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Abstract. A classification of bounded below supersingular perturbations Ã of a self-adjoint

operator A > 1 is suggested. In the A-scale of Hilbert spaces H−k ⊐ H ⊐ Hk = Dom A
k/2,

k > 0, a parametrization of operators Ã in terms of bounded mappings S : Hk → H−k such
that ker S is dense in Hk/2 is obtained.
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1. INTRODUCTION
Let A > 1 be a self-adjoint operator in a Hilbert space H with norm ‖ · ‖ and with inner product

(· , ·). One can think that H = L2(R
d, dx), d > 1 and A = H0 + 1, where −H0 = ∆ stands for the

Laplacian. To the operator A we assign the A-scale of Hilbert spaces

H−k ⊐ H0 ≡ H ⊐ Hk ≡ Hk(A), k > 0. (1.1)

Here Hk = DomAk/2 with respect to the norm ‖ϕ‖k := ‖Ak/2ϕ‖, ϕ ∈ DomAk/2, and H−k is the
completion of H with respect to the negative norm ‖h‖−k := ‖A−k/2h‖, h ∈ H (for details, see
[12, 13, 3, 16, 2]). The symbol ⊐ stands for a dense and continuous embedding.

A simple but important fact is that the operator A (as well as the A-scale) can be reconstructed
from a couple of spaces H ⊐ Hk (or the conjugate couple H−k ⊐ H) with an arbitrary fixed k > 0.
Namely, A = k

√
Dk, where Dk stands for the restriction of the canonical unitary isomorphisms

D−k,k : Hk → H−k on the set Dk ≡ H2k = {ϕ ∈ Hk | D−k,kϕ ∈ H} (for details, see [3]). Note that
the relationship between A and Dk is based on the spectral theorem [12, 13], and therefore this
relationship is not evident, except for the case k = 2. However, A is uniquely defined by Dk with
any chosen k > 0. Let us use a similar relationship for the perturbed operators. Thus, let Ã 6= A
be a perturbed operator. Let Ã > 1. Then we associate with Ã the new scale of Hilbert spaces,

H̃−k ⊐ H0 ≡ H ⊐ H̃k, H̃k = Dom Ãk/2, k > 0. (1.2)

The idea of the method of rigged Hilbert spaces is that, for a given “singular perturbant” S of
A (any order of singularity for S is admitted), we first construct one of the couples H ⊐ H̃k or

H̃−k ⊐ H and then define the perturbed operator Ã as the operator associated with the scale (1.2).
In fact, the method generalizes and develops the well-known method of form-sums [5, 7, 10, 11],

where Ã is defined as the operator associated with the triplet H̃−1 ⊐ H ⊐ H̃1. Thus, to consider
singular higher-order perturbations, cf. [9, 20] (i.e., to treat the situation with supersingular pertur-
bants which are more singular than those in the so-called H−2-class), we must first construct one

of the spaces H̃k or H̃−k, k > 2. We say that an operator Ã is a singular perturbation of A in the

wide sense if there is a k > 2 such that the operators Ãk/2, Ak/2 coincide on a set Mk ⊂ H̃k

⋂Hk

dense in H (for the precise definition, see the next section). Clearly, in this case, the inner products

on H̃k,Hk partially coincide, (ϕ,ψ)k = (ϕ,ψ)∼k for ϕ,ψ ∈ Mk. In particular, if k > 2, then the
set Mk is possibly dense not only in H but also in H2 = DomA, and the symmetric operator
Ȧ := A ↾ Mk is essentially self-adjoint.

In the present paper we show that the difference between the (super)singular perturbation Ã and
A can be described in terms of operators S taking Hk to H−k, k > 2, which vanish on Mk (or in
terms of the associated quadratic forms γS, which are singular on H). Thus, one of the objectives

of this paper is to give a parametrization of the bounded below perturbations (Ã > m̃ > −∞) that
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are singular in the wide sense in terms of mappings S : Hk → H−k, k > 2, with some additional
properties.

2. METHOD OF RIGGED HILBERT SPACES
Let us describe the idea of the method of rigged Hilbert spaces in more detail. Consider a part

of the A-scale (1.1),
H−2 ⊐ H−1 ⊐ H0 ≡ H ⊐ H1 ⊐ H2 ≡ H2(A), (2.1)

where H2 = DomA with respect to the norm ‖ϕ‖2 := ‖Aϕ‖ and H1 = DomA1/2 with respect
to the norm ‖ϕ‖1 := ‖A1/2ϕ‖, and where H−2 and H−1 are dual spaces. Recall that there is a
one-to-one correspondence between the operators A = A∗ > 1 in H and the rigged Hilbert spaces
of the form (2.1) or the entire scale of Hilbert spaces (1.1) (see, e.g., [3, Th. 2.1]). By construction,
the linear functional lω(ϕ) := 〈ϕ,ω〉1,−1 is well defined for each ω ∈ H−1, and it is continuous
on H1 (the symbol 〈· , ·〉k,−k, k > 0, stands for the dual inner product between Hk and H−k).
Due to the Riesz theorem, we have lω(ϕ) = (ϕ,ψ)1, where ψ = ψ(ω) ∈ H1, ‖ψ‖1 = ‖ω‖−1.
Let D−1,1 : H1 ∋ ψ → ω ∈ H−1 be the canonical unitary isomorphism (see [12, 13, 3]), and let
D1 := D−1,1 ↾ D1 and D1 := {ϕ ∈ H1|D−1,1ϕ ∈ H}. In this case, one can readily see that A = D1,
and D1 = H2 with respect to the norm ‖ϕ‖2 = ‖Aϕ‖. Similarly, repeating the above argument for
k = 2, we can see that A2 = D2 with D2 = H4, and therefore A =

√
D2. Thus, in the general case,

we have A = (Dk)1/k, k > 2.

Recall that the rigged Hilbert space H−k ⊐ H ⊐ Hk (as well as the entire A-scale) can be
reconstructed (see [12, 13]) from any couple of pre-rigged spaces, H−k ⊐ H or H ⊐ Hk. Thus, if
we change the inner product in one of the spaces Hk, k > 0 (or H−k) , i.e., replace the product

(· , ·)k by (· , ·)∼k (or (· , ·)−k by (· , ·)∼−k), then, taking the couple H ⊐ H̃k (or H̃−k ⊐ H), we can
construct a new scale of spaces. In particular, we obtain a new rigged chain of the form

H̃−2 ⊐ H̃−1 ⊐ H ⊐ H̃1 ⊐ H̃2. (2.2)

By definition, the operator Ã associated with (2.2) is a singular perturbation of A. If k > 2, then

we obtain a singular perturbation Ã of A in the wide sense, or a supersingular perturbation, in a

similar way. Thus, in the general case k > 2, the operator Ã > 1 is defined as Ã =
k
√

D̃k, where
D̃k stands for the restriction of the canonical unitary isomorphism D̃−k,k : H̃k → H̃−k to the set

D̃k = H̃2k = {ϕ ∈ H̃k | D̃−k,kϕ ∈ H}. If the lower bound of the operator Ã is less than one (Ã > m̃,
m̃ < 1), it is necessary to make additional changes in the scales (1.1) and (1.2). Namely, the norm
‖ · ‖±k must be replaced by ‖ · ‖±k,c := ‖(A+ c) · ‖±k, c = 1 − m̃.

We stress that, although the construction of perturbed operators Ã is not explicit in the general
case, new facts about singular perturbations can be observed. In particular, using Krein’s formula
for resolvents and the explicit representation for integral kernels (1 − ∆)−k/2 in terms of Bessel

functions (see [1, 23]), we can obtain information on the additional point spectrum of Ã and,
moreover, if perturbations are given by the δ-potential δ(x), x ∈ R

d, with an arbitrary dimension
d > 1, then one can write out an explicit form of the generalized integral kernels for operators
Ã−k/2, k > d/2.

3. MAIN RESULT

Let an operator A > 1 be fixed. We assume that the lower bound of A is equal to 1, i.e.,
inf‖f‖=1(Af, f) = 1.

Definition 3.1. A self-adjoint operator Ã > m̃ > −∞ (m̃ := inf‖f‖=1(Ãf, f)) is said to be a

singular perturbation of A in the wide sense (we write Ã ∈ Pk(A)) if the set

Mk := {ϕ ∈ Hk|Ak/2
c ϕ = Ãk/2

c ϕ}, Hk = Mk ⊕Nk, Nk 6= {0} (3.1)
is dense in Hk/2 for some k > 1,

Hk/2 ⊐ Mk, (3.2)

where Ãc := Ã+ c, Ac := A+ c, c ∈ [0,∞) (c = 0 if m̃ > 1 and c = 1 − m̃ if m̃ < 1).

This definition enables us to introduce a classification of singular perturbations of A. Note that
the numbers k and c are minimal possible in (3.1) and (3.2).
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In this paper, we study only operators Ã ∈ Pk(A) with k > 2. An operator Ã is said to be a

supersingular perturbation of A, if k > 4 (see [10, 11]). If k = 2, then Ã is a purely strong singular

perturbation of A (in this case, we say that Ã corresponds to H−2-class perturbations, see [14, 15]).
Let an operator S act on the A-scale, S : Hk → H−k, k > 1, and let it be self-adjoint, which

means that 〈Sϕ,ψ〉k,−k = 〈ϕ, Sψ〉−k,k =: γS(ϕ,ψ), ϕ,ψ ∈ DomS = DomS∗.

Definition 3.2. We say that an operator S : Hk → H−k belongs to the class S−k(A), k > 1, if
the subset kerS := {ϕ ∈ Hk| : γS [ϕ] = 0} is dense in Hk/2,

Hk/2 ⊐ kerS. (3.3)

Recall that an operator S ∈ S−k(A) with k = 2 is usually referred to as a singular operator of
H−2-class. If k > 4, then the operators S (or the quadratic forms γS) are known as supersingular
perturbations. In this case, the set kerS is dense in H2 = DomA, and the symmetric operator
Ȧ := A ↾ kerS is essentially self-adjoint. In this case, the problem to define the perturbed operator
Ã remains unsolved, except for some special constructions, see, e.g., [22].

The next theorem gives the simplest version of our result.

Theorem 3.3 (k = 2, c = 0). There is a bijective correspondence between the operators

Ã ∈ P2(A), Ã > 1, inf‖f‖=1(Ãf, f) = 1 and the positive bounded operators S ∈ S−2(A) such that

‖ϕ‖2
1 6 〈Sϕ,ϕ〉−2,2 ≡ γS [ϕ] 6 ‖ϕ‖2

2, ϕ ∈ N2 := H2 ⊖ kerS. (3.4)

Proof. Let Ã > 1 belong to the class P2(A). Then, according to (3.1), there is a set M2 in H2

which is dense in H1 and such that Ã and A coincide on this set. Hence, the operators Ã and A
are distinct self-adjoint extensions of the symmetric operator Ȧ := Ã ↾ M2 = A ↾ M2. Since M2

is dense in H1, it follows that the Friedrichs extension A∞ of Ȧ coincides with A and, moreover, it
is the maximal positive extension. Therefore, Ã 6 A. Consider the bounded positive operator

B := Ã−1 −A−1. (3.5)
Obviously, B = 0 on M0 := AM2. Since Ã, A > 1, the operator b := B ↾ N0, where N0 := H⊖M0,
satisfies the inequalities

0 < b < 1, 0 < b 6 1 −A−1. (3.6)
Thus, on N0, we have

0 < A−1 6 s0 < 1, where s0 := 1 − b. (3.7)
Now let us introduce an operator S : H2 → H−2 which is equal to zero on M2 and coincides with
As0A on N2, where A stands for the closure of A : H → H−2. It follows from (3.6) and (3.7) that
0 < (A−1h, h) 6 (s0h, h) < ‖h‖2, where h ∈ N0 and h 6= 0, and

(Aϕ,ϕ) = ‖ϕ‖2
1 6 (s0Aϕ,Aϕ) = 〈Sϕ,ϕ〉−2,2 < ‖ϕ‖2

2 and A−1h = ϕ ∈ N2,
which proves (3.3). Conversely, starting from a positive operator S : H2 → H−2 of class S−2(A)
which satisfies condition (3.3), we define the operator

s0 := A−1(S ↾ N0)A
−1, where N0 := (A ker S)⊥.

Due to (3.3), this operator satisfies inequalities (3.7). Next introduce the operator b := 1 − s0 and

denote by B the extension of b by zero to M0. It is clear now that the operator Ã given by the
relation Ã := A−1 +B belongs to the class P2(A). Indeed, by condition (3.3), the set M2 := kerS

is dense in H1, and Ã > 1 by (3.6). �

Now let us consider the case in which the lower bound m̃ = inf‖f‖=1(Ãf, f) of the operator

Ã ∈ P2(A) is less than one, m̃ < 1. In this case, introduce the space Hk,c, c = 1 − m̃ > 0,

which coincides with the domain DomAk/2 with the norm ‖f‖k,c := ‖(A+ c)k/2f‖, f ∈ DomAk/2.
Certainly, the last norm is equivalent to the norm ‖f‖k.

Theorem 3.4 (c > 0, k = 2). There is a bijective correspondence between the operators

Ã ∈ P2(A), Ã > m̃, m̃ < 1, and the bounded positive operators S ∈ S−2(A) (S are singular in H)
which satisfy the inequalities

‖ϕ‖2
1,c 6 〈Sϕ,ϕ〉−2,2 ≡ γS [ϕ] 6 ‖ϕ‖2

2,c, ϕ ∈ N2,c := H2,c ⊖M2,c, c = 1 − m̃, (3.8)

and have the property
inf

ϕ∈N2,c, ‖ϕ‖1,c=1
γS[ϕ] = 1. (3.9)
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Proof. According to (3.1), for any given operator Ã > m̃ in the class P2(A) there is a subspace

M2 in H2 dense in H1 and such that the operators Ãc = Ã + c and Ac = A + c coincide on
this subspace for c = 1 − m̃. Note that the lower bound of the operator Ãc is equal to one. Now
we replace the norms ‖ · ‖k in the spaces Hk, k = 1, 2, by the equivalent norms of the form
‖f‖k,c := ‖(A + c)k/2f‖, f ∈ DomAk/2, i.e., we come to the space Hk,c, which coincides with

DomAk/2 as a set. Thus, the mapping A
k/2
c : Hk,c → H becomes unitary. Further, we replace the

notation M2 by M2,c. Thus, the operators Ãc and Ac are distinct self-adjoint extensions of the

positive symmetric operator Ȧc := Ãc ↾ M2,c = Ac ↾ M2,c. Since the subspace M2,c is dense in

H1,c, the Friedrichs extension Ac,∞ of the operator Ȧc coincides with Ac and, moreover, it is the

maximal positive extension. Hence, Ãc 6 Ac. Thus, we can introduce the bounded positive operator

Bc := Ã−1
c −A−1

c (3.10)
on H. Obviously Bc = 0 on M0 := AcM2,c and, on N0 := H ⊖M0, the operator bc := Bc ↾ N0

satisfies the inequalities
0 < bc < 1, 0 < bc 6 1 −A−1

c . (3.11)In other terms,
s := 1 − bc, 0 < A−1

c 6 s < 1. (3.12)
Now let us define the operator S : H2 → H−2. It is equal to zero on M2,c and S = AcsAc

on N2,c = H2,c ⊖ M2,c, where Ac stands for the closure of Ac : H → H−2. It follows from
(3.11), (3.12) that (A−1

c h, h) 6 (sh, h) < ‖h‖2, h ∈ N0, and (Acϕ,ϕ) ≡ ‖ϕ‖2
1,c 6 (sAcϕ,Acϕ) =

〈Sϕ,ϕ〉−2,2 < ‖ϕ‖2
2,c, ϕ = A−1

c h ∈ N2,c, which proves (3.8). Further sup‖h‖=1(Ã
−1
c h, h) = 1 because

the lower bound of the operator Ãc is equal to one. Therefore, 1 = sup‖h‖=1((A
−1
c + B)h, h) =

suph∈N0,‖h‖=1((A
−1
c +b)h, h). Replacing bc by 1−s gives 1 = suph∈N0,‖h‖=1(‖h‖2

−1,c+‖h‖2−(sh, h)),

and hence suph∈N0,‖h‖=1(‖h‖2
−1,c − (sh, h)) = 0. Since the operator Ac : H2,c → H is unitary, we

obtain supϕ∈N2,c,‖ϕ‖2,c=1(‖ϕ‖2
1,c − γS [ϕ]) = 0, ϕ = A−1

c h, which obviously coincides with (3.9).

Conversely, let us begin with a positive (singular in H) quadratic form γS or with the associated
operator S : H2 → H−2 in the class S−2(A) (the set kerS is dense in H1). We certainly assume
that conditions (3.8), (3.9) hold. Using S, we construct the operator s := Ac

−1SA−1
c ↾ N0, where

N0 := (Ac kerS)⊥. Due to (3.8), the operator s satisfies inequality (3.12). Next introduce the pos-
itive operator bc := 1 − s. Denote by B the extension of bc to M0 by zero. It is clear now that
the operator Ãc given by Ã−1

c := A−1
c + B belongs to the class P2(A) because the operators Ãc

and Ac coincide on the subspace M2,c dense in H1. Thus, the lower bound of Ãc is equal to one.

Therefore, the lower bound of the operator Ã = Ãc − c is equal to m̃ = 1 − c < 1. �
The next theorem gives the most general version of our result.
Theorem 3.5 (c > 0, k > 2). There is a bijective correspondence between the family of singular

perturbed operators Ã ∈ Pk(A), k > 2, that are bounded below, Ã > m̃ > −∞, and the family of
bounded positive operators S : Hk → H−k of class S−k(A) which satisfy the inequalities

‖ϕ‖2
k/2,c 6 γS [ϕ] ≡ 〈Sϕ,ϕ〉−k,k < ‖ϕ‖2

k,c, ϕ ∈ Nk,c := Hk,c ⊖ kerS, (3.13)
and are such that inf

ϕ∈Nk,c, ‖ϕ‖k/2,c=1
γS [ϕ] = 1, (3.14)

where c = 0 if m̃ > 1 and c = 1− m̃ > 0 if m̃ < 1. The correspondence can be given by the relation

(Ã+ c)−k/2 = A−k/2
c +Bc,k, Bc,k = 1 − A−k/2

c SA−k/2
c . (3.15)

Proof. We must consider the case c > 0, k > 2 only. Let an operator Ã > m̃ > −∞, m̃ < 1,
belong to the class Pk(A), k > 2. According to (3.1), there is a subspace Mk in Hk dense in

Hk/2 on which the operators Ã
k/2
c and A

k/2
c coincide, where c = 1 − m̃. Denote this subspace

by Mc,k. Simultaneously, let us replace the norm in Hk by the equivalent norm ‖ · ‖c,k. Hence,

the operators Ã
k/2
c and A

k/2
c are distinct self-adjoint extensions of the positive symmetric densely

defined operator Ȧ(k,c) := Ã
k/2
c ↾ Mc,k = A

k/2
c ↾ Mc,k. Since the subspace Mc,k is dense in Hc,k/2,

it follows that the Friedrichs extension of the operator Ȧ(k,c) coincides with A
k/2
c . Thus, this is the

maximal positive extension. Hence, Ã
k/2
c 6 A

k/2
c . Introduce the bounded positive operator

Bck := Ã−k/2
c −A−k/2

c . (3.16)
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Clearly, Bck = 0 on M0 := A
k/2
c Mc,k, and the operator bck := Bck ↾ N0 satisfies the inequalities

0 < bck < 1, 0 < bck 6 1 −A−k/2
c (3.17)

on the subspace N0 := H⊖M0. Thus, for sck := 1 − bck in N0, we have

0 < A−k/2
c 6 sck < 1. (3.18)

The operator S is zero on Mc,k. On Nc,k, the operator S is S = A
k/2
c sckA

k/2
c . It follows from (3.17),

(3.18) that (A
−k/2
c h, h) 6 (sckh, h) < ‖h‖2, h ∈ N0, or ‖ϕ‖2

k/2,c = (A
k/2
c ϕ,ϕ) 6 (sckA

k/2
c ϕ,A

k/2
c ϕ)

= 〈Sϕ,ϕ〉−k,k < ‖ϕ‖2
k,c = (A

k/2
c ϕ,A

k/2
c ϕ), ϕ = A

−k/2
c h ∈ Nc,k, which proves (3.13). Further,

sup‖h‖=1(Ã
−k/2
c h, h) = 1 because the lower bound of the operator Ãc is equal to 1. Therefore,

1 = sup‖h‖=1((A
−k/2
c +Bck)h, h) = suph∈N0,‖h‖=1((A

−k/2
c + bck)h, h).

Replacing bck on 1−sck, we obtain 1 = suph∈N0,‖h‖=1(‖h‖2
−k/2,c +‖h‖2−(sckh, h). This means that

suph∈N0,‖h‖=1(‖h‖2
−k/2,c − (sckh, h)) = 0 and supϕ∈Nk,c,‖ϕ‖k,c=1(‖ϕ‖2

k/2,c − γS [ϕ]) = 0

(which is obviously equivalent to (3.14)) for h = A
k/2
c ϕ, ϕ ∈ Nk,c because the operator

A
k/2
c : Hk,c → H is unitary. Conversely, beginning with the operator S : Hk → H−k belonging

to the class S−k(A), k > 2 (it is supposed that S satisfies conditions (3.13), (3.14)), we construct

the operator sck := A
−k/2
c SA

−k/2
c ↾ N0 on the subspace N0 := (A

k/2
c kerS)⊥. It obviously satisfies

inequality (3.18). Then we define the operator bck := 1−sck, and denote by Bck the extension of bck

by zero to M0ck. It is clear now that the operator Ã = Ãc−c given by the rule Ã
−k/2
c := A

−k/2
c +Bck

belongs to the class Pk(A). That is, the lower bound of Ã satisfies 1 > m̃ = 1 − c > −∞. �

4. CONSTRUCTION OF Ã-SCALE
It is clear from the previous section that, from any couple of spaces (either H̃−k ⊐ H0 or

H0 ⊐ H̃k), we can reconstruct the entire A-scale. In particular,

H̃−2 ⊐ H̃−1 ⊐ H ⊐ H̃1 ⊐ H̃2. (4.1)

Moreover, we then can obtain the operator Ã as an operator associated with this scale. In this
section, we discuss the construction of a new rigged Hilbert space of the form (4.1) and its relation
to a quadratic form γS(ϕ,ψ) = 〈Sϕ,ψ〉−2,2, where S ∈ S−2(A) plays the role of a perturbation,
in more detail. Let us show how to consider a strongly singular perturbation belonging to the class
H−2(A) by using the approach of rigged Hilbert spaces. We begin with the rigged triplet (1.1)
associated with the free operator A = A∗ > 1 on H and then come to the consideration of the
chain of five spaces,

H− ≡ H−2 ⊐ H−1 ⊐ H ⊐ H1 ⊐ H2 ≡ H+(= DomA). (4.2)
Using a positive quadratic form γ ∈ H−2, we define a new inner product on H0,

(h1, h2)
∼
−1 := (A−1h1, h2) + γ(A−1h1, A

−1h2), h1, h2 ∈ H. (4.3)

If the quadratic form γ satisfies the condition

−‖f‖2
1 6 γ[f ] 6 ‖f‖2

2 − ‖f‖2
1, f ∈ H2 = DomA, (4.4)

then Ã ∈ P2(A). The following theorem shows that each singular perturbation corresponding to
γ ∈ H−2 admits a construction by the modified form-sum method.

Theorem 4.1 [3]. For each operator Ã ∈ P2(A), Ã > 1 (i.e., Ã corresponds to a class H−2(A)

perturbation), the inner product (· , ·)∼−2 in the space H̃−2 = Dom Ã can be represented as the
singular form-sum perturbation of the inner product in H−2,

(· , ·)∼−2 = (· , ·)−2 + τ(· , ·), (4.5)

where the quadratic form τ defined on H is singular on H−2, which means that ker γ is dense in H−2.

Proof. Let us sketch the proof. By Krein’s formula (3.5), (h1, h2)
∼
−2 = (Ã−1h1, Ã

−1h2) =

(A−1h1, A
−1h2) + τ(h1, h2), where

τ(· , ·) := (A−1·, B·) + (B·, A−1·) + (B·, B·). (4.6)
Obviously, the form τ is Hermitian but not positive. By construction, we have ker τ = kerB ⊏ H−1

since the operator Ã belongs to the class Ã ∈ P2(A) (see Definition 3.1). Therefore, γ is singular
on H−1, and in H−2 as well. �
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The converse assertion is also true, but it requires additional constructions.

Let us show now that, for rank one singular perturbation Ã ∈ P2(A), Ã > 1, the inner prod-

uct in H̃1 also admits an interpretation as the generalized form-sum perturbation of the inner prod-
uct in H1. Let Ã be the rank-one singular perturbation corresponding to an element ω ∈ H−2\H−1.
Consider a new inner product on H2, χ(· , ·) = (· , ·)1 + γ(· , ·), γ(· , ·) := β(A·, η)(η,A·), η := A−1ω.
Note that η ∈ H0\H1, and therefore ker γ ⊏ H1. Obviously, γ(· , ·) > 0. Further, if we take a
constant β such that

0 < γ[ϕ] 6 ‖ϕ‖2
2 − ‖ϕ‖2

1, ϕ ∈ H2, (4.7)

then the space H̃1 (given below) is densely embedded in H. Note that, due to ker γ ⊏ H1, we
have the orthogonal decomposition Hχ = H1 ⊕ Hγ , where Hγ is the Hilbert space obtained from
DomA by completing with respect to the inner product given by γ(· , ·). One can readily see that
Hγ = {cη+}, η+ := A−1η, c ∈ C, where we have used an explicit form of γ. Therefore, the mapping

Á := A|Hγ → N̂0 = {cη}, c ∈ C, is unitary. Our theorem on the structure of the space H̃1

(H̃1 = H1 ⊕ N̂0 ⇐⇒ Ã ∈ P2(A)) implies that the operator T := 1 ⊕ Á is also unitary from the

Hilbert space Hχ into H̃1. Thus, we obtained H̃1, and hence Ã.

A similar result holds for an arbitrary k. Choose a k > 2. Let A be an operator associated with

H−k ⊐ H−k/2 ⊐ H0 ⊐ Hk/2 ⊐ Hk = DomAk/2. (4.8)
Then each positive quadratic form γ ∈ S−k defines a new negative inner product (h1, h2)

∼
−k/2 :=

(A−k/2h1, h2)0 + γ(A−k/2h1, A
−k/2h2), h1, h2 ∈ H. If this form satisfies the condition −‖f‖2

k/2 6

γ[f ] 6 ‖f‖2
k − ‖f‖2

k/2, f ∈ Hk, then we can introduce a chain of new Hilbert spaces

H̃−k ⊐ H̃−k/2 ⊐ H ⊐ H̃k/2 ⊐ H̃k (4.9)

and construct the associated operator Ã ∈ Pk(A). In a similar way, we can also construct the

positive space H̃k/2 for an arbitrary rank-one supersingular perturbation. Namely, let χ(· , ·) =

(· , ·)k/2 + γ(· , ·) be a new positive inner product on Hk, where γ(· , ·) := β(Ak/2·, η)0(η,Ak/2·)0,
η ∈ H0\Hk/2, and the constant β is such that 0 < γ[ϕ] 6 ‖ϕ‖2

k − ‖ϕ‖2
k/2, ϕ ∈ Hk. Then, similarly

to the case of k = 2, using the operator T = 1+ Ák/2, we pass from Hχ to H̃k/2, where Á := A|Hγ

(Hγ stands for the Hilbert space obtained from DomAk/2 by completing with respect to the inner
product γ(· , ·)).

In the above sense, every supersingular perturbation of class H−k admits the definition using
the modified form-sum method. Thus, we can formulate a general assertion in this direction.

Theorem 4.2. For each Ã ∈ Pk(A), Ã > 1, the inner product (· , ·)∼−k on the space H̃−k is a

singular form-sum perturbation of the inner product in H−k, (· , ·)∼−k = (· , ·)−k + τk(· , ·), where the

Hermitian quadratic form τk(· , ·) := (A−k/2·, B·) + (B·, A−k/2·) + (B·, B·) is singular in H−k.

The proof is essentially the same as for Theorem 4.1. Note that τk is Hermitian but not positive.
Thus, the results discussed above show that one can construct supersingular perturbations of

any order (using the method of rigged Hilbert spaces) by changing the inner products in each of
the spaces in (4.2) or in (4.8).

5. EXAMPLES
In this section, we show, in particular, that (among singular perturbations Ã ∈ Pk(A), k > 2)

there are new kinds of operators which cannot be obtained as singular perturbations of order k 6 2.

Example 5.1 (Rank one supersingular perturbations of order k > 2).

Consider the perturbation Ã of A given by the quadratic form γω[ϕ] = 〈ϕ,ω〉k,−k〈ω,ϕ〉−k,k,
ω ∈ H−k\H−k/2, k > 2. The operator Sω : Hk ∋ ϕ → 〈ϕ,ω〉k,−kω ∈ H−k associated with γω

belongs to S−k (see Definition 3.2) because the set kerSω = ker γω = {ϕ ∈ Hk|〈ϕ,ω〉k,−k = 0} is
dense in Hk/2 since ω /∈ H−k/2 (see [9, Th. A.1]). In particular, if k > 4, then kerSω is dense in

H2 = DomA, and one cannot use any of the usual methods to construct the perturbed operator Ã.
Here we suggest the idea of regarding γω or Sω as a perturbation of Ak/2 : Hk → H. In other words,
we define Ã as (A−k/2+Bω)2/k, where Bω is a rank-one operator in H of the form Bω = βω(·, η0)η0,
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η0 := A−k/2ω, with an appropriate constant βω. Thus, if we set βω = 1 − σω (this corresponds
to the representation b = 1 − s, see Section 3), then the constant σω must satisfy the inequality:

‖η0‖2
−1 6 σω < 1. Only in this case we obtain Ã > 1 (see [3, Example 3.1]).

Set ω = σω(Ak/2ψ − λψ), ψ ∈ H\Hk/2, ‖ψ‖ = 1, λ ∈ R. Then, using Krein’s resolvent formula

(Ãk/2 − z)−1 = (Ak/2 − z)−1 +Bω(z),

where Bω(z) = βω,z(· , ηz̄)ηz , ηz = (Ak/2 − λ)(Ak/2 − z)−1ψ, βω,z = 1
/(

(λ− z)(ψ, ηz̄)
)

,

we solve the eigenvalue problem for Ãk/2 : Ãk/2ψ = λψ (for details, see [4, 6]). Therefore, the

operator Ã solves the eigenvalue problem Ãψ = λ2/kψ with the same eigenvector ψ.
The vector ψ can be taken in the space H1 (since k > 2 now). This is of importance and proves

that one cannot solve the above eigenvalue problem in the framework of singular perturbations of
class Pk(A) with k 6 2 (see [6]).

Example 5.2 (Perturbations of Bessel potentials by the δ(x)-function, x ∈ R
d, d > 3).

Let ∆ be the Laplace operator on L2(R
d, dx). As is well known [1, 25], the inverse operator of

A = (1−∆)k/2, k > 0, is the integral operator with Bessel kernel Gk = F−1((1 + |ξ|2)−k/2), where
F−1 stands for the inverse Fourier transform. Recall that the representation by the Bessel potential
is ϕ = Gk ∗ h = (1−∆)−k/2h. In particular, if h ranges over L2(R

d, dx), then ϕ ∈ Dom(1−∆)k/2,
which is a Sobolev space, W k

2 = Hk := {ϕ = Gk∗h, h ∈ L2}. Recall the explicit presentation for Gk,

Gk(x) =
1

(2π)d

∫

Rd

eixξ

(1 + |ξ|2)k/2
dξ = (2π)−d/2|x|−(d−2)/2

∫ ∞

0

td/2

(1 + t2)k/2
J(d−2)/2(|x|t)dt,

where Jν stands for the Bessel function of order ν. For more details on the explicit representation
for Gk, see [1, 25].

Choose a d > 3 and take k > d/2. By the Sobolev embedding theorem, the above functions
ϕ are continuous. Thus, we have an embedding W k

2 ⊂ C(Rd), which enables us to introduce the

generalized Bessel kernel G̃k = Gk +β(·, ηδ)ηδ , β > 0, where ηδ = Gk ∗ δ stands for the convolution

Gk with the delta function δ(x) ∈ W−k
2 . If d > k > d/2, then δ /∈ W

−k/2
2 . This ensures that the

generalized Bessel potentials ϕ̃ = G̃k ∗ h, h ∈ L2(R
d, dx), form a new Hilbert space W̃ k

2 such that

W̃ k
2 ⊏ L2 and which coincides with the ordinary Sobolev space on a set Mk = {ϕ ∈W 2

k | ϕ(0) = 0}
dense in L2. The canonical unitary isomorphism D̃k : W̃ 2

k → L2(R
d, dx), after the restriction to

the space W̃ 2
2k := {ϕ̃ ∈ W̃ 2

k | D̃kϕ ∈ L2(R
d, dx)}, defines a self-adjoint operator Ã−k/2 in L2, which

corresponds to the heuristic expression “(1−∆)k/2 + δ.” Finally, the operator Ã (formally given as
“−((1−∆)k/2 + δ)2/k +1”) can be regarded as a uniquely defined version for the formal expression
−∆ + δ(x) in the case of x ∈ R

d, d > 3.

Example 5.3 (Perturbations of Bessel potentials by fractal measures).

Let Γ ⊂ R
d be a compact support of a chosen fractal measure µ on R

d (for more details and
definitions, see [24, 8, 21]; see also the related papers [19, 17, 18]). Assume that the Ck/2-capacity
(in particular, the Lebesgue measure) of Γ is zero, Ck/2(Γ) = 0, m(Γ) = 0, but Ck(Γ) > 0. (For the
definition of Cl-capacity and its properties, see [1, 23].) Recall only that the Cl-capacity of a set Γ
can be defined as follows:

Cl(Γ) = inf
ν(Γ)=1

∫ ∫

Gl(x− y)dν(x)dν(y),

where Gl stands for the Bessel kernel and the infimum is taken over all Borel measures such that
Γ ⊂ suppν. Further, assume that the quadratic form γµ[ϕ] :=

∫

|ϕ|2dµ, ϕ ∈ W k
2 , is bounded

on W k
2 . Then there exists an associated operator Sµ : W k

2 → W−k
2 acting as the multiplication

by µ and belonging to the class S−k (just due to Ck/2(Γ) = 0). Therefore, we can define a new

version of the generalized Bessel kernel, G̃k,µ = Gk +Bµ, where Bµ is the integral operator given
by the kernel

Bµ(x, y) =

∫

Rd

∫

Rd

Gk(x− z)Gk(y − z′)µ(dz)µ(dz′).
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Similarly to the previous example, one can introduce a new version of generalized Bessel potentials
ϕ̃ = G̃k,µ ∗ h, h ∈ L2(R

d, dx), to construct a new Hilbert space W̃k,µ ⊏ L2 and to define the
singular perturbation corresponding to the heuristically given expression “−∆ + µ.” This is a
uniquely defined self-adjoint operator on L2 formally given by the expression (G̃k,µ)2/k.
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