Geometricity Problem for Differential Equations

Masha Vlasenko

Madrid, 4/07/2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

differential equations

Geometricit problem

Determinanta differential equations

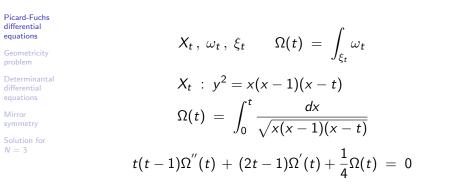
Mirror symmetry

Solution for N = 3

Periods of an algebraic manifold

X algebraic variety *periods* of X = numbers which one can obtain integrating algebraic differential forms along topological cycles Picard-Euchs differential equations $X : y^2 = x(x-1)(x+1)$ $\omega = \frac{dx}{dx}$ N = 3 $\Omega = \int_{\xi} \omega = 2 \int_{-1}^{0} \frac{dx}{\sqrt{x(x-1)(x+1)}}$ 500

Periods in families of manifolds



is the Picard-Fuchs differential equation for this family of curves

Geometricity problem

Picard-Fuchs differential equations

Geometricity problem

Determinanta differential equations

Mirror symmetry

Solution for N = 3

Given a differential equation to determine whether it is "geometric", i.e. whether it is a Picard-Fuchs equation for some 1-parametric family of algebraic varieties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Picard-Fuch differential equations

Geometricity problem

Determinanta differential equations

Mirror symmetry

Solution for N = 3

Properties of Picard-Fuchs differential operators:

 global monodromy satisfies certain restrictions (variation of Hodge structures)

 they are globally nilpotent, i.e. *p*-curvature operators Ψ_p are nilpotent for almost all primes *p*

Conjecture (B. Dwork, C. Siegel, 70s): a differential equation satisfying these two conditions is "geometric".

N. Katz: A rigid differential equation with quasi-unipotent local monodromies is "geometric".

$$t(t-1)rac{d^2}{dt^2}+ig((a+b+1)t-cig)rac{d}{dt}+ab$$

Taylor coefficients of solutions of Picard-Fuchs equations become integral after simple rescaling:

$$\Omega(t) = \frac{1}{\pi} \int_0^t \frac{dx}{\sqrt{x(x-1)(x-t)}} = 1 + \frac{1}{4}t + \frac{9}{32}t^2 + \dots \\
= \sum_{n=0}^\infty \frac{n!}{16^n} {\binom{2n}{n}}^2 t^n \in \mathbb{Z}\left[\left[\frac{t}{16}\right]\right]$$

Picard-Fuchs differential equations

1

π

Geometricity problem

Determinanta differential equations

Mirror symmetr

Solution for N = 3

D.V. Chudnovsky and G.V. Chudnovsky, 1985: this property is more or less equivalent to the two properties listed earlier.

Dwork-Siegel conjecture ⇔ a differential equation is "geometric" if and only if solutions have "almost integral" Taylor expansions at a given point

Determinantal differential equations

For a matrix
$$A = (a_{ij})_{i,j=0}^{N}$$
 satisfying
 $a_{ij} = 0, \quad i-j > 1$
 $a_{ij} = 1, \quad i-j = 1$
 $a_{ij} = a_{N-j,N-i} \quad i-j$

× Μ

.

Determinantal differential equations

N = 3

the determinantal differential operator of order N (a DN-operator) is

$$\mathcal{L}_A(z) = \det_{right} \left(\delta_{ij} z \frac{d}{dz} - a_{ij} \left(\frac{d}{dz} \right)^{j-i+1} \right) \left(\frac{d}{dz} \right)^{-1}$$

< 1

.

V. Golyshev, J.Stienstra, "Fuchsian equations of type DN", 2007

V. Golyshev, "Classification problems and mirror duality", 2005

Picard-Fuchs differential equations E.g. *N* = 2

where

Geometricit

Determinantal differential equations

Mirror symmetry

Solution for N = 3

$$\begin{aligned} \mathcal{L}_{A}(z) &= \det_{right} \begin{pmatrix} (z - a_{00}) \frac{d}{dz} & -a_{01} \left(\frac{d}{dz}\right)^{2} & -a_{02} \left(\frac{d}{dz}\right)^{3} \\ -1 & (z - a_{11}) \frac{d}{dz} & -a_{01} \left(\frac{d}{dz}\right)^{2} \\ 0 & -1 & (z - a_{00}) \frac{d}{dz} \end{pmatrix} \left(\frac{d}{dz}\right)^{-1} \\ &= -a_{02} \left(\frac{d}{dz}\right)^{2} - a_{01} \left(\frac{d}{dz}\right)^{2} (z - a_{00}) \\ &+ (z - a_{00}) \frac{d}{dz} \left((z - a_{11}) \frac{d}{dz} (z - a_{00}) - a_{01} \frac{d}{dz}\right) \\ &= F(z) \left(\frac{d}{dz}\right)^{2} + F'(z) \frac{d}{dz} + (z - a_{00}) \end{aligned}$$

$$F(z) = \det(z - A) = z^{3} + \alpha_{2}z^{2} + \alpha_{1}z + \alpha_{0}$$

$$\alpha_{2} = -a_{11} - 2a_{00}$$

$$\alpha_{1} = 2a_{00}a_{11} + a_{00}^{2} - 2a_{01}$$

$$\alpha_{0} = 2a_{00}a_{01} - a_{00}^{2}a_{11} - a_{02}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quantum cohomology construction

Picard-Fuchs differential equations

Geometricity problem

Determinanta differential equations

Mirror symmetry

Solution for N = 3

 $\begin{array}{cccc} X & \leadsto & QH^*(X) & \leadsto & \mathcal{L} \\ \mbox{Fano} & small quantum & differential operator \\ variety & cohomology ring & (Dubrovin's connection) \end{array}$

After a certain change of variables, $\mathcal{L} = \mathcal{L}_A$ where

 a_{ii} = two-pointed genus 0 Gromov-Witten invariants of X

Homological mirror symmetry conjecture

Picard-Fuchs differential equations	M.Kontsevich, V.Batyrev, A.Givental, K.Hori, C.Vafa:				
Geometricity problem					
Determinantal differential equations	X ~→ Fano	$\mathcal{L} o$ defferential	Y _t family of Calabi-Yau		
Mirror symmetry	variety	operator	varieties		
Solution for $N = 3$					
	Quantum differentia	al equations of F	ano varieties are		

Quantum differential equations of Fano varieties are "geometric".

"Geometricity" of D3 equations: a solution

Picard-Fuchs differential equations

Geometricity

Determinanta differential equations

Mirror symmetry

Solution for N = 3

Fano 3-folds X of Picard rank $1 \rightsquigarrow D3$ equations

A generic D3 equation is

$$F(z)\left(\frac{d}{dz}\right)^{3} + \frac{3}{2}F'(z)\left(\frac{d}{dz}\right)^{2} + \left(\frac{1}{2}F''(z) + G(z)\right)\frac{d}{dz} + \frac{1}{2}G'(z)$$

$$F(z) = \det(z - A) = z^4 + \alpha_3 z^3 + \alpha_2 z^2 + \alpha_1 z + \alpha_0$$

$$G(z) = z^2 + \beta_1 z + \beta_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Construction: Frobenius basis in the space of solutions near $z = \infty$

Picard-Fuchs differential equations

Geometricity problem

Determinantal differential equations

Mirror symmetry

Solution for N = 3

$$\begin{split} \phi_0(z) &= \frac{1}{z} + \frac{\beta_1}{z^2} + \frac{-\frac{3}{8}\alpha_3\beta_1 + \frac{3}{8}\beta_1^2 - \frac{1}{8}\alpha_2 - \frac{1}{8}\beta_0}{z^2} + \dots \\ \phi_1(z) &= -\log z \,\phi_0(z) + \frac{-\frac{1}{2}\alpha_3 - \beta_1}{z^2} + \dots \\ \phi_2(z) &= (\log z)^2 \,\phi_0(z) + \dots \end{split}$$

$$Q(z) = \exp\left(\frac{\phi_{1}(z)}{\phi_{0}(z)}\right) = \frac{1}{z} \exp\left(\frac{-\frac{1}{2}\alpha_{3} - \beta_{1}}{z} + \dots\right) = \frac{1}{z} + \dots$$
$$\frac{1}{z} = Q + \left(\frac{1}{2}\alpha_{3} + \beta_{1}\right)Q^{2} + \dots$$
$$\phi_{0}(Q) = Q + \left(\frac{1}{2}\alpha_{3} + 2\beta_{1}\right)Q^{2} + \dots = \sum_{n=1}^{\infty} C_{n}Q^{n}$$

Picard-Fuchs differential equations

Geometricit problem

Determinanta differential equations

Mirror symmetr

Solution for N = 3

The *spectral curve* of a D3 equation

$$F(z)\left(\frac{d}{dz}\right)^{3} + \frac{3}{2}F'(z)\left(\frac{d}{dz}\right)^{2} + \left(\frac{1}{2}F''(z) + G(z)\right)\frac{d}{dz} + \frac{1}{2}G'(z)$$

$$F(z) = z^{4} + \alpha_{3}z^{3} + \alpha_{2}z^{2} + \alpha_{1}z + \alpha_{0}$$

$$G(z) = z^{2} + \beta_{1}z + \beta_{0}$$

is the elliptic curve birational to

$$y^{2} = z^{4} + \alpha_{3}z^{3} + \alpha_{2}z^{2} + \alpha_{1}z + \alpha_{0}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

Suppose the D3 equation under consideration is "geometric" and the sequence $\{C_n; n \ge 1\}$ is defined by $\phi_0(Q) = \sum_{n=1}^{\infty} C_n Q^n, \qquad Q = \exp\left(\frac{\phi_1(z)}{\phi_0(z)}\right).$ Then $\sum_{n=1}^{\infty} \frac{C_n}{n^s}$ Solution for N = 3is the Hasse-Weil L-unction of the spectral elliptic curve $v^2 = z^4 + \alpha_3 z^3 + \alpha_2 z^2 + \alpha_1 z + \alpha_0$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Picard-Fuchs differential equations

Geometricity

Determinanta differential equations

Mirror symmetry

Solution for N = 3

Since $C_n = C_n(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_0, \beta_1)$ are simple rational functions we can find all "geometric" D3 equations by solving multiplicativity equations

Corollary: one has $C_{mn} = C_n \cdot C_m$ whenever (m, n) = 1.

$$C_6 = C_2 \cdot C_3$$

 $C_{10} = C_2 \cdot C_5$
 $C_{15} = C_3 \cdot C_5$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

. . .

	α_3	α_2	α_1	α_0	β_1	β_0
Picard-Fuchs differential equations	4	0	0	0	0	0
Geometricity problem	2	1	0	0	0	-1
Determinantal	-2	-3	0	0	0	6
differential	-4	-88	-150	-304	0	-8
equations Mirror	0	0	-54	0	0	0
symmetry	-2	-43	-78	-216	0	-5
Solution for $N = 3$	-6	-135	-270	-648	0	-9
<i>N</i> = 3	-2	-59	-68	-80	0	-5
	4	-80	96	0	0	-16
	2	9	-108	432	0	-9
			••	•		

(30 cases found)

Classification of Fano varieties

Picard-Fuchs differential equations	$\dim_{\mathbb{P}^1} = 1$
Geometricity problem	1
Determinantal differential equations	$\mbox{dim}=2$ $\mathbb{P}^1\times\mathbb{P}^1$ or the blow up of \mathbb{P}^2 in ≤ 8 general points
Mirror symmetry	
Solution for $N = 3$	dim = 3 105 deformation families of nonsingular Fano 3-folds: 17 families with $\beta_2 = 1$ (Fano,Iskovskih) and 88 families with $\beta_2 \ge 2$ (Mori-Mukai)
	$p_2 \ge 2$ (IVIOII-IVIUKAI)