
Algebraic Number Fields in PARI/GP

PARI functions to work with number fields are located in the reference card
on page 3.

Initialisation

Let K = Q(ξ) be an algebraic number field generated by an algebraic number
ξ ∈ Q. Let f(x) ∈ Q[x] be the minimal polynomial of ξ. To initialise this field
in PARI we use bnfinit(f(x)), e.g.

? K=bnfinit(x^3-2);

The only requirement is that f(x) is irreducible and has integer coefficients.
Therefore if ξ is not an algebraic integer one has to multiply its minimal poly-
nomial by the common denominator of its coefficients. Now K = Q( 3

√
2), and

one can ask some questions about K. K.zk is the basis over Z for the ring of
integers OK . For example in our case

? K.zk

%1 = [1, x, x^2]

which means that
OK = Z + Z 3

√
2 + Z 3

√
2
2
.

If you type K.sign, the answer will be a vector of two numbers [r1, r2] with
r1 + 2r2 = deg f . r1 is the number of real roots of f(x) = 0, and r2 is the
number of pairs of complex-conjugate roots. For example in our case

? K.sign

%2 = [1, 1]

there is one real 3rd root of 2, 3
√

2 ≈ 1.25992..., and two complex conjugate
roots −0.62996...± 1.09112... ∗ I. You can recover the polynomial f(x) and see
numerical values of its roots by

? K.pol

%3 = x^3 - 2

? K.roots

%4 = [1.259921049894873164767210607, -0.6299605249474365823836053

036 - 1.091123635971721403560072614*I]

?

The latter command shows only one root in each pair of complex conjugates.
To see numerical values of all deg f roots type

? polroots(K.pol)

%5 = [1.259921049894873164767210607 + 0.E-28*I, -0.6299605249474

365823836053036 + 1.091123635971721403560072614*I, -0.6299605249

474365823836053036 - 1.091123635971721403560072614*I]~

One doesn’t actually need these numerical values. Just it is important to under-
stand that for any different roots ξ1, ξ2 of the same irreducible polynomial f(x)
the fields Q(ξ1) and Q(ξ2) are isomorphic. Even in our case Q( 3

√
2), though it

is a bit surprising because one of the three fields will be real (dense in R), while
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the other two will be complex (dense in C). Due to this isomorphism we do
not have to specify in PARI which root do we use to define the number field.
Mathematically we can express this fact by the formula Q(ξ) ∼= Q[x]/〈f(x)〉,
i.e. the field is the quotient of the ring of polynomials by the ideal generated by
f(x).

Units

Dirichlet’s Theorem describes the units O×
K as follows. Let r = r1+r2−1

where r1 and r2 were defined above. Then one can choose r fundamental units
ε1, . . . , εr so that every unit ε ∈ O×

K is a product of some integer powers of those
ε1, . . . , εr times a torsion unit. Torsion units are the roots of unity contained in
K, i.e.

µ(K) = {ε ∈ OK : ∃n s.t. εn = 1} .
Then we have

O×
K = {ε0εm1

1 . . . εmr
r : ε0 ∈ µ(K),m1, . . . ,mr ∈ Z}.

Let us find all torsion units and some set of fundamental units in K = Q( 3
√

2):

? K.tu

%6 = [2, Mod(-1, x^3 - 2)]

that is there are 2 torsion units, µ(K) = {1,−1}. The above answer means that
µ(K) is generated by −1 as a multiplicative group.

? K.fu

%7 = [Mod(x - 1, x^3 - 2)]

We see that ε = 3
√

2− 1 is a fundamental unit, and O×
K = {±εm : m ∈ Z}.

Exercise 1: Construct fundamental units in several real quadratic fields
Q(
√
m) for small m > 0.
Exercise 2: In the expression (1 +

√
2)n = an + bn

√
2 write formulas for

an, bn ∈ Z. It follows from the multiplicativity of norm that the pairs (an, bn)
are solutions to Pells’ equations a2n − 2b2n = (−1)n. Can you prove it explicitly
using your formulas for an, bn? Notice that this way you are getting all solutions
to Pell’s equation as we proved in class.

Class numbers

For any two ideals I1, I2 ⊆ OK one can define their product ideal as the set
of all possible finite sums of products of elements of I1 and I2, i.e.

I1 · I2 = {x1y1 + · · ·+ xmym : m ∈ N, xi ∈ I1, yi ∈ I2}

It is easy to check that this is again an ideal. Let us consider the set of ideals
modulo principal ideals, i.e.

Cl(K) = {0 6= I ⊆ OK}/ ∼

where I1 ∼ I2 when 〈α1〉I1 = 〈α2〉I2 for some α1, α2 ∈ OK .
Theorem. With the above operation of multiplication, Cl(K) is a finite

abelian group, called the class group of K. The following conditions are equiv-
alent:
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(i) OK is a UFD

(ii) OK is a PID

(iii) the group Cl(K) is trivial

Finiteness of the class group is an important result, and its size h(K) =
#Cl(K) is an important numerical characteristics of the number field K, called
the class number of K. According to the above theorem, factorisation into
primes is unique in OK if and only if the class number is 1, i.e. h(K) = 1.

To see the class group in PARI one has to type

? K.clgp

%8 = [1, [], []]

Here the class number goes first, and then some description of the structure of
Cl(K). We see that Cl(K) is trivial for K = Q( 3

√
2).

Exercise 3: Make a table of class numbers of some quadratic fields. Here
is one example:

? m=[-10,-7,-6,2,3,15];

? for(i=1,#m,F=bnfinit(x^2-m[i]);print(m[i]," ",F.clgp[1]))

-10 2

-7 1

-6 2

2 1

3 1

15 2

Do separate tables for m < 0 and m > 0. The phenomenon you should
observe is that h(Q(

√
m))→ +∞ when m→ −∞, and there are finitely many

imaginary quadratic fields K with a given value of the class number h(K). Draw
the graph of m 7→ h(Q(

√
m)) and find the list of all m < 0 with class number 1.

Make a table of the corresponding m for each value of h(K) = 1, 2, . . . in some
range. What is the largest class number you’ve found?

In the case of real quadratic fields, choose some large M > 0 and compute
frequencies with which various class numbers occur for square-free m ∈ [2,M ].
Draw the graph if possible. Make a table of frequencies. What is the largest
class number you’ve found?

Exercise 4: For all K = Q(
√
m) with small m and h(K) > 1 give explicit

examples of non-unique factorisation into primes in OK . E.g. m = −6 and

10 = 2 · 5 = (2−
√
−6)(2 +

√
−6).
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