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The classical Bernoulli numbers

B0 = 1 , B1 = −1

2
, B2 =

1

6
, B3 = 0 , B4 = − 1

30
, . . .

can be defined as the coefficients in the power series expansion

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
.

This sequence of numbers shows up in several deep results in diverse branches of mathematics, including
mathematical physics, algebraic topology and number theory. Please have a quick look at the article
“Bernoulli numbers and the unity of mathematics” by Barry Mazur (it can be easily found on the web).

We shall consider the following generalization of the Bernoulli numbers. A formal group law (of dimen-
sion 1, over Z) is a formal power series in two variables

F (x, y) =

∞∑
i,j=0

aij x
iyj , aij ∈ Z

satisfying the following conditions:

(i) F (x, 0) = F (0, x) = x;
(ii) F (x, F (y, z)) = F (F (x, y), z).

Simple examples: F (x, y) = x + y (called the additive formal group law); F (x, y) = x + y + xy (called the
multiplicative formal group law). The only polynomial formal group laws are Fc(x, y) = x+ y + cxy with a
parameter c ∈ Z.

Surprisingly, conditions (i) and (ii) imply that F (x, y) = F (y, x) (i.e. our formal group law is automati-
cally commutative) and there exists a unique formal power series of the form

f(x) = x +

∞∑
i=2

bix
i , bi ∈ Q

such that F (x, y) = f−1(f(x)+f(y)). Here f−1(x) is the formal inverse series, that is a unique formal series

f−1(x) = x +

∞∑
i=2

cix
i , ci ∈ Q

satisfying f−1(f(x)) = x. (You could check that such a series exists and satisfies f(f−1(x)) = x.) The
above power series f(x) and its formal inverse f−1(x) are called the logarithm and the exponent of F (x, y)
and denoted

logF (x) := f(x) expF (x) := f−1(x)

respectively.
The generalized Bernoulli numbers {BF

n ;n ≥ 0} attached to a formal group law F (x, y) are defined
from the expansion

x

expF (x)
=

∞∑
n=0

BF
n

xn

n!
.

Exercises:

• Check that the classical Bernoulli numbers correspond to F (x, y) = x+ y + xy.
1



2 MASHA VLASENKO

• Check that

F (x, y) = x
√

1− 4y2 + y
√

1− 4x2 = x + y − 2xy2 − 2yx2 − . . .

is a formal group law. Compute several beginning terms of the respective Bernoulli sequence. Write
down the generating series for {BF

n ;n ≥ 0}.

In the course of this project we will try to generalize various properties of the classical Bernoulli numbers
to the sequences {BF

n ;n ≥ 0}.
For our first meeting:

• Create a list of properties of the classical Bernoulli numbers and be ready to show their proofs.
• Experiment whether the numbers {BF

n ;n ≥ 0} from the above exercise have those properties.
• Try to read through Chapters I and II of the book “p-adic numbers, p-adic analysis and zeta

functions” by Neal Koblitz.

I am particularly interested in generalizing the p-adic properties of the classical Bernoulli numbers. By
this I mean the following two facts. The Clausen – von Staudt theorem tells us which primes occur in the
denominator of Bn:

Bn +
∑

p:(p−1)|n

1

p
∈ Z .

The Kummer congruence tells us that

Bn

n
≡ Bm

m
mod p whenever n ≡ m 6≡ 0 mod (p− 1)

and, more generally, for k ≥ 0 one has

(1− pn−1)
Bn

n
≡ (1− pm−1)

Bm

m
mod pk+1 whenever n ≡ m mod pk(p− 1) ,

n,m 6≡ 0 mod (p− 1) .

Generalization of the Kummer congruence for {BF
n ;n ≥ 0} is an open research question. Chapter I of the

book by Neal Koblitz will introduce you to p-adic analysis. In Chapter II you will find insights into the
above mentioned p-adic properties of the classical Bernoulli numbers.

——————————————————–

Some research questions

1. Computing “special values” from Kummer’s congruences
Here we will deal with the classical Bernoulli numbers. Pick an even integer 1 ≤ a ≤ p − 2

consider the set of natural numbers

Ua = {n ∈ N : n ≡ a mod p− 1} .
By Kummer’s theorem, the function

K(n) = (1− pn−1)
Bn

n

is p-adically continuous on Ua. Since Ua is dense in Zp, we can extend B to a unique p-adically
continuous function Ka : Zp → Zp. Try to compute the values of Ka(x) at various points of Zp \Ua,
e.g. x = 0,−1, 12 , . . .

2. Sums of powers of consecutive integers via formal group laws
In the classical case Bernoulli polynomials are defined by the generating function

x etx

ex − 1
=

∞∑
n=0

Bn(t)
xn

n!
.

Try to define Bernoulli polynomials for a formal group law in such a way that would also give a
natural generalization of the formula

m∑
i=1

in =
Bn+1(m)−Bn+1(0)

n+ 1
.

In particular, explain how the left-hand side here is related to the multiplicative formal group
law F (x, y) = x+ y + xy which produces the classical Bernoulli numbers.
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3. Generalizing Kummer’s congruence
Let F (x, y) ∈ ZJx, yK be a formal group law. Our ultimate goal is to generalize Kummer’s

congruence for the sequence {BF
n ;n ≥ 0}. For this we need to guess the function which will be

p-adically continuous, like K(n) in the classical case. I expect that for each p the correction factor,
say an analogue of (1 − pn−1), should depend on the characteristic polynomial of the reduction of
the formal group law F (x, y) modulo p. (See the section on formal group laws over finite fields.)
When the height at p is 1 then the characteristic polynomial is P (T ) = p − upT for some p-adic
unit up ∈ Z×p , and I propose the following

Conjecture. The function

KF (n) = u
b n
p−1 c

p (1− pn−1)
BF

n

n

is p-adically continuous on the set Ua = {n ∈ N : n ≡ a mod p − 1} for every 1 ≤ a ≤ p − 2.
Namely, if n,m ∈ Ua and n ≡ m mod pk then KF (n) ≡ KF (m) mod pk+1.

We could approach this conjecture by working with particular of formal group laws. The simplest

example might be our “circular” law F (x, y) = x
√

1− 4y2 + y
√

1− 4x2. Here for each p 6= 2 the

height is 1 and up = (−1)
p−1
2 (try to prove it yourself). Next, one could try “elliptic” formal group

laws (we describe them in a separate section at the end).
Some ideas to attack the problem:
• Try to generalize the proof of Kummer’s congruence in Lang’s book “Introduction to modular

forms” using the generating function: (1) to higher powers of p; (2) to other formal groups.
(Mind that the Kummer congruence modulo p is known in general, see the section on the
universal approach below.)

• Try to generalize the p-adic measures in Chapter II of Koblitz’s book to other formal groups.

Universal approach to generalized Bernoulli numbers

Consider the formal power series

f(x) = x + b1
x2

2
+ b2

x3

3
+ . . . =

∞∑
n=1

bn−1
xn

n
, b0 = 1 ,

where b1, b2, . . . are variables. Form the inverse power series

f−1(x) = x − b1
x2

2
+ (3 b21 − 2 b2)

x3

6
− . . .

and consider the universal formal group law F (x, y) = f−1(f(x)+f(y)) along with the universal Bernoulli

“numbers” B̂n ∈ Q[b1, b2, b3, . . .]. Study basic properties of the polynomials B̂n. For example:

• Assign weights to the variables b1, b2, . . . so that each monomial in B̂n has weight n.

• Let dn be the least common multiple of the denominators of the coefficients of B̂n. What can be
proved about the sequence {dn;n ≥ 1}?

Answers to the above questions can be found in the literature listed below. The Clausen – von Staudt
theorem was generalized to the universal case by Clarke ([2, Corollary 6]):

B̂n +
∑

p prime
p−1|n

1

p
b

n
p−1

p−1 ∈ Z[b1, b2, . . .] .

Adelberg ([3, Theorem 3.2]) proved Kummer’s congruence modulo p:

B̂n+p−1

n+ p− 1
≡ bp−1

B̂n

n
mod p Z[b1, b2, . . .]

for any n 6≡ 0, 1 mod p− 1. (There is a corrected version for n ≡ 1 mod p− 1.)
In [4] Adelberg tried to improve his universal congruence modulo prime powers. However his approach is

weaker than we would like to because of the present bound on s below. By [4, Theorem 4.5] when n 6= 0, 1
mod (p− 1) one has

B̂n+kps(p−1)

n+ kps(p− 1)
≡ bkp

s

p−1
B̂n

n
mod ps+1 Z[b1, b2, . . .]

for all s ≤ n− 2. (There is also a correction of the above result for the case n ≡ 1 mod p− 1.)
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• Check that Adelberg’s results agree with our conjecture. You can use the following result: by [5,
Theorem 2] the height of the reduction of the formal group law F (x, y) ∈ ZJx, yK modulo p equals 1
if and only if p 6 |bp−1. In the latter case all bpk−1 are p-adic units and up ≡ bpk−1/bpk−1−1 mod pk

for each k ≥ 1. In particular, up ≡ bp−1 mod p.

Homorphisms, isomorphisms and endomorphisms of formal group laws

Suppose we have a commutative ring R, two (one-dimensional) formal group laws F,G ∈ RJx, yK and a
ring R′ which contains R (it might coincide with R or be a larger ring). A homomorphism from F to G over
R′ is a formal power series h ∈ R′JxK such that h(0) = 0 and h(F (x, y)) = G(h(x), h(y)). A homomorphism
h(x) = c1x + c2x

2 + . . . is called an isomorphism if c1 is a unit in R′ (under this condition we have the
inverse series h−1(x) = c−11 x+ . . . ∈ R′JxK) and we say that F and G are isomorphic over R′. If c1 = 1 we
call h a strict isomorphism and say that F and G are strictly isomorphic respectively.

For example, every formal group law F ∈ QJx, yK is strictly isomorphic to the additive formal group law

x+ y over Q, the strict isomorphism being given by the logarithm h(x) = logF (x) =
∫ x

0
dy
/

∂F
∂y (0, y).

When F ∈ RJx, yK is commutative (F (x, y) = F (y, x)), one can define the following homomorphisms
from F to itself (such homomorphisms are called endomorphisms), defined over R for n ≥ 1:

[n]F (x) = F (x, F (x, . . . (F (x, x︸ ︷︷ ︸
n

) . . .) = nx + . . .

They are called “multiplication by n endomorphisms”. We have [1]F (x) = x (convention), [2]F (x) =
F (x, x), [3]F (x) = F (x, F (x, x)) and so on.

Formal group laws over finite fields

Assume now that F (x, y) ∈ FpJx, yK. In this case, in addition to the usual endomorphisms [n]F (x), we have
the Frobenius endomorphism given by

φ(x) = xp .

• Check that φ(x) is an endomorphism.

The height of a homomorphism h(x) of two formal group laws F,G ∈ FpJx, yJ is defined as the smallest

m ≥ 0 such that there exist g(x) = c1x+ ∈ FpJxK with c1 6= 0 and h(x) = g(xp
m

). By convention, the
height is ∞ if h = 0. The height is known to be well defined.

The height ht(F ) of a commutative formal group law F (x, y) ∈ FpJx, yK is by definition the height of the
endomorphism [p]F .

• Explain why ht(F ) ≥ 1.
• For the multiplicative law F (x, y) = x + y + xy over Z compute the endomorphisms [n]F and the

height at each p.

Theorem.([1]) Let F (x, y) ∈ FpJx, yK be a commutative formal group law. If ht(F ) = ∞ then F is
isomorphic to x+ y over Fp. Assume h = ht(F ) <∞. Then there exist p-adic numbers α1, . . . , αh−1 ∈ pZp

and αh ∈ Z×p such that the Frobenius endomorphism φ satisfies the equation

p +

h∑
i=1

αiφ
i = 0.

The polynomial P (T ) = p +
∑h

i=1 αiT
i is called the characteristic polynomial of F . It is an irreducible

polynomial (by Eisenstein’s criterion). If ht(F ) =∞ we put P (T ) = p by convention.

• Compute the characteristic polynomial of the multiplicative law F (x, y) = x+ y + xy at each p.

• Compute the characteristic polynomial of the circular group law F (x, y) = x
√

1− 4y2 + y
√

1− 4x2

at each p.

Theorem.([1]) Two formal group laws over Fp are isomorphic if and only if their characteristic polyno-
mials are equal.
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Elliptic formal group laws

Consider the formal series f(x) =
∑∞

n=1 bn−1x
n/n where b0 = 0 and bn ∈ Z[a, b] are defined as

bn =

{
the coefficient of un−1 in (u3 + au+ b)(n−1)/2 , n odd,

0 , n even.

As usual, we define the formal group law F (x, y) = f−1(f(x) + f(y)).

• Show that the coefficients of F (x, y) belong to Z[a, b]. (This might be a very difficult question, you
can read further without doing it.)

We will work with this formal group law in the case when a, b ∈ Z are integers such that the polynomial
u3 + au+ b has no multiple roots.

Remark (on algebraic geometry): In this case the above formal group law F (x, y) arises from the
situation discussed by us during the week: there is an algebraic curve ( call it E = Ea,b) with a group law
and a fixed parametrization around the point which represents the unit in the group. This curve is given by
the equation

E : v2 = u3 + au+ b .

Such curves are called elliptic curves, and we could have taken any cubic polynomial (say, with real coeffi-
cients) in the right-hand side. If this cubic polynomial has no multiple roots, then the curve is smooth and
one can turn it into an abelian group. However the story becomes a bit tricky at this stage: one has to extend
the picture from the usual plane R2 to the projective plane P2(R), there our curve will get exactly one extra
point (call this point O and let E = E ∪O be the projectivization of E). This extra point O “at infinity” is
the unit element in the group law on the curve. Please ask Piotr how to turn an elliptic curve into a group,
this construction is very interesting! Moreover: t = −u/v can be taken as a parameter around the point O
at infinity; the differential du/v is invariant under the group law, and its expansion with respect to t is given
by

1

2

du

v
=

1

2

u′(t)

v(t)
dt =

(
1 + 2a t4 + 3b t6 + 6a2 t8 + 20ab t10 + . . .

)
dt =

( ∞∑
m=0

bmt
m
)
dt

with the coefficients bm defined above. I don’t expect you understand the precise meaning of these words.
You can skip the remark or ask Piotr to explain more.

For each prime p consider the integer number

ap = p − #E(Fp) = p − #{(u, v) ∈ F2
p : v2 = u3 + au+ b} .

Remark. This number is related to the local zeta function of the elliptic curve E as follows. Assume that
the polynomial u3 + au + b mod p has no multiple roots. (To be precise: p doesn’t divide the discriminant
of u3 + au+ b, which is given by ∆ = 4a3 + 27b2.) In this case E gives a smooth curve over Fp is the sense

of algebraic geometry and the zeta function of its projectivization E = E ∪ O is given by Z(E/Fp;T ) =
1−apT+pT 2

(1−T )(1−pT ) . You don’t have to prove this fact, it requires techniques we didn’t discuss. However you could

check it for particular curves on a computer.
Assume that p 6 |∆ and p 6 |ap. In this case the height of the reduction of F (x, y) modulo p is 1 and the

characteristic polynomial is equal to P (T ) = p − upT where up ∈ Z×p is the unique p-adic unit solution to

u2 − apu+ p = 0. (Again, this fact requires techniques we didn’t discuss, don’t try to prove it.) If you wish
to try our conjecture in this case, note that up ≡ ap mod p.

References

[1] M. Hazewinkel, Formal group laws, 1978
[2] F. Clarke, The universal von Staudt theorems, Transactions of AMS vol. 15, no. 2 (1989) pp. 591–603

[3] A. Adelberg, Universal Higher Order Bernoulli Numbers and Kummer and Related Congruences, Journal of Number

Theory 84 (2000), pp.119–135
[4] A. Adelberg, Universal Kummer congruences mod prime powers, Journal of Number Theory 109 (2004), pp.362–378

[5] M. Vlasenko, Formal groups and congruences, http://arxiv.org/abs/1509.06002


