

(27) I(B)= 5. F(ww')
weRed(4)

for some function F : R x R — C. Suppose F has the form

(28) F(x,y):G(x_1,y_1)_G(x;1,y_;1>

for some function G. Then

(i) For any narrow ideal class # we have

(B = T Glx,x)— zmc;(l,i)

xeRedy (%) xeRedy (%*

(i) If G(x,y) has the form H;(x—y)+ Hy(1/x—1/y) for some functions
Hi,H, : R — C, then (%) = 0 for all classes .

Proof.  From (26) we have

1
wi=x1+1l=a+2—-—,
w2
1 1
Wy =2——, .., W, =2- ,
w3 Wart1
1
Wa2+1=X3—|—1:a3'+2—
Way+2

and therefore

ar+1 , ay+1 , 1 1
(29) /:Zz F(wj,wj):jzz2 Gw;—1,w;=1)-G I_Wj’l_@

1 1
= G(Wgyt1 — l,w;2+1 - 1) —G(l -—,1 ——,)

%) W2

1 1

= G(X3,x§) — G<x—2,y>
2
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Summing this cyclically gives statement (i). For statement (ii) we observe that if G has the
given form, then F(x, y) = Hi(x — y) — Hi(—1/x+ 1/y). Now from

. 1 1

!
Wil Wi,

it follows that )~ F(w;,w/)=0. O

imod/
Corollary. Let the notations be as above. Then
I(B) £ I(#") = < DD )Gﬂx, x')
xeRedy (%) xeRedy (%)

with GT(x, y) = G(x,y) F G(1/x,1/y).

This corollary is useful because in the application to the following theorem the rele-
vant function G will be transcendental but either G™ or G~ (depending on the parity of k)
will be a rational function.

Theorem 9. For every narrow ideal class 9 and integer k = 2,

DA+ ()0 =T HeDt T ) me),

xeRedy (%) xeRedy (%)
k 2r—1
where Wi(x,y) = Z—1| — > {(2r){(2k — 2r)|x| :

r=0

Remark. In the definition of W}, the absolute value signs are necessary, since |
kills polynomials of degree < 2k — 2, but the restriction of Wy to {x > 0 > y}, which is all
that is used in the theorem, is a rational function (in fact, a polynomial in x*!, y*! and

(x=»7

Proof. We define two functions of one variable by

1 2 1
Vo(x) = —x*=2 gy, (—> - _C( k) (— + x2k1>, x>0,
X 4 X

and

V(x) = Vo(|x]) —@ <§—|—x2k—1>, x e R\{0}.

From Proposition 4 we get, after a straightforward but lengthy computation (one has to
distinguish the three cases x > 1, 0 < x < 1 and x < 0 and to use the functional equations
(11)—(13) repeatedly),

X —

FIu(x)=V(x—1)— V( 1) + (polynomial of degree < 2k — 2)
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and hence, since Z_; is equivariant and kills polynomials of low degree (parts (i) and (iii)
of Proposition 7),

(Dk1Tu) (X, p) = (D V)(x = Ly = 1) = (Zx1 V) (x; ! y7_1>

for x > 1 > y > 0. Therefore, by Theorem 1, the conditions of the lemma above are satis-
fied for .7 (%) = D¥*{(k,#) and G = Z_,V. Moreover, since Zj_;(x* 1) = (x — y)*
and Z_,(1/x) = —(—1/x + 1/y)* by Proposition 7, part (ii) of Lemma 8 tells us that we
can replace G by Gy(x, y) = Z_1(Vo(|x])). Finally, from the functional equation (11) we
get

Vo(lxl) +x* 2o (1/|x))

= () + 2 (11 4 1

k
= =582 82k — 2r)|x|* " + (polynomial of degree < 2k — 2),
r=0

s0 Go(x,y) + (—=1)*'Gy(1/x,1/y) = Wi(x,y). The theorem now follows immediately
from the corollary to Lemma 8. []

We illustrate the theorem (for k = 2 and k = 3) using the example from the previous
section. We have Redy (%) = {1 + 3}, %; = %, Redy, (%) = {(1 +v/3)/2}. One can
easily compute

™ x4y

Wz(x, y) = 1370 m ((nyZ + 1)(x2 —4xy + yz) + IOnyZ)’

for x > y > 0, so {(%,2) + {(%,2) equals

1 1+vV3 1-V3 r*
E(W2(1+\/§,1—\/§)+Wz< > T3 )):18\/57

in accordance with our numerical computation (22). Similarly, using the rather long formula
nt X+ y

5 ((x3y3 + 1) (x* — 6x%y + 16x%y* — 6xp° + »¥)

—21(xy + 1)x%?), x>y >0,

we find that {(%,3) — {(%,3) equals

(W3(1+\/§,1—\/§)_W3<1+\/§71—\/§>> e

1
12v/12 324412

in agreement with (23).
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We end by discussing the relation of Theorem 2 with the Siegel-Klingen theorem
and with the functional equations of {(4,s) + {(#",s). Consider, for k = 2, the rational
function

o 2k BrBZk—r -1 4 k 2r—1
?k(x)—lgmx —W’g (2]")4’(2](—2]"))( s

where B, are the Bernoulli numbers. This function appeared in the literature (e.g. in [15]) as
a generalized period polynomial associated to the Eisenstein series of weight 2k. It satisfies
the relations

(30)  Pi(x) = x* 2, G) Pr(x) — Pr(x — 1) + x* 2, (X - 1) —0.

X
For k = 2 define W(x, y) € Qx*!, y£! (x — y) '] by

7 1 (k= 1)1

Wilx,») = (D" S (902000 + (2D (90,20(0,9).

The function Wy is related to the function W; of Theorem 2 by

Qo) .

Moreover, since W is (—l)kfl—symmetric in x and y, the number defined by

—-B++vD —B—+/D
24 24

Wi(Q) = D"T‘Wk<

for an integer quadratic form Q = AX? + BXY + CY? is rational. Note that the normal-
ization here is different from the one in (8), reflecting the different symmetry. Now we can
formulate the following

Corollary. For any narrow ideal class # and integer k = 2,
R (P IR v L AT R o A1)
QeRedy (%) QeRedy (£%) QeRed(%)

Proof. From the functional equations

2
(32) n—sr<¥> D2(L(B,5) + (—1)°C(#",5)) = same with s — 1 =5 (e=0,1)

we have ((#,1 — k) = (—1)*¢(#*,1 — k) and
DL, k) + (-1)* (37, k)

(27[) 2k

- mp“*k)ﬂ (B = k) + (-D)fe(#* 1 - k)

(2n)%

— WD(H‘WC(QB, 1 — k).
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Combining the latter with Theorem 9 and using (31) gives
(@ 1-0 =Dt T )t F )W),
xeRedy (%) xeRedy (%)

what is exactly the first statement of the corollary. Further, using the equivariance property
of Zk_; (Proposition 7 (i)) we get from (30)

is) = (0 (1),

7 . . /x—1y-1
Wk(xvy)—Wk(x—l,y—1)+Wk<xx ,%):0.

From Lemma 1 and its corollary with G(x, y) = W(x, y) it follows that

I(@B) = X Wilww') = (=1)"7(#")
weRed(%)
=( SRRETEILES> )mmvx
xeRedy (%) xeRedy(%*)

since W,—f — 2W; when +1 = (—1)*"". Therefore

(#,1-k) =D V2r(3)= Y Wi(Q). O
QeRed(%)

Let us compute the rational values {(%, 1 — k) explicitly. If we define homogeneous
polynomials d, ,(A4, B, C) and f,(A4, B, C) by

2n
(AX?+ BXY + CY?H)" = zod,.,n(A, B, C)X>"(-Y)",
r=

f(A B C) _ Zn:(—l)r (}’l — I’)' ArBZnJrlerCr
B = r(2n+1-2r)! ’

then for Q = AX? 4+ BXY + CY? we have

2120 —7)!
n!?

(_1) drAn(AaB’ C),

D () <—B + \/57 ~B— \/l_))

24 24

prg (L (~B+VD —B-VD\ _  (2n+1)! /(4,B,C)
"\ x| 24 7 24 n! Ccr+l

and hence

¥ o k1 BrBZkfr
(33) Wk(Q) - :21 mdrfl,kfl(AuBa C)

_|_

(—=1)"(k = 1)1Bx (fk—l(A,& C) +fk—1(C, B,A)>
4k Ck Ak ’
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Example. Let us once more go back to the example from the previous section and
compute {(%,1 — k) and {(%1,1 — k) for k = 2,3. From (33)

. B 1 /(B> B*\ 3/4 C
=—— [1+=(=+=)-2(Z2+=) |
m2(0) 144< 10 <C2+A2> 5<C+A>>

In %, there is only one reduced quadratic form Qy = X?> —4XY + Y2 and in %, there are
two reduced forms Q) = 3X? — 6XY +2Y? and Q, = 2X? — 6XY + 3Y?. Therefore

1) = Wa(Q0) = 35,

7 = 1 1 1
(%, =1) = Wa(Q1) + W2 (Q2) :ﬂ—i—ﬁ =0

For the Dedekind zeta function we then have (g 5)(—1) = 1/6. When k =3,

. _B(A+C) 1 (B> ABC A’BC*\[(1 1
"0 =5 _E<@_ 6 2 ><F+E>
and
N 1
{(%o, —2) = W3(Qo) = 5’
@, ~2) = WA(01) + W5(02) = 3¢~ 3¢ = 15
1 = W3 (Q1 3(02) = % 36 18

in accordance with the fact that the Dedekind zeta function (g 5 (s) has a zero (of the
second order) at s = —2.

Remark. The right-hand side of (33) already appeared in [14]. To formulate the
statement given there, let us first rewrite the decomposition (21) as

(34) {(B,s)= > . Zyo(s) forRe(s)>1,
QeRed(%)
where
_ —B++vD —B— /D
— s/2
Zo(s) =D ZS< R >

Theorem 2 from [14] states that Zy(s) can be continued to a meromorphic function on the
whole of C with its only pole at s = 1 and, in our notations®, one has

Zo(1—k) = Wi(Q).

2~) Our notations slightly differ from [14], namely our polynomial d, , is d,—,,, there and our Zy is ZQ
where Q = CX? — BXY + AY?2.
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One of the statements of our corollary follows from this and we now see that the indi-
vidual terms W (Q) come from analytic continuation of zeta functions of reduced qua-
dratic forms Zy(s) in the decomposition (34). Another way to say this is that the results
of this paper and the results of [14] together give a proof of the functional equations
(32) as a consequence of functional equations for the “cone zeta functions” Zy(s) at
integer arguments. It would be interesting to see whether one can give a proof of the
functional equations for arbitrary s in the same way (i.e., by writing the difference of
the right and left sides of (32) as an invariant of the form /(%) = >_ F(w,w’) and show-
ing that F has the form required in Lemma 1 to force / = 0), but we did not succeed in
doing this.

2. Homological aspects

One may notice that the values Z_;(Z)(w, w’) in the higher KLF depend only on
the (2k — 1)st derivative of % (see (19)). In this section we construct a cocycle class using
this derivative and represent our formula as a homological pairing.

2.1. Functional equations and cohomology of the modular group. Recall that the
modular group I' = PSL(2, Z) is freely generated by the two elements

0 -1 1 -1
S:i<1 0)’ U:i<1 0)

of orders 2 and 3, respectively. A 1-cocycle on I" with coefficients in a (left) ['-module M is
a function ¢ : I’ — M satisfying the relation

(35) ¢(gh) = gp(h) + ¢(g) foranyg,hel.
Hence, if m; = ¢(S) and m; = ¢(U) then
(36) (1+8)m =0, (1+U+U*my=0.

And conversely, as soon as the two elements m,m; € M are given such that the condi-
tions (36) are satisfied, the map ¢(S) = m; and ¢(U) = m, can be uniquely extended to a
1-cocycle on I by (35).

Let us now take for M the space of functions on P!(R) with the action of " given
by gF = F|_5.9~"'. Then a 1-cocycle ¢ is the same as a pair of functions F = ¢(S) and
G = ¢(U) satisfying

(37)
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11
Consider T = i( ) Then U = TS and therefore G(x) = F(x — 1) + ¢(T)(x). Using

0 1
this and (37), we rewrite the second of the above equations as

(38) F(x)—F(x+1)+%F<—xi_l>:B(x),

where B= —T7!(1 + U + U?)¢(T). Equations (37) and (38) remind us correspondingly
of equations (11) and (12) for the function %7;. And indeed, one can observe that the proof
of Proposition 4 is based on the fact that similar equations are satisfied by the (k — 1)st
derivative of #;. Consider the function

. N 1
V) =sienl) 3

(X392S

where here and below “x” on the summation sign means that we omit the term with
p = g = 0 and take the “boundary” terms (where either p = 0 or ¢ = 0) with the coefficient
1/2. For positive arguments ,, (x) equals

ﬁ <%)2k1 (,%k(x) +@ (%erz"l)).

This function satisfies (37) and (38) with B = 0. Therefore we have the following

Proposition 10. For every k = 2 the map

$(S) =V, (T) =0

can be uniquely extended to a 1-cocycle for I" with coefficients in the space of functions on
PY(R) with the action in weight 2k.

Let us give ¢, (g) for g € T explicitly. To this end let us consider for o & f € P!(R) the
function on P!(R)\{«, #} defined by

* ;
fe%m x—p* O F (B, 2),
(39) Sop(x) = 1
- X e ()

2¢[p.o (9% = p)
where [, 8], [, 4], (B, ), (o, B) are to be taken on P!(R), e.g., [, f] has its usual meaning if
—o0 S a < f =< oo but means [o, 0] U (—o0,f] if —o0 < f < o < 00, and where “*”’ now

means that the terms with p/g equal to o or f are to be counted with multiplicity 1/2.

Then with the convention that f; , = 0, we have the equality

fup () + fp.(0) = fuy (), x e PR\ (o .7}
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Also there is an equivariance fy, 44(x) = (gf,,5)(x) for g € T'. Therefore for any « € P'(R)
the map

(40) g fogo

is a l-cocycle. Since ¢ (S) =y (x)=frse and ¢ (T)=0=f, 75, we have
$1(9) = foo,go0 for any g e I'. And for any o € P!(R) the cocycle (40) is homologous to ¢;.

Finally, we remark that the properties of f, s given above mean exactly that the map
(2, 8) — f.5 is a modular pseudo-measure on P'(R) in the sense of [7] taking values in the
space 75, defined in the next section.

2.2. The generalized Eisenstein cocycle class.

Definition 11. For k€ Z, let ¥5; be the space of continuous functions f: R — R
such that the limit lim x>/ (x) exists and is finite.
X— 00

This is a representation of SL(2, R) with the action in weight 2k.>

Let V5> be the space of real polynomials of degree < 2k — 2. This is a finite-
dimensional representation of SL(2,R) (with the action in weight 2—2k, so
Vak—2 < 75-2x) and there is an equivariant map 3J : ¥2 — V> given on f € #5; by

8

(41) (3)(X j —x)* 2 dx.

Definition 12. Let 77; be the space of functions f/ : R — R continuous at all but a
finite number of points with the action of SL(2, R) in weight 2k.

The spaces 75, < 77, are representations of I', and the 1-cocycle ¢, from Lemma 10
takes values in 77 since Y, € 77;. The next theorem shows that ¢, can be modified by
a coboundary to a ¥7-valued cocycle with a rational image under the map (41). Before
formulating it, let us notice that in the long exact sequence

HOT, 75/ V) — H' (T, 73) — H'(T, /5) — -+

the term H(T', ¥, /¥ %) vanishes (since a [-invariant function can’t have a finite nonzero
number of points of discontinuity), and therefore H'(T', ;) is a subspace of H'(T, 75;).

Theorem 13. Let [¢] e H'(T,75,) be the cohomology class of the 1-cocycle
¢ from Lemma 10. Then [¢)e H'(T,7%), and 3[4 € H (T, 7% Va_2(Q)), where

3 There is a more symmetric definition of this representation as the space of those continuous functions
F : R*\{0} — R which are homogeneous of degree —2k, i.e. F(Ax,%y) = A~*F(x, y). Then the right action of
SL(2,R) is given by (Fg)(x,y) = F(ax + by,cx +dy), and f(x) = F(x,1) is an element of 7%, from Defini-
tion 11. One can find several other presentations for 77 in [1].
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Vok—2(Q) < Var—z is the subspace of polynomials with rational coefficients. Namely, J[¢;] is
the class of the 1-cocycle

C(zk) — 2k—1
(42)

2 2r— 1
S — 2k_lzg(2r) (2k — 2r)X

Proof. From the asymptotic expansion of F; at infinity we conclude that

(k) Ck—1) 1 1
lka(X) = 3 + e — 1 x2k-1 O<W), X — +o00.

Let f: R — R be any continuous function such that the limit

(43) lim x* <f(x) + @ sig

X—00

(Rk—1) 1
n<x)+%w)

exists and is finite. Then from the equivariance property of the functions f, 4 in the previous
section it follows that ¢, (g) + (1 — g)f € ¥ for any g € I'. Hence, ¢, + 0f is a #2;-valued
cocycle, so [¢,] € H'(T, V).

Let F be any smooth function on R with

F(x) = —{(2k — 1) log|x| — %") B et L c<1)

x2 \x

as x — oo with C smooth near 0. Then the limit (43) for

=T @)zle(x)

equals 0, and using the asymptotic expansion of %, near 0 we check that the function

J(x) =

Fullxl) + 20 (| e |2’“)—A2k<|x>+<1—s>F<x>

is continuously differentiable 2k — 1 times on R (including x = 0). Its (2k — 1)st derivative
is obviously ¥, (x) + (1 — S)f times (2k — 1)!. With this, by formula (54) from the appen-
dix we find that

3o (x) + (1 =8)f) = ﬁ (— A2 (X) + A (—X))

- 2k —-15 E g(zr) (2k — 2V)X2”*1
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and

{(2k)

J((A-T7)f) =

verifying that the cocycle J(¢, + df) € Z'(I', ¥) is given by equation (42). []

2.3. Two periods of the non-holomorphic Eisenstein series. The cocycle (42) is (a
rational multiple of) the representative of the cohomological class which corresponds to
the holomorphic Eisenstein series

En(z) =%

m,n (mz =+ I’Z)Zk

under the Eichler—Shimura isomorphism between Mo @ Sy and H'(T, Vy—»(C)) (see

[15], p. 453). Let us briefly explain the relation of our theory to the Eisenstein series. The

non-holomorphic Eisenstein series (9) is a Maass form in the sense that it is a I'-invariant

function in the upper half-plane satisfying the Laplace equation A.E(z,s) = s(1 — s)E(z,s)
i : :

where A. = (z —2)° Freet Following [6], [l], one can define the two ‘‘periods”
Z0zZ

Y € HY(T, %) and y, € HY(T, Vyr_2) of E(z,k). Representatives of ; and v, are

defined by
9zo —k gzo k—1
X —z? Y _ ;2
g }lE(ch),(' yZ'> } g J{E(z,k),c y2'> ]

=0 =0

respectively, where zj is an arbitrary point in the upper half-plane, and the bracket |-, -] is

Green’s form, [u(z),v(z)] = %v dz + u%dé. The Green form has the following properties:

(1) [u,v] is closed if both u and v are eigenfunctions of A with the same eigenvalue.
(i) If z +— g(z) is any holomorphic change of variables, then [u o g,vo g] = [u,v] 0 g.

For every fixed X both (|[X —z|*/») ™ and (|X — z|*/y)*™" are eigenfunctions of A
with the eigenvalue k(1 — k). Therefore both Green forms above are closed due to (i).

Notice that
—k k—1
X —z|? X —z?
z— and z —
y Y

are SL(2, R)-equivariant maps from the upper halfplane to ¥%; and Vo_,, correspond-
ingly. Thus it follows from (ii) that both forms are I'-equivariant (with values in the corres-
ponding spaces), so the above integrals indeed define 1-cocycles. Furthermore, one can
check that for every fixed z

b —k ) k—1
S =\ _ k=3 (-
¥ Tek—an\ Ty ’
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withn!l =[] (n— 2i) as usual, so the periods are related by
0=<i<n/2
~, _ (2k=3)"

We claim that

k 2k— 1!
2 =13 %”W,

where [¢)] is the cocycle class from Theorem 13. Indeed, let us take the representative of iy,
given above and let zy — oo. Then the limiting 1-cocycle sends T — 0 and

0 B 2 —k o0 x
S [ Bk, (X =20 —ikXJliklE(it,k)dt
y ) (X2 4 2)"F
k(2k—DN . 1
=i- —————mnsign(X —_—,
2 e ) g

and we see it is a multiple of the cocycle ¢ from Lemma 10. Here the first equality is proven
in [6] and the second calculation is due to Chang and Mayer [2], [6].

i(2k — 1)

So far, from (44) we have that 3[¢] = V,. We now use this to show the fol-

lowi L 4
owing proposition.
Proposition 14. For k € Z>, we have
x -7\
(45) [E(z, k), ( - ) } = i (2)(X — 2)* P dz,
y

with oy = 221 (1 —2k) € Q. Here ) = wy, for T-equivariant Vyy._y-valued 1-forms w, and
wy, means that they differ by the full differential of a I'-equivariant Vyi_,-valued function.

This proposition implies that J[¢] is a rational multiple of the class of
Ey(z)(X — 2)21‘_2 dz, so we get an alternative proof of Theorem 13.

Proof- The operators

PSR S A

0z z-—72’ 0z

intertwine the action of PSL(2,R) on the functions in the upper halfplane in weights w,
w+ 2 and w, w — 2, correspondingly. Then 9,, — d,,_20 = w. Let A,, = dJ,,, and denote by
oy, = {u| Ayu = Ju} the space of eigenfunctions in weight w. We have

5w : %u,ﬂ - %v+2,/l+w+27 0: %v,i - %1/72, A—w-
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Forue A, ; and ve #_, ;,_, we introduce the generalized Green form as

de 5 = Ow(u)vdz + uﬁ (v)dz.

(z—2) 0z

=0 (u)vdz + ud(v)

[u7 U] w

It is a closed form, and for g € PSL(2, R) one has [gu, gv] = g[u, v]. Also

[, 0], + [v,u]_,, = (Sw(u)v +_(v)u) dz + ¢

FE (uv) dz

Il
S
&
N
—
<
<
SN—
+
I
I
<
|

and

[0v,0u] ,, 5 = 5_,y—2008,u dz + 6v6,,u 5
z—1Z)
= Jvdudz + dviu 5 = Alu, vl
z—Z)
Therefore we have proven that
1 _
[ua U]w = - j» [5\07/‘751)]”74.27 ue jfw,ﬂ.a VE %—w,ﬂ.—w-

If we apply this transformation k& — 1 times to the functions

k-1
X —z?
u=E(zk), v= (%) € A0, k(1-k)5

we get (45) since

L 2k — 1)

Sy E(z,k) = (=2i) mEzk(Z)

and

et (|X =2 . N k-1 %2
FE) e k- -9 o

2.4. Homological formulation of the higher ‘“Kronecker limit formula”.
there is an SL(2, R)-equivariant pairing ¥2; ® #2-2 — R given by

gy = "{f(t)g(t) dt.

51

0 _
uv> dz + pe (uv) dz = d(uv)

Notice that
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If g€ Va2 = ¥5_5 is a polynomial, then we have {f,g> = (3f,g) where I is the map
(41) and the SL(2, R)-equivariant pairing on polynomials is given by the formula

%2 2k=2 N\ %2 g .
(Sar Snr) =% <1>l("’2'§f“2’>‘
i=0 =0 i=0

1

We denote by the same brackets the pairings on homology and cohomology
CoyHU(D V) @ Hi(T, 7o) — R,
(-,) t HY(T, Vakoa) @ Hy (T, Vag—2) — R.

Let Q= AX? 4 BXY + CY? be an integer quadratic form of discriminant D. We
also denote by Q the function Q(x,1) of x € R. Then Q%! € V5;_,. The stabilizer of Q
in I is isomorphic to Z, and we pick that generator y, € Stabr Q for which y,(x) < x
whenever Q(x) < 0. With this condition we then have y,, = ngg‘l, and therefore the class
of the 1-cycle y, ® Q*1in H\(T, V_») depends only on the I'-orbit of Q. Since I'-orbits
correspond to narrow ideal classes, we can give the following definition.

Definition 15. Let for a narrow class of ideals % the elements &, € H (I, Va;—>) and
Ny € Hi(T,75_5) be the classes of 1-cycles y, ® 0"~ and 7, ® 0" '1{pq}, respectively,
where Q is any integer quadratic form in 4.

Notice that —Q corresponds to %' = #’* if Q corresponds to %, and Vo= yél.
Therefore &1 = (=1)¥¢, and

(46) Ny + (—l)k%ﬂ =<{y.

Theorem 16. Let [¢,] be the cocycle class from Theorem 13. Then for every narrow
ideal class %

(k — 1)

k—iv0g
(2k—2)!D LA, k).

AR DY (—1)"*1

Proof.  Let us pick a form Q in the class % and a number o such that Q(«) > 0. Due
to Theorem 13 there exists an f € 77, such that the 1-cocycle

(47) 9= Juge+ (1 =9g)f

(with f s defined by (39)) is #2-valued. Notice that we can choose f so that it vanishes
outside of any small neighborhood of «. The 1-cocycle (47) is a representative of [¢,], and
pairing it with y, ® Q* '1{p¢y gives
k—1 * 1
Aeeling> = | Ox) 2. 7)2;{0'?6-

0<0 2<E<yo(2) (gx—p

Notice that (19) can be rewritten as

(—1)";:gn(z‘1) Qj Q(x)nF(2n+1)(x) dx

Z<0

@nF(Q) =
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and together with Proposition 7 (iv) this gives the formula

ol Lﬁ
oo = Y g gy
Therefore
1 k*le%_k B) = ' ;d
R P P L
1
= N(b)*
( ) ).eb/%/l»ON(;{)k

= C(’%/vk) = C(QJC)

Here b is any ideal in the class 4, and the last equality is true because the zeta functions of
% and 4’ coincide. []

Notice that together with (46) this statement yields
(48) Uk + (DA k) = (-1)

which gives the Siegel-Klingen theorem again, since ((#',s) = {(#",s) and both classes
on the right are rational, the cocycle J[¢, ] being given explicitly by equation (42). Equality
(48) is very similar to [9], Theorem 5, where values of L-functions over the real quadratic
fields are also given as a homological pairing at those points where the values are rational.
The main difference between the two results is that, although both the cycle and the cocycle
occurring are the same (we omit the calculation showing this in the case of the cocycle),
the explicit descriptions of the Eisenstein cocycle as a rational class (Theorem 3 of [9] and
Theorem 3 of our paper) look quite different.

The relation of the above theorem to the higher KLF (Theorem 2) is a consequence
of the following proposition.

Proposition 17.  Let Red(#) = {w1,...,wyz} with w; = b; — 1/w;11 and Q; be the
integer quadratic form of discriminant D with a root w;. Then

= [Z T"S ® Qf‘“] and 11, = {Z T"S ® Of ' - 1g.<op |-
Proof. Since T’SQ; = 0,1, one need to observe that
Yo, = T STYn 1§ ... Th S

and therefore the 1-cycle 7, ® Qf ' is homologous to - 7%S ® Qf . In the same way

70, ® of 1. 140, <0y 1s homologous to the other 1-cycle given in the proposition. []
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3. Twists of .7} and applications

In this final section we consider the twisted version of the function %, defined by the
series

pIYALIATRE N )
p=1 p

where y is a nontrivial Dirichlet character. Notice that here we do not have to subtract

* |

log(px) from (px) to get convergence when k = 2, because »_ W converges
p=1

(to L(1, y)log(x) — L'(1,x)). Instead of inserting a character we could have imposed con-

gruence conditions on p. Therefore the new functions are relevant when one wants to study

zeta functions for ray classes rather than ordinary ideal classes.
3.1. The twisted function 7.

Definition 18. For a nontrivial Dirichlet character y : Z — C and an integer k = 2
we define

where Y,(x) = ¥(x) + %

Here we replace by iy, in order to have the formula

k
T — * X~y
® @A = S (e

(Recall that * on the summation sign means counting the boundary terms with the coeffi-
cient 1/2.) As in Theorem 4, we immediately get

(I1=r)Lk+r—1,y)

x}’

FE(x) ~ L(k, x)log(x) — L'(k,y) + éé

as x — oo, and

A W) ~ =2 S 1L Lk =

as x — 0. Concerning the functional equations, there are now many of them and the theory
in general depends on the conductor of y. Instead of studying the picture in full generality,

let us consider a particular and probably the simplest example y = (5) To get the func-
tional equation for

Zix) = (_l)k i kila-)( x) = * X(p)
W = () R L
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(here and below, the summation is taken over all fractions p/¢, not necessarily reduced, but
with ¢ = 0), we break up the quadrant of summation as

(50) 3e[o,oo]_[0,1}u[1,§]u[§,2]u[2,3]u[3,oo].
q 2 2
.. ¢ _p _a a b\ . . . .
The condition y = p = 5 where J is a matrix in SL(2,7) with nonnegative
c

entries, can be written as

o =r)(! )

with P,Q =0, and the intervals [0,1],...,[3, o] in the decomposition (50) have been
chosen so that either 3| a or 3| ¢ in each case. Now using

2P x(p)
%E%(px—‘,—q) P,%:go ((aP+CQ)X+bP+dQ)k
x(aP + cQ)

N R%:;O (P(ax +b) + Qex + d))k

x(a ))klpk(ax%—b)’ i3,

(ex+d ex+d
a c fex+d )
A p(555), if3la
(ax+b) ax +

and summing over the five intervals in (50), we obtain

” 4 1 M x+1 2x +1
(51) 'ﬁ;f(x)—¢1€(X+1)+(3x+2)k%f<3x+2> (3x +2)klpk<3x+2>

1 (2% + 1
(3x+1)klp"<3X+1)+(3x+1)k¢"(3x+ )

Integrating this equation k& — 1 times gives the 6-term functional equation for 7/ with an
unknown polynomial of degree k — 2, whose coefficients can be found using the asymptotic
expansions. For example, when k = 2 we have

L x+1 2x+1
71 ) +f2%<3x+2> + 7 <3x+2>

. 2x+1 ; X
=7 (x+1)+ 7] (3x+ >+972‘(3x+1>.

(In this case there is no additive correction term.)




56 Viasenko and Zagier, Higher Kronecker “limit” formulas for real quadratic fields
Remark. Actually, one can define 1-cocycles for I'j(3) using the sums

< x(p)
k
plaelsp) (X +q)
as above. Let %, be the space of functions f : R — R being continuous at all but a finite

. . : b :
number of points with the action of g = (a d) € SL(2, R) given by
c

(S 19)(x)

_ sign(ex +d) (ax+b)
lex +d|f " \ex+d)

Analogously to (39), the formula

« x(p)sign(gx — p)
k ) X € (ﬁv OC)?
2efp 19X — Pl

Sop(x) =

. x2(p) mgn(qu— P) . xe(xp),
25,2 lgx — p

defines a T (3)-equivariant pseudo-measure on P!(R) with values in #;°, hence we get a
cocycle class in H' (I (3), #°).

3.2. Computation of Stark’s units and Stark—Gross regulators. In this section, we
show how to apply our formulas to verifications of Stark’s conjecture and its higher weight
analogs. Stark’s conjecture describes the special values at s = 1 of Artin L-functions L(s, p)
in terms of logarithms of units in the appropriate abelian extension H of the base field F. A
generalization was given by Gross ([5]) in which the values L(k,p) for kK = 1 are given in
terms of Borel regulators on the K-groups K»;_;(H). Combining this with the conjecture
of the second author expressing Borel regulators in terms of higher polylogarithms ([16]),
one is led to the conjecture that all values L(k,y) of Artin L-functions at positive integer
arguments can be written in terms of the kth polylogarithm function Lig(x) evaluated at
algebraic arguments x (again belonging to the same abelian extension H of the base field).
For the case of imaginary quadratic fields, where the corresponding Kronecker limit for-
mula is the one described briefly in the introduction, this was discussed in detail in [19].
Here we give the corresponding discussion for real quadratic fields using the twisted
Kronecker limit formula. Our examples will be for k = 1 (the case of the original Stark
conjecture) and k = 2, where the polylogarithms become dilogarithms and the K-group
Ky—1(H) = K3(H) is simply the Bloch group B(H), for whose definition we again refer
to [16] or [19].

Let O be the ring of integers in the real quadratic field K. We need an ideal j of @
such that the condition ¢ = 1 (modf{), ¢ a unit, implies ¢’ > 0. Then there are characters
on the ray class group modulo { ramified at only one of the two infinite places of K. We

1—-+v1 1
will choose K = @(+/13) and f = Tﬁ . Then 0 = {(+¢y) with gy = %, and
gy = —1 (mod{). Therefore the condition & = 1 (mod ) is equivalent to ¢ € (—e)” = (&),

hence ¢’ > 0.
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For each ray class € modulo f, choose a representative a of € (so (a,f) = 1 and we
can change a to Aa with A =1 (modf{)) and pick an ideal b in the (ordinary) inverse ideal
class to a and a generator « of ab. Then

5 signf’
L(C,s) = N(b)’ sign(x) —
( ﬁe%;a(’), |N(ﬁ)|
p=ao (mod bf)

depends only on € and exp(C/(G,O)) is expected to be a unit. In our example, choose
simply a=b = (¢ and « = 1. Then

sign 3’ ) +xlp—9q) x(p)
L (Q’S = = _
(%:3) ﬂe%eé, IN(BI® p,ngo (P> +5pq+3q%)"  (3p*+7pq +3¢%)°
p=1 (modf)
with y = <§>, and
Z* X(p - Q) _ E* + Z*
p20 (PP H5pq+3¢%)"  ,Zh0 Sk
_ [ 2(p) B x(p) }
p2o (P +Tpg+9¢?)"  (3p* + 1lpg +9¢2)°]

where we made substitutions (p,q) — (p +¢,¢) and (p, q) — (g, p + ¢) in the first and the
second sums, correspondingly. Hence for k = 1 we get using (49) that

g X
ok

13:L(0, k) = D1 (F5,) <5 + Jl'i, S m) + D1 (

7+V13 71— V13
6 6 )

18 7 18

agi X
ok

11++13 11 =13
— D1 ( 6 6

—92;{_1(9755()< /1B 11— )<7+ﬁ§7—ﬂ§>.

X | T (x) ‘ FF(x') | DT (x,x")

(5++/13)/6 | —0.221258722400679 .. .| —2.087528683598576. . .|6.253557907531478 . ..
(7++/13)/18 | —0.901613498337444 . ..|—2.501022141187798 .. .|6.143437556837824 . ..
(11 + v/13)/18| —0.631117746987411 .. .| —1.269461158816449 . . .|0.700242692864336 . . .
(7++/13)/6 | —0.083545973555317 .. .| —0.939154027903259 . . .|0.758740696880221 . ...

Table 3

Let us compute L(0, 1) and L(©,2). From the values in Table 3, we find

L(0,1) =0.546858715139901 ... ,
L(0,2) =0.841385544201903 ... . .
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(For k = 2 we do not give all 16 values Z}(w;), Z{(w)), (F})'(w:) and (Z})'(w]) sepa-
rately, but only tabulate the combinations 2,7 (w;, w}).)

()

Since 392 Gn)°

L(0,s) is symmetric with respect to s <» 1 — s, we have

L'(0,0) = \é—3_9L((9, 1) = 0.543535072497869 . . . .
T

This equals numerically to log(«), where

1<1+m —1+m>
o == 3 + D

2

is a real solution of x* — x> — x2 — x + 1 = 0, therefore a unit in accordance with Stark’s

conjecture (which can be proven in this case).

Let H = Q(«), an extension of K of order 2. It has two real places and a complex
one. Therefore its Bloch group B,(H) has rank 1. The element

& = =2[) + 2] + [2(1 — 2)?]
then generates B,(H ) up to torsion, and we check numerically that

1672
(52) L(& 2) = WD(U(@)),

where g : H — C is the complex embedding in which Im (o) > 0 and
D(z) = Im(Lix(z) + log|z| log(1 — z))

is the Bloch—Wigner dilogarithm function. This particular identity can be proved rigor-
ously (because L(O,s) = {y(s)/{x(s) and it is known how to express values of Dedekind
zeta functions at s =2 in terms of dilogarithms), but the numerical method illustrated
here would also work for fields K with #(K) > 1 or for s = k = 3, where the corresponding
identities would in general only be conjectural. For instance, for the L-function treated in
this subsection we find after some computation

1673
L(€,3) = 0.948978902888892 - = o5 #4(&),
1,4) — 0.983924877405875 - — 1 2% ¢
L(0,4) = 0.983924877405875 - = =5 Z4(o(24))

with
E=T1—a =71 —o] + 031 — )] = [a(1 — @)?]
+ 3o — 1)] = 3[a2(1 — )],
& = —75[0] — 102[0%] — 81[—a®] — 39[—a*] — 21[—o"] + 4[] + 3[2'1],
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and

mflsz
Sm(z) = Rem<z o k log(|z|)kLim_k(z)>, mz=2,

where Re,, denotes Im or Re according m is even or odd. We have checked that the ele-
ments &3 and &4 indeed belong to the higher Bloch groups B;(H) and Bs4(H), correspond-
ingly. Since the Gal(H /K)-conjugate to o is 1 /o one easily sees that &5 is antiinvariant with
respect to the Galois involution. Similarly, we find

1607°
" 51278

for elements of the higher Bloch groups Bs(H) and Bs(H), namely,

Es = —294[a(1 — )?] + 602[au(or — 1)] + 6[o (o — 1)°] + 468[or — 1]
+ 375[(1 — )] + 4[(ot — 1)°] + 117[e? (o — 1)] + 60[o3 (1 — o1)]
+24[3(1 — o)) + 8]’ (1 — )] — 81[e® (ot — 1)°] — 13[o* (o — 1)]
— 354[—a(1 — 0)%] + 2[o3(1 — &)%) — 6]—e* (1 — &)%) + 240][1 — ¢
— (Galois conjugate),

&g = —3409[0] — 1068[o’] — 835[x!!] + 1405[—o*] 4 1608[ec°] 4 4015[e:?]
— 1455[0*] — 1047[®] — 653[0®] — 34['%] + 48[a'?] — 29[a*°] + 3503[—0]
— 4059[—o?] + 1017[—o’] — 1623[—a°] + 1044[—a%] 4 77[—a"] — 2509[—¢’]

+20[—a!%] + 373[—a!3] + 13[—a!®] — 96[a] + 3[x'].

Appendix. Differentiation and integration operators

In this appendix we study differentiation and integration operators which allow us, in
particular, to pass back and forth between cocycles in weight 2k and in weight 2 — 2k.

b
The matrix g = (a ) € GL(2, R) acts on functions of two real variables in weight
(m,n) by the formula \ €

(F|(m,n)g)(x7 J/) = (CX+d)m(Cy+d)’1F<ax+b ay+b>

ex+dey+d

Then gF = F |(m_’n)g’1 is the left group action, and we denote the space of smooth functions
of two variables equipped with this action by %/, ,. The operator

0 m
+—: %ﬂ,n - %11—0—2,}7

m=ntry
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satisfies 0,, o g = (detg)g o o, for every g € GL(2, R). Let us try to invert d,,. For b € Z, we
denote by "f/nf 2 © Wmn the subspace of functions F such that for every y the expression

(x — »)"F(x, y) is bounded as x tends to y. Consider

m—2
Im : %1.}1 - %}1—27717 (ImF)(X, y) = j<x _J;) F(Z7 y) dr.
y

m,n

isfies 1,, o g = (det g)flg oI, for evéry g € GL(2,R) and

mﬁdﬂ%%y%=f%<(t_y>lﬁnw>dt

This operator is well defined on %;° when b < m — 1 and Im(“anﬁ 2) € “//j_‘zlm. Also it sat-

y xX=Y
;im(z - »)"F(t, )
-y

(x—=»)"

when F € W’ with b < m. Notice that 6,,_»1,,F = F whenever I,,F is defined. We denote

m,n

by 6,, and I, (r = 0) the iterated operators

:F(X,y)— :F(xay)v

5m+2r72 ©---0 5m+2 o 5m and 1m72r+2 ©-++0lpy20 Im;
respectively.

From now on we restrict to the case when the weight in y is 0. We denote %, o by #,
and "me, o by 7% Then the first interesting identity is

2n+1
5M%:ﬁ-+-wzawaz
_2n Ox . —2n n+2-

One can easily check it using induction. Suppose we are given the function of one variable
F(x), and we consider it as an element of # ,,. Then its (2n + 1)st derivative F?"+1(x)
belongs to #3.,.,. Thus I35 F2+D e 97 2*~1 Since

wFOG)
F) =3 =5 =) e w3
i= .

and the (21 + 1)st derivative of this expression in x is F(>**1)(x) again, we have proved the
following statement.

Lemma 19. For every 0 <m <2n+1

m 2n F(l)(y) i n+1—m n
o () = S5 = )7 ) = B e,

i=0

Let us write a formula for the iterate 1), ,. To this end, and also for other applica-
tions, we consider the simple rational functions of three variables x, y and T

(T = )T = )" (x = y)".
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This function is equivariant in (x, y, T') with triple weight (—a — ¢, —b — ¢, —a — b) and one
can easily check that

0 a+c
ox x—y

(53) &%AT—M%T—yV@—yY=< )T—@%T—w%x—wc
= —a(T =) (T = )" (x =)

It has weight (—a — ¢ +2,—b — ¢, —a — b) as expected. Then

T—y 2n—m ” " T—y 2n
5an)<x_y> (T—X) :(_1) M!<X—y> ’

and the following lemma easily follows.

Lemma 20. For0<m<2n

1 > [_y 2n—m
Ly F(x, y) = ( ) (x — )" F(t,x) dt.

mly\x—y

We would like to have an explicit formula for 6™,,, as well. Consider the operation

0
0 = (x— 2_5%1_>Wm—~
( ) dy 2

It intertwines the group action decreasing the weight in the variable x by 2. The operator
2 W — W, (ng)(-)ﬁ y) = (x_ y)mF(y,X)

is also equivariant and satisfies ¢_,, 0 ¢,, = (—1)". The operators ¢ and J are dual with
respect to &, namely &, 00, =00&,,: Wi — W _pm2.

Lemma 21. For every 0 < m < 2n

n FU) i m: 2n—m
6ﬁ1zn<§:F l‘(y) (x—y)’) — (_l)m(il)'(&) <(F(4y)2n>

i=0 2n—m xX—1y)
Proof. The left-hand side can be computed easily since
o, (x—y) ' =@G-2nG—-2n+1)---(i—2n+m—1)(x—yp) "
Thus the statement is true for m = 2n. Other cases follow from this because

n f(i) .
Forn) =5 ey

i=0

satisfies the equation 00_s.f = —2nf and 6, transforms the eigenfunctions of 46, to the
eigenfunctions of dd,,.» (since 6 0, = 20 +m). [
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Proposition 22. (i)

m!

" o Qn-i)t 1 (0
(5—2"_(2;1— )l 4l — 1) (y—x)"" <5>

(i) For a function of one variable F(x) we have

(2n = m)(", F)(x, y) + (=)™ 'ml(x = p)*" " (025, F) (7, x)

AR —
|

Proof. (i) can be easily checked by induction (one can guess the formula directly
from Lemma 21), and (ii) immediately follows from the three lemmas above. [J

Let us now apply these statements to prove Proposition 7. From the first part of
Proposition 22 we see that 6”,, = n!Z,", which proves (i) there. From (53)

X—=)

whence (ii) follows. In order to prove (iv) we observe that
1 1 1 2 (x—y)
D, ——)=—=d",, - :
<T—x> n! 2(T—x i;()(T_y)l+l
Tl T\ T —x\T -y (T —-x)(T—-y)) "’

the latter equality being a consequence of (53). Finally, Proposition 7 (v) is a special case of
Proposition 22 (ii).

As another application, we would like to compute the integral

3 (X J"(X N 721 (1) dr

for /"€ ¥ (see Definition 11).

Proposition 23.  For f € 75 let F be any function on R such that

1
_ L pek
110) = =g P70
and define Py as the two polynomials of degree at most 2k — 2 such that
F(t)=P(t)+0O(1/t) ast— too.

Then 3f (X) = P.(X) — P_(X).
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Notice that, since F is defined up to a polynomial of degree at most 2k — 2, the

difference P, (X) — P_(X) is independent of the choice of F.

Proof. 1If we apply J to the statement of Lemma 21 with n =k — 1 and m = 0 we

get
0 (%2F0(y) . 1 B F(y)
2 Y i —\2k—1 J
— 2= 2 SV - (5 TN
- 5 (5 T ) = g (e
1 2k $2k—1
= (x— ) **'F
= (x= ¥
Hence
oo 2O =t
(54) If(X) = Z;) (X =0 =P (X)-P_(X). O
i= : t=—o0
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