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Periods of an algebraic manifold

X algebraic variety

periods of X = numbers which one can obtain integrating
Picard-Fuchs algebraic differential forms along topological cycles
equations
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Periods in families of manifolds

Picard-Fuchs
differential
equations
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is the Picard-Fuchs differential equation for this family of curves



Geometricity problem

Geometricity
problem

Given a differential equation to determine whether it is
“geometric”, i.e. whether it is a Picard-Fuchs equation for
some 1-parametric family of algebraic varieties.



Geometricity
problem

Properties of Picard-Fuchs differential operators:
» global monodromy satisfies certain restrictions (variation
of Hodge structures)
» they are globally nilpotent, i.e. p-curvature operators W,
are nilpotent for almost all primes p

Conjecture (B. Dwork, C. Siegel, 70s): a differential equation
satisfying these two conditions is “geometric”.

N. Katz: A rigid differential equation with quasi-unipotent
local monodromies is “geometric”.
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Geometricity
problem

Taylor coefficients of solutions of Picard-Fuchs equations
become integral after simple rescaling:
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D.V. Chudnovsky and G.V. Chudnovsky, 1985: this property is
more or less equivalent to the two properties listed earlier.

Dwork-Siegel conjecture < a differential equation is
“geometric” if and only if solutions have “almost integral”
Taylor expansions at a given point



Determinantal
differential
equations

Determinantal differential equations

For a matrix A = (a,-j),Nj:O satisfying

a,-j:O, i—j>1
aj =1, i—j=1
ajj = aN—j N—i i—j<1

the determinantal differential operator of order N (a
DN-operator) is
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V. Golyshev, J.Stienstra, “Fuchsian equations of type DN”, 2007

V. Golyshev, “Classification problems and mirror duality”, 2005
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where
F(z) = det(z— A) = 2* + 0222 + a1z + ao
Qaz = —ai1 — 2ap
a1 = 2agoa11 + 3o — 2a01
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Quantum cohomology construction

Fano small quantum differential operator
variety cohomology ring (Dubrovin's connection)

Mirror
symmetry

After a certain change of variables, £ = £, where

aj = two-pointed genus 0 Gromov-Witten invariants of X



Homological mirror symmetry conjecture

M.Kontsevich, V.Batyrev, A.Givental, K.Hori, C.Vafa:

X ~ L - Y:
Fano defferential family of Calabi-Yau
S'\C:[,',‘:,'etry variety operator varieties

Quantum differential equations of Fano varieties are
“geometric”.



“Geometricity” of D3 equations: a solution

Fano 3-folds X of Picard rank 1 ~~» D3 equations

A generic D3 equation is

i 3, 3, i 2 1., i 1o
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where
Solution for
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G(z) = 22 + P1z+ o



Construction: Frobenius basis in the space of solutions near
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The spectral curve of a D3 equation

d.z 3 d.2 1_, d
F(5)’ + 2P @) + (3F@)+6() 2 +56()
F(z) = 2+ 32 + aw? + a1z + ao
G(z) = 22 + 1z + fo
Solution for is the elliptic curve birational to

N=3

y2 =z + a3z3 + a222 + a1z + «p .



Theorem

Suppose the D3 equation under consideration is “geometric”
and the sequence {Cp,; n > 1} is defined by

¢1(Z)> _

= C,Q", = ex
(@ = 36" @ e

Then -

Cn

Solution for ns
N=3 n=1

is the Hasse-Weil L-unction of the spectral elliptic curve

y2 =z + a3z3 + a222 + a1z + «p.



Solution for
N=3

Corollary: one has Cpp = Cp, - Cp, whenever (m, n) = 1.

Since C, = Cp(ap, a1, a2, a3, Bo, f1) are simple rational
functions we can find all “geometric” D3 equations by solving
multiplicativity equations

G = G- -G
Cio G- G
Cis G- G



a3 Q aq ag B
4 0 0 0

2 1 0 0

-2 3 0 0

4 -88 -150 -304
0 0 54 0
2 43 78 -216

Soluon for 6 -135 -270 -648
2 59 68 -80
4 80 96 0
2 9 -108 432

(30 cases found)
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Classification of Fano varieties

dm=1
]P)l
dim =2

P! x P! or the blow up of P? in < 8 general points

. dim =3
P 105 deformation families of nonsingular Fano 3-folds: 17
families with 52 = 1 (Fano,Iskovskih) and 88 families with
B2 > 2 (Mori-Mukai)
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