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a b s t r a c t

A dynamical model of the natural conflict triad is investigated. The conflict interacting sub-
stances of the triad are: some biological population, a living resource, and a negative factor
(e.g., infection diseases). We suppose that each substance is multi-component. The main
coexistence phases for substances are established: the equilibrium point (stable state),
the local cyclic orbits (attractors), the global periodic oscillating trajectories, and the evo-
lution close to chaotic. The bifurcation points and obvious thresholds between phases are
exhibited in the computer simulations.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

We use the term conflict triad for notation of a physical system consisting of three conflict substances (denoted by P, R, Q)
which exist in the same space X. Each substance at initial moment of time is presented by a real value P, R, or Q in accordance
with its amount characteristic. The whole system is complex since every substance contains a family of components distrib-
uted along regions Xi which compose the existence space: X ¼

Sn
i¼1Xi; 2 6 n <1. So one can think that P, R, Q are vectors

with non-negative coordinates:

P ¼ ðP1; . . . ; PnÞ; R ¼ ðR1; . . . ;RnÞ; Q ¼ ðQ1; . . . ;QnÞ; Pi;Ri;Q i P 0; i ¼ 1; . . . ;n;

P ¼ P1 þ � � � þ Pn; R ¼ R1 þ � � � þ Rn; Q ¼ Q 1 þ � � � þ Q n:

We study the evolution of the system at discrete time:

fPN;RN;Q Ng!
>

fPNþ1;RNþ1;Q Nþ1g; N ¼ 0;1 . . . ;

where P0 = P, R0 = R, Q0 = Q and the map > is defined by the law of conflict interaction. In general this law is unknown. Our
definition of the transformation > (see below formulae (3.17) and (3.18)) starts with the famous Lotka–Volterra predator–
prey approach (see e.g., [6,10,11,21,22]) and is based on heuristic understanding of the physical essence of the substances P,
R, Q.
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The schematic picture of mutual dependencies between P, R, Q may be presented by the following diagram:

where each signed arrow means a direction of positive or negative influence one of substances at another. The positive
dependence involves a certain growth and negative – decreasing of quantitative characteristic of the corresponding specie.

At this diagram we have three types of interaction connections: two variants of the ‘‘plus–minus’’ interactions and a sin-
gle version of the ‘‘minus–minus’’ interdependence.

The ‘‘plus–minus’’ type of interaction is in fact the modified stochastic version of the predator–prey model (c.f. with [25]).
Here we use two different variants of this type. First, the conflict interdependence between behavior of some biological pop-
ulation playing a role of predator and the dynamical changes of the vital resource as a prey. Second, the nonlinear relations
between the local density of biological species (as some kind of a prey) and the expansion processes of viral infections, like a
certain predator.

The ‘‘minus–minus’’ interaction is essentially different. This type describes the conflict competition of mutually alterna-
tive substances like virus infection diseases and medicine. In the paper we consider this couple slightly wider, we treat the
vital resources as the opposite substance to the viral infection and admit its quantitative decreasing under destroying actions
of the latter.

In more details, one can understand a sequence PN
i ; N ¼ 1;2; . . . as the quantitative evolution of some biological specie in

a fixed region Xi under influence of two opposite factors. Namely, the population dynamics of PN
i is determined by the po-

sitive dependence produced by the vital resource environment from the side R that provides some growth of PN
i , and by the

negative influence generated by Q. The possible viral infection caused by the substance Q leads to the quantitative losses for
PN

i . Thus, at the moment N + 1 the value PNþ1
i has to be proportional to amount of the biological spices in region Xi at the

previous moment, it should grow at increasing of RN
i , but to fall at increasing of Q N

i .
In turn, under assumption the vital resource is not exhaustible globally, the regional changes of its amount RN

i are depen-
dent naturally from the local (=regional) intensity of their using as a source for existence of biological species, and in addition
from the negative influences of Q which has the alternative nature. Finally, the evolution of coordinates QN

i describes the
dynamical picture for behavior of threat concentrations for existence of biological species inside every separate region Xi.
So the local expansion of some infection QNþ1

i grows at increasing of PN
i and decreasing of RN

i .
The explicit formulae of all mutual interdependence will be defined in Section 3.
One can associate the triple of substances P, R, Q with the philosophical triad: mankind, good, and evil or, in accordance

with mythology, with flora and fauna of Earth surrounded by water and fire as a positive and negative resources. More spe-
cifically, PN may mark the quantitative global population of some biological specie (humanity), RN – the variation of vital re-
sources in the current environment, and QN corresponds to the dynamics of threatening concentrations associated with
various negative phenomena that may influence both at the biological population PN and the resource environment RN

too. In particular, coordinates PN
i ; RN

i ; Q N
i describe the local evolution of components of triple indicated substances in the

fixed region Xi.
The general scheme of the dynamical system studied here is complex enough and it is hardly to expect for establishment

of abstract mathematical results (theorems) concerning the global behavior. Nevertheless, we got some exact results which
are true, in particular, for separate two-sided links inside of the conflict triad, i.e., for couple interaction between fixed sub-
stances (see Section 2). We study the whole complex system by using the series of computer models in Section 3. Their anal-
ysis exhibits remarkable features which would be useful in applications.

Two intrinsic questions arise. Whether the construction of conflict triad is well-defined? If so, whether the dynamical pic-
ture of the substances P, R, Q coincides with our intuitive pattern of the conflict triad coming from natural practical
experience?

The first important result of this work is the setting of mathematical consistency of our constructions. All the interrela-
tions used in the dynamical system of the conflict triad do not lead to collapse. More exactly, it is shown that under a certain
choice of additional parameters of the model (this choice is the non-trivial problem itself) the whole complex system does
not decay (destroy themselves). This means that the values of all coordinates are changed in the physically reasonable
scopes.
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The second important result of our work is that various computer models that realize the conflict triad expose the typical
features for the complex systems behavior. Namely, analysis of the values PN

i ; RN
i ; Q N

i in concrete models demonstrate the
distinctive properties that are observed in natural conditions where more than two substances take part in confrontations.
Among such properties, in particular, we observe the presence of distinct phases for existence of the system: the phase of
dynamic equilibrium (the equilibrium state), the phase of periodic oscillations which contains the wide spectrum of trajec-
tories that have tendency to approximate the cyclic attractors, the presence of areas for bifurcation points and thresholds
between different phases, finally we meet the class of evolution close to chaotic (which is called the quasi-chaotic).

We note that mathematical basis of our constructions is a concept of the conflict dynamical system that has been
developed in [2,3,12–17], (c.f. with [26]). Among other deep theoretical researches that influenced on our work we refer
[1,4,9,18–25].

The most close to our conflict triad is the well-known SIR-model and its different variants that describe the dynamic of
epidemic infections (for details see, for example, [22,23]). In the SIR-model the idea of conflict triad is actually presented but
in an implicit form. So, all the population of some biological specie is divided into three groups: S is the amount of persons
favorable to the infection (susceptible), I – infected and able to carry the infection, and R – which are under cover or recov-
ered already. The complicated SIR-model contains the additional group E of those, who has an infection in the hidden (latent)
form. The evolution of the above mentioned groups in time is determined by relatively simple but nonlinear equations:

_S ¼ �rSI; _I ¼ rSI � aI; _R ¼ aI;

where coefficients r, a > 0. It is assumed that S(t) + I(t) + R(t) = const and since that _Sþ _I þ _R ¼ 0. The main problem is to re-
search the dynamic of distribution for the infection I(t), in particular, when I(t) increases or decreases depending on coeffi-
cients r, a and starting values S(0), I(0), R(0). There exist a number of publications (see references in [22,23,8]) where the SIR-
model is improved or modified in accordance with concrete specifics of biological species, view of epidemic infections, and
conditions of its expansion in a certain environment.

In comparison with the SIR-model, our construction of the conflict triad is substantially more perfect in two principal
aspects.

First, we use a partition of whole existence space into family of finitely many regions. Of course, it corresponds to the
widely observed environment phenomenon of nature: the existence space always is separated into bounded domains. That
is why the computer models of the system are able, in particular, to describe the expansion of disease infections of biological
population separately in every region of existence and to define, for example, the most safe regions.

Another new important step in our work is that we put as a basic the probabilistic (statistical) law of interaction between
conflict substances. We consider that statistical interdependence reflect more deep connections between opponents any nat-
ure. Thus we may describe not only quantitative changes of populations but also its redistribution along regions of existence
caused by the conflict interaction.

Shortly, in contrast to the above mentioned SIR-model our method of the construction of the conflict triad uses a partition
of the existence space into regions and application of statistical formulas for description of the dynamical picture.

Finally, it is especially important, we assume that each substance (opponent) is a priori non-annihilating. This principle is
putting directly in formulas (3.17) and (3.18) that govern the conflict interactions. So, any of substances P, R, Q cannot anni-
hilate another one, but has to reach the compromise equilibrium state or migrate along regions by some law.

2. Dynamics of the bilateral couple interactions

According to Eqs. (3.17) and (3.18) (see below) the interactions between substances P, R, Q in the conflict triad are non-
linear and rather complex. But the separate bilateral couple interdependency admits rigorous enough mathematical analysis.
In this section we state two results for situations marked as ‘‘plus–minus’’ and ‘‘minus–minus’’ models.

In the first bilateral ‘‘plus–minus’’ model we analyze the dynamics of changes for substances P and R. Plus means that P is
positively influenced by R, and minus – that R is negatively influenced by P. That is a typical predator–prey situation (see for
example [21]). However we consider different, more specific functional dependence between opponents.

Let PN, N = 0,1, . . . , denote the amount evolution of P (some fixed biological specie) at discrete time. As soon as the space X
is divided onto family of separate regions X ¼

Sn
i¼1Xi; 2 6 n <1, the complete amount PN at every time moment is certainly

distributed along these regions: PN ¼ PN
1 þ � � � þ PN

n . For simplification of the problem, we assume that the complete amount
of substance at the whole territory X is permanent PN = P = const. It means that the average rate of growth and the decay rate
of the substance P population (the rates of birth and deaths) are independent by the time, i.e., are in the dynamical balance.
In fact this occurs often enough, at least locally at certain periods of development of a complex physical system. Thus, in the
such simplified model we analyze only the redistribution dynamic for PN

i along the regions Xi. In the model of conflict triad
the redistribution of values PN

i is stipulated by two factors: the positive influence of the substance R (the population of PN
i

grows using the vital resource environment), and the negative influence from the side of Q (for example, threats, infection
diseases cause some decay). In a situation, where the global influence of the last factor is insignificant and negligible, the
bilateral coupled interactions between regional values of PN, RN are essentially simplified in the mathematical sense. In turn,
the dependence of R from P is purely negative (the amount of the substance R is ‘‘burned’’ as a vital resource for P). However
we assume the global amount of R in X is stable RN = R = const. This stability condition means that R is continuously supplied
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due to the external source (such as the Sun) that now is not examined. Nevertheless at each time moment the regional dis-
tribution of the vital resource RN ¼ RN

1 þ � � � þ RN
n is changed according to the appropriate law.

Thus the simplified problem is to study the redistribution dynamic for values PN
i ; RN

i along regions Xi produced by a cer-
tain ‘‘plus–minus’’ interaction between substances P and R under assumption of the global amount stability for P, R in X and
their independence with the third substance.

The proper conflict dynamical system has the view:

PN
i ;R

N
i

n o
!
>

PNþ1
i ;RNþ1

i

n o
; P0

i ¼ Pi; R0
i ¼ Ri: ð2:1Þ

Surely it is considerably simpler as compared to the behavior of all complex system. After the explicit definition of the con-
flict transformation > (see below (2.3)) we are able to fulfill the detailed enough analysis of system (2.1). The main results
are stated in Theorem 2.1 which gives complete enough description of behavior of this system.

Let us introduce the simplest variant of concrete formulas of the ‘‘plus–minus’’ interaction between substances P and R.
We write down these formulas in terms of coordinates of stochastic vectors with an unite l1-norm:

pN ¼ pN
1 ; . . . ;pN

i ; . . . ; pN
n

� �
; rN ¼ rN

1 ; . . . ; rN
i ; . . . ; rN

n

� �
; pN

i :¼ PN
i

P
; rN

i :¼ RN
i

R
; ð2:2Þ

where, we remind, P, R are the amount characteristics of substances P, R in the whole space X. Namely, at N + 1 step the
coordinates pNþ1

i and rNþ1
i are determined iteratively by the rule

pNþ1
i ¼

pN
i 1þ rN

i

� �
zN

p;r
; rNþ1

i ¼
rN

i 1� pN
i

� �
zN

r;p
; N ¼ 0;1; . . . ; ð2:3Þ

where the normative denominators

zN
p;r ¼ 1þ ðpN; rNÞ; zN

r;p ¼ 1� ðpN; rNÞ:

((�, �) denotes the inner product in Rn) ensure that vectors pN+1, rN+1 remain stochastic.
We note that different signs in the numerators of formulas (2.3) just determine the essence of the ‘‘plus–minus’’ model.

Plus means that PNþ1
i increases depending on a value RN

i , and minus supplies the decay of RNþ1
i at increasing PN

i . Of course, one
have to make these interpretations after re-normalizing inverse to (2.2). In fact, the model is well-defined by virtue of the
normative denominators.

Theorem 2.1 (‘‘Plus–minus’’ model). The conflict dynamical system (2.1) given by the formulae (2.3) has three typical phases of
behavior.

The first phase (equilibrium point) is determined by the uniform distribution:

8N PN
i ¼ P=n; RN

i ¼ R=n; p ¼ ð1=n; . . . ;1=nÞ; r ¼ ð1=n; . . . ;1=nÞ: ð2:4Þ

However this equilibrium state is unstable.
The second phase (existence of the limiting fixed points) is stipulated by the condition: at least for one i

pi ¼ 0; ri – 0: ð2:5Þ

In this case the system trajectory converges to the limiting stable state

p1 ¼ lim
N!1

pN; r1 ¼ lim
N!1

rN; p1 ? r1; ð2:6Þ

which is invariant with respect to the conflict interaction.
The third typical phase (the quasi-chaotic behavior) occurs under the starting conditions

p – r; 8i; pi – 0; ri – 0: ð2:7Þ
At this phase each of coordinates pN

i ; rN
i i ¼ 1; . . . ;n oscillates between zero and one, in general case without any regular law.

Proof. In the case of uniform starting distributions of P, R along regions, Pi = P/n, Ri = R/n, "i, all coordinates of the stochastic
vectors p, r are equal: pi = ri = 1/n. Then it is easy to find that

ðp; rÞ ¼ 1=n ¼ zp;r ¼ zr;p:

Therefore due to (2.3) for all N we have pN
i ¼ rN

i ¼ 1=n. It proves that uniform starting distributions define the equilibrium
point for dynamical system (2.1). This state is unstable. An arbitrary small deviation e > 0 of any coordinate pi or ri from
1/n leads in time to greater deviations (see Lemma 2.2 below).

Let us prove (2.6) under condition (2.5). Here we introduce the value

hN :¼
X

i

pN
i rN

i ¼ ðpN; rNÞ

and call it the conflict index for dynamical system at moment N.
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Without loss of generality we assume that (2.5) is fulfilled for only single coordinate and all other ones, ri, pk–i, rk–i are
non-zero. Then, it follows from (2.3), we have to show that there exist the limiting vectors p1, r1 with coordinates:

p1i ¼ 0; r1i ¼ 1; p1k P 0; r1k ¼ 0; k – i:

Indeed, if pi = 0 and ri – 0, then due to 0 < h � h0 < 1 the sequence rN
i ¼ rN�1

i =ð1� hN�1Þ; N ¼ 1;2; . . . monotonically increases.
Thus, since rN

i < 1, there exists the limit r1i ¼ limN!1rN
i . That is, because rN

i ¼ ri �
QN

l¼11=ð1� hlÞ < 1, the convergence of rN
i

implies with necessity that the conflict index hN monotonically decreases. In fact hN ? 0. To see r1i ¼ 1 we prove that all
rN

k–i ! 0; N !1. Assume the opposite, i.e., that there exists at least single coordinate rN
k ; k – i which does not converge

to zero. Then, due to the conflict index hN ? 0, the coordinate pN
k have to come to zero. By (2.3) we have

pNþ1
k ¼ pN

k � 1þ rN
k

� ��
ð1þ hNÞ ! 0;

that is possible if only rN
k < hN , thus it is the contradiction. So rN

k ! 0. And by the same reason all other coordinates rN
k–i con-

verge to zero too. Therefore r1i ¼ 1. By similar way we obtain the existence of the limiting coordinates p1k ; k – i, which may
take any non-zero values given unit in a sum. It is evident due to h1 = 0 that p1\ r1 and therefore in the limiting state the
system reaches the stable equilibrium.

Let us consider the case of the third phase. We assume that vectors p, r are different and all starting coordinates are non-
zero. Then 0 < h < 1, the vectors p, r are not orthogonal. In particular, we exclude that pi = ri = 1 for some i. Let us show that in
such a case all coordinates oscillate inside open interval between zero and unit (without any evident pattern).

Our argumentation is based entirely on formulae (2.3). Take any couple of coordinates 0 – pi – ri – 0. Assume that in the
starting moment the inequalities

ri < pi < h ð2:8Þ

hold. We shall show that all other possible inequalities between rN
i ; pN

i ; hN will successively appear at some moments of
time. In the next we use the evident fact about the qualitative behavior of values hN; pN

i ; rN
i . Namely, by the definition of

the conflict index, hN ¼
P

ip
N
i � rN

i , its small changes are slower than changes of any fixed coordinate pN
i ; rN

i . Indeed, a finite
sum of the differential products DpiDri has the second power of smallness with respect to any separate differential Dpi or Dri.
In what follows we omit the time subscript N.

Directly from (2.8) by (2.3) it follows that pi decreases and ri increases. This leads with necessity to the transformation
(2.8) into the inequality

pi < ri < h: ð2:9Þ

Using again formulae (2.3) we check that the coordinate pi will be else decreasing, and ri – increasing. This is continued till
the moment when instead (2.9) appears the inequality

pi < h < ri: ð2:10Þ

In turn, again by formulae (2.3) the coordinate pi begins to grow due to (2.10), although ri is still increasing. This tendency
continue till the moment when the inequalities (2.10) change at

h < pi < ri: ð2:11Þ

We note, inequalities (2.11) do not imply the convergent to zero of the conflict index, i.e., the vectors p, r could not
become orthogonal.

By (2.10) the coordinate pi grows. It continues to grow after coming to (2.11), but ri begins to decay. This leads to the new
inequalities

h < ri < pi: ð2:12Þ

In turn, it follows that pi still grows, and ri continues to decay. On this way the inequalities

ri < h < pi ð2:13Þ

appear. The latter produce the decaying of pi and ri also decreases as at previous period. But these changes continue only till
the moment when (2.13) is replaced by the starting inequalities (2.8).

We note that the sequence of transformations from (2.8) to (2.13) are ordered and sometimes equalities may appear but
by (2.3) they pass into inequalities immediately at the next moment. Thus the full cycle of all possible inequalities between h,
ri, pi was realized.

By the way we observe that no one coordinate ri, pi, as well as the conflict index h could not go to zero closely. In
particular, for example, if (2.8) takes place then ri begins to grow. In general, as soon as some coordinate becomes smallest it
begins to increase with necessity that follows from (2.3).

It is not hard to see that for different couples ri, pi each inequality from (2.8)–(2.13) is fulfilled at various moments of time
and the corresponding transformations are not synchronous. That is why the existence of regular cyclic oscillations for the all
complex system in the considered situation is questionable. Therefore in this phase orbits of the system are similar to some
kind of the quasi-chaotic behavior.
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If one or several coordinates ri1
¼ � � � ¼ rim ¼ 0; 1 6 m < n, but all pi – 0, i = 1, . . . ,n, then it is easy to see that

pN
i1
; . . . ; pN

im
! 0, and residual coordinates have the quasi-chaotic behavior.

The proof will be completed if we prove that the equilibrium state (2.4) is not an one-point attractor (see Lemma 2.2
bellow). h

Lemma 2.2. An arbitrary small deviation from the equilibrium state (2.4) of the conflict dynamical system (2.1):

pi ¼ 1=n! p;e ¼ 1=nþ ei; ri ¼ 1=n! r;d ¼ 1=nþ di;
X

i

ei ¼ 0;
X

i

di ¼ 0;

automatically leads to the greater deviation at least for some coordinates:

ei ! e0i > ei; di ! d0i > di:

Proof. Proof is not trivial and here we present only its sketch. We need to analyze the dependence of values pN
i ¼ rN

i from
fixed deviations as N ?1. The linearization of (2.3) shows that the terms of the first order by ei, di expose the following
changes of deviations

ei ! e0i ¼ ei þ 1=ðnþ 1Þdi; di ! d0i ¼ di � 1=ðn� 1Þei:

These formulae are defined by the strictly positive definite matrix t with elements t11 = t22 = 1, t12 = 1/(n � 1), t21 = �1/(n � 1)
which does not depend on the starting deviation. By this reason the iteration of formulas (2.3) produce new deviations
increasing with N ?1, that one may check directly. h

Computer simulations also confirms that the equilibrium point is not stable.
In a general situation the above considerations exhibit the existence of infinite oscillations for non-zero coordinates.

Whether these oscillations may be cyclic? That is, whether the cycles have a finite number of steps? Apparently it is possible
under a certain starting connection between values of all coordinates. However, the existence of exact finite cycles in the
‘‘plus–minus’’ model is the open question until now.

The similar characteristic behavior has the conflict dynamical system with the bilateral interaction of ‘‘minus–plus’’ type
– the model which describes the evolution of biological species under influence of some infection (the viral environment).

In such a case we have to define a vector of an initial statistical distribution for a virus infection along regions Xi:

q ¼ ðq1; . . . ; qi; . . . ; qnÞ; qi :¼ Q i

Q
;

where Q ¼ Q 1 þ � � � þ Qn. Then the evolution changes of pN
i ; qN

i are governed by the formulae similar to (2.3):

pNþ1
i ¼ pN

i ð1� qiNÞ
zN

p;q
; qNþ1

i ¼ qN
i ð1þ piNÞ

zN
q;p

; ð2:14Þ

where normalizing denominators zN
p;q ¼ 1� ðpN;qNÞ; zN

q;p ¼ 1þ ðqN;pNÞ ensure that vectors pN, qN are stochastic. The oppo-
site signs in the numerators of (2.14) have now the following interpretation: minus means the decreasing of a biological pop-
ulation caused by infection, plus provides the growth of virus concentrations in regions with large local amount of biological
species. In fact, according to (2.14), the full amount of biological species and average virus concentrations are stable because
normative denominators zN

p;q; zN
q;p guarantee the non-annihilation of a population and the natural dissipation for bacteria. Of

course, the real quantitative changes of these substances in various regions are determined by (3.17) under the complex tri-
ple conflict interaction.

Let us now consider an abstract variant of the ‘‘minus–minus’’ model. It may be interpreted as a situation of conflict fight-
ing between couple of purely alternative opponents of type ‘‘infection–medicine’’. Shortly this alternative confrontation may
be written as ‘‘either–or’’ that describes a tendency to exclusion one to other from every region. In the terms of stochastic
vectors r, q the alternative interaction we represent by the following formulae:

qNþ1
i ¼

qN
i 1� rN

i

� �
zN

; rNþ1
i ¼

rN
i 1� qN

i

� �
zN

; ð2:15Þ

where a value of the normalizing denominator zN = 1 � hN strongly dependents of the conflict index hN = (qN,rN).

Theorem 2.3 (‘‘Minus–minus’’ model). Given a couple of stochastic vectors q; r 2 Rn
þ; n > 1 assume the conflict index h = (q,r)

satisfies the inequalities:

0 < h < 1:
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Then each trajectory of the conflict dynamical system

fqN; rNg!
>

fqNþ1; rNþ1g; q0 ¼ q; r0 ¼ r; N ¼ 0;1; . . . ;

generated by (2.15) goes with necessity to the equilibrium state:

q1 ¼ lim
N!1

qN; r1 ¼ lim
N!1

rN ;

which is a fixed point: q1 = q1 > r1, r1 = r1 > q1. Moreover, the limiting vectors are orthogonal q1\ r1, if q – r, and identical,
q1 = r1, if the initial vectors are equal q = r. In latter case the coordinates of limiting vectors are uniformly distributed:
q1i ¼ r1i ¼ 1=m, where m 6 n denotes the amount of non-zero initial coordinates.

For the proof see [12,13] and [14,15,2,3,7].
We remark that in [2] the formulae (2.15) was used for the construction of complex system which generalize the well-

known predator–prey model and is in fact some variant of the vector analog of Lotka–Volterra equations. Here we mention
the paper [5] where the idea of clusters (districts, regions) was also used in three-dimensional discrete-time Lotka–Volterra
models.

Recall, that here we construct the discrete time models. However, just below we exhibit a pair formulae with continuous
time:

_pðx; tÞ ¼ pðhþ rÞ
mp;r þ h

; _rðx; tÞ ¼ rðh� pÞ
mp;r � h

;

where p = p(x, t), r = r(x, t), x 2X denote the distribution densities of the corresponding substances and mp;r ¼ P � R; hðtÞ
¼
R

X pðx; tÞrðx; tÞdx. We plan to study these equations in consequent publications.

3. The conflict triad

We write the conflict dynamical system that describes the evolution of simultaneously interacting triple substances P, R,
Q as follows:

fPN;RN;Q Ng!
>

fPNþ1;RNþ1;Q Nþ1g; N ¼ 0;1; . . . ; ð3:16Þ

where the conflict map (composition)> is defined below by formulae (3.17) and (3.18). As above we assume that substances
P, R, Q have a common space of existence X, which is decomposed in a natural way into the finite set of separate regions,
X ¼

Sn
i¼1Xi; n P 2. The conflict triad is a complex system. It means that each substance has an inner structure:

P ¼ ðP1; . . . ; PnÞ; R ¼ ðR1; . . . ;RnÞ; Q ¼ ðQ1; . . . ;QnÞ;

where the elements Pi, Ri, Qi, i = 1, . . . ,n determine the proper quantitative description of the corresponding substances.
The investigated substances of conflict triad have different physical nature. That is why the concrete formulae of inter-

actions of every substance with a complementary pair, namely P with the pair {R,Q}, R with {P,Q}, and Q with {P,R} are
essentially different one from another. We represent the complete mechanism of interconnection that is contained in the
conflict composition > into two parts: formulae (3.17) which gives the algorithm of quantitative changes of absolute values
Pi, Ri, Qi in regions Xi and (3.18) which describes the statistical law of redistribution of occupation probabilities of regions Xi

by substances P, R, Q.
The evolution of quantitative regional changes for Pi, Ri, Qi is assigned by the equations:

PNþ1
i ¼

PN
i þ d1 RN

i � Q N
i

� �

ZN
P

;

RNþ1
i ¼ RN

i þ 1=d3 � QN
i =PN

i

ZN
R

;

Q Nþ1
i ¼

Q N
i þ d2 RN

i � Q N
i

� �

ZN
Q

; P0
i ¼ Pi R0

i ¼ Ri Q 0
i ¼ Q i N ¼ 0;1; . . . ;

ð3:17Þ

where parameters d1, d2, d3 > 0 characterize the rate of changes intrinsic to the real model. The normalizing denominators
ZN

P ; ZN
Q ; ZN

R ensure the stable global amount of the proper substance in the whole space X. Of course, the global amount of
every substance may be additionally changed by virtue of external circumstances, but we do not consider such influence.
Here, for the sake of simplicity we assume that the total quantitative characteristics for each of substances are unchanged
and therefore we may write:

P ¼
Xn

i

Pi ¼ PN; Q ¼
Xn

i

Q i ¼ QN ; R ¼
Xn

i

Ri ¼ RN; N ¼ 0;1; . . . :
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We interpret formulae (3.17) as follows: The quantitative growth of the biological species in Xi region on N + 1 step of the
conflict fight is proportional to amount PN

i at the previous moment of time and to the difference values with some coefficient
of the vital resource RN

i and the factor of elimination threats Q N
i . At some moment of time N it may happen that above dif-

ference has negative value. Then PN
i will decrease quickly enough. However, such period of development has to be short.

Otherwise, the system will be destroyed and loses its physical sense, for example, if some of coordinates PN
i ; QN

i ; RN
i becomes

negative. Similarly, we interpret the dependence of QN
i from the same difference, but with another coefficient. In turn the

quantitative changes of the vital resource RN
i are very sensitive to the relative density of threat for existence of biological

population QN
i =PN

i . In real models the coefficient d3 is small. We note that formally, according to numerators in formulae
(3.17) all coordinates are increasing. Nevertheless due to the normalizing denominators the dissipation process courses. This
automatically provides the decreasing of all values PN

i ; RN
i ; Q N

i at each step of the conflict fight. Of course, the concrete char-
acter of interdependencies, their physical interpretation, and the role of parameters is determined by the model of research.

The second part of our mechanism of the conflict interaction > has purely probabilistic inter-regional character. To write
it in the mathematical terms it is necessary to transfer the vectors P, R, Q into stochastic ones:

p ¼ ðp1; . . . ;pnÞ; r ¼ ðr1; . . . ; rnÞ; q ¼ ðq1; . . . ; qnÞ;

where the coordinates

pi :¼ Pi=P; ri ¼ Ri=R qi :¼ Qi=Q ; i ¼ 1; . . . ;n

have a sense of probabilities to find the corresponding substance P, R or Q in ith region. In other words they are the occu-
pation probabilities of Xi by P, R, Q. In the course of interactions the redistribution of these probabilities takes place. The law
of these changes is determined by the following formulae. They are some statistical variants of Lotka–Volterra discrete time
equations [10,11] (c.f. with [13]):

pNþ1
i ¼

pN
i 1þ a rN

i � qN
i

� �� �
zN

p
;

rNþ1
i ¼

rN
i 1� cpN

i � bqN
i

� �

zN
r

;

qNþ1
i ¼

qN
i 1þ c�1pN

i � brN
i

� �

zN
q

; p0
i ¼ pi; r0

i ¼ ri; q0
i ¼ qi; N ¼ 0;1; . . . ;

ð3:18Þ

where parameters a, b, c > 0 characterize the intensity of the conflict redistribution.
So the first of these formulae shows that the statistical redistribution for the population substance P is maximal in the

region with the highest probability to find the vital resource and the lowest threat to existence. In turn the second formula
implies the decreasing of a probability to find the vital resource R in a region where the biological population is large (be-
cause the later utilizes the vital resource) and there is a high statistical infection concentration Q. Finally, according to the
third formula in (3.18) the probability of the infection threat (for the population existence in i-th region) increases together
with growing of population and decreases under action of the vital resource as an alternative substance. The denominators in
(3.18) provide that all vectors pN ¼ pN

1 ; . . . ; pN
n

� �
; rN ¼ rN

1 ; . . . ; rN
n

� �
; qN ¼ qN

1 ; . . . ; qN
n

� �
; N ¼ 1;2; . . . have unite norms.

To complete the definition of the conflict map > , it is necessary to fulfill the re-normalizing of the vectors pN+1, rN+1, qN+1

after using the formulae (3.17) and (3.18). It means transferring to the final quantitative values of substances P, Q and R at
each (N + 1)th step:

PNþ1
i ¼ pNþ1

i � P; Q Nþ1
i ¼ qNþ1

i � Q ; RNþ1
i ¼ rNþ1

i � R: ð3:19Þ

Thus, the conflict composition as a map > in (3.16) that generates the dynamical system of conflict triad is entirely deter-
mined by formulas (3.17)–(3.19).

In the present work we made in fact only the first attempt to construct and analyze the simplest computer models of the
conflict triad. However even this activity finds out the series of interesting observations usually inherent to complex systems.
In particular, we establish the existence of fixed points (which are attractors), the existence of the stable limiting equilibrium
states, the appearance of cyclic orbits, which are attractors too, the critical bifurcation points, the oscillating trajectories
without an evident law of behavior, most similar to quasi-chaotic. So, we hope, the subsequent research will lead to series
of more deep results and useful applications.

3.1. Computer models. The equilibrium state

Due to formulae (3.17)–(3.19) the conflict triad is the highly complex system. That is why the question of existence of its
state in which the appropriate substances are situated in the equilibrium balance does not have an obvious answer. In phys-
ical reality we usually observe that complex systems possess such states as a rule. We mean the existence of the dynamical
equilibrium in a complex picture of the interaction process between opponents with contradict tendencies when the various
alternative substances coexist. We remark that the presence of such state does not follow straightly from Theorems 3.1 and
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3.2 ensuring the conditions for existence of the equilibrium states. However one can conjecture about the possible mutual
compensation of oscillations which inherent to the models with bilateral ‘‘plus–minus’’ interaction. It has to lead to stabil-
ization and to the equilibrium state as soon as the limiting compromise distributions exist. Some analogs of such state are
found in Theorem 3.2 for ‘‘minus–minus’’ models.

Theorem 3.1. The conflict triad dynamical system (3.16) defined by (3.17)–(3.19), under the condition that all starting
coordinates are non-zero, possesses the equilibrium state. This state is determined by the fixed point with coordinates
Peq

i ; Req
i ; Qeq

i ; i ¼ 1; . . . ;n which are equal to the arithmetic mean values of starting amounts of substances P, R, Q in regions Xi.

Proof. By virtue the assumption that global amounts P, R, Q are constant, the coordinates of any vector P, R, Q cannot
increase or decrease simultaneously. So, if we assume that at least one of coordinate is changed, for example, becomes big-
ger, then there exists another one which will decrease with necessity. However it is impossible since by (3.17)–(3.19) these
formulae are symmetric with respect to permutations of indices and therefore all coordinates have the same rights for
changes. Thus, the state with

Peq
i ¼ 1=n

Xn

k¼1

Pk; Req
i ¼ 1=n

Xn

k¼1

Rk; Qeq
i ¼ 1=n

Xn

k¼1

Q k; i ¼ 1; . . . ;n ð3:20Þ

is fixed. h

Surely the above Theorem 3.1 has the computer illustration. If in the concrete model one put the starting coordinates Pi,
Ri, Qi of vectors P, R, Q equal to middle-arithmetic value Peq

i ; Req
i ; Q eq

i , then they do not change for any N P 1. Thus, the cor-
responding state of the system is equilibrium.

3.2. The equilibrium state is stable

The fixed point from Theorem 3.1 is in fact an one-point attractor. This result we formulate as follows:

Theorem 3.2. The equilibrium state of the conflict triad dynamical system (3.16) which is determined by the arithmetic mean
values of the coordinates Peq

i ; Req
i ; Qeq

i ; i ¼ 1; . . . ;n (see (3.20)) is an one-point attractor.

Here we do not cite the formal mathematical proof of this theorem, but only the computer illustration.

Example 1. Consider the case with four regions, i.e., the number of coordinates n = 4. Let us choose the following meanings
of parameters in formulas (3.17) and (3.18):

d1 ¼ d3 ¼ 0:09; d2 ¼ 0:01; a ¼ 0:1; b ¼ 0:6; c ¼ 0:1:

Note that these values are guessed ‘‘by hands’’. Under their unreasonable replacement, the model can ‘‘fall into pieces’’ (in
particular, some coordinates will go to infinite or become negative). Further, let the population of biological species at initial
moment of time has the following quantitative distribution along regions:

P1 ¼ 9000; P2 ¼ 5000; P3 ¼ 2000; P4 ¼ 12000:

We put the distributions of the vital resource and the infection density to be essentially smaller:

R1 ¼ 30; R2 ¼ 80; R3 ¼ 50; R4 ¼ 10; Q 1 ¼ 5; Q 2 ¼ 1; Q 3 ¼ 2; Q4 ¼ 4:

The direct analysis of this computer model confirms Theorem 3.2. We test the behavior of all coordinates to N = 2000 step.
We observe, they demonstrate the following features. Each coordinate of all three vectors goes to an appropriate value when
N ? 2000. In the phase spaces we get the perfect spirals which twist to the equilibrium point: Peq

i ; Req
i ; Qeq

i ; i ¼ 1; . . . ;n with
the arithmetic mean values of the initial dates.

It is important, that in the phase spaces PN
i ;R

N
i

� �
and PN

i ;Q
N
i

� �
we get different spirals which twist in the opposite direc-

tions to points (7000,42.5) and (7000,3), respectively. We remark that values PN
i ; RN

i and QN
i oscillate for a long time. They

simultaneously approach under N ? 2000 to the fixed means P1i ¼ 7000; R1i ¼ 42:5 and QN
i ¼ 3 which exactly are the mid-

dle values by regions of the starting distributions of the proper substances (see Figs. 1 and 2).
Considering of numerous examples, in particular, varying the values of the initial coordinates demonstrate the stable

character of the equilibrium state. No doubt, the state of the conflict triad defined by the middle-arithmetic values is attrac-
tive for all trajectories close to this state. Thus, the proper point is a local attractor. Moreover, even large enough change of
coordinates for the vector of biological populations (for example, the replacement P1 = 9000 by P1 = 900) does not destroy the
attracting property to the equilibrium state.
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3.3. Cyclic attractors

The equilibrium state from the previous example (the locally stable fixed point) is not a global attractor. In particular, this
state is vanished under the large enough change of single coordinate of the vector that corresponds to an epidemic infection.
Of course, under any small variations of coordinates, the system does not leave the attracting phase to the equilibrium state.
Nevertheless, the replacement Q2 = 1 by Q2 = 4 transforms our system into another behavior phase. We observed, in partic-
ular, the phase of attraction to the cyclic orbit. Under the change mentioned above all coordinates are not attracted to a fixed
point (the equilibrium state) but approximate a cyclic trajectory. For more details, let us analyze the following example.

Example 2. The loss of the equilibrium state (a stable fixed point) may take place under some changing of the initial
coordinates and even only one of them.

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
2.990

2.992

2.994

2.996

2.998

3.000

3.002

3.004

3.006

3.008

3.010

Fig. 1. The equilibrium fixed point in the phase space PN
1 ;Q

N
1

� �
.

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
42.35

42.40

42.45

42.50

42.55

42.60

42.65

42.70

Fig. 2. The equilibrium fixed point in the phase space PN
1 ;R

N
1

� �
.

2926 V. Koshmanenko, I. Samoilenko / Commun Nonlinear Sci Numer Simulat 16 (2011) 2917–2935



Author's personal copy

In particular, even changing of the initial values of any substances. So, replacing R2 = 80 by R2 = 40 we obtain the

appearance of the cyclic attractor in the phase spaces PN
i ;R

N
i

� �
and PN

i ;Q
N
i

� �
(see Fig. 3). That is, they are achieved quickly

enough, already at N = 400 step. It is interesting that cyclic oscillations of PN
i ; RN

i and QN
i take place around points which are

shifted with respect to the arithmetic mean values of the initial coordinates (see the previous example).
How to explain this shift? There are also additional questions. For example, why a decrease of full mass of vital resource

(from 170 to 130) leads also to passing of the system into the new phase? It is not attracted already by the fixed point. The
evolution trajectory of the conflict triad approximates the cyclic orbit. They are attracted rather quickly to a cycle of the egg-
like form. That is, in the limit all trajectories oscillate around fixed points which are shifted in comparison with the initial
mean values. All these questions are open problems, although in [2] we made attempts to give some interpretations to the
phenomena mentioned above.

5500 6000 6500 7000 7500 8000 8500 9000 9500
0

1

2

3

4

5

6

7

8

Fig. 3. The cyclic attractor in the phase space PN
1 ;Q

N
1

� �
.

2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

Fig. 4. The almost square attractor in the phase space PN
2 ;Q

N
2

� �
.
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Example 3. The exponential increasing of the initial coordinates Qi causes the appearance of almost square attractor in the
phase space (see Fig. 4). That is, Qi oscillates from zero to the maximal value, nearly 120 (see Fig. 5). In particular, the replace-
ment Q2 = 10 by Q2 = 100 induced the oscillations of large amplitude, up to 200! (see Fig. 6). In the same time the coordinates
of resource vector RN

i have periodic oscillations without achievement of the absolute maximum.

These observations confirm an interesting practical effect. The substance which corresponds to negative threats (an
epidemic infection) has large influence to the behavior of biological population. So, the relatively small increase of initial
values of coordinates Qi substantially multiplies the negative effect on other substances. Thus, the increasing of threats
presses not only to the existence of biological population, but also at the resource environment. In particular, it makes
impossible the achievement of maximal values by them (see Fig. 7).

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

Fig. 5. The oscillation view of a virus QN
2 .

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

Fig. 6. The oscillation view of a virus at Q1
2 ¼ 100.
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3.4. The wave of cyclic attractors

This phenomenon arises up under a certain increasing of parameters d1, d2, d3. We represent it at Fig. 7 where few cycles
are observed and they imposed one at another. These cycles have different periods. In this case the trajectories are approx-
imated consecutively to one of cyclic attractors, but only for some time. We call this picture the wave of cyclic attractors.
Note that similar behavior of complex biological dynamical systems appear in practical situations, for example, in a case with
several epidemic sources.

The cyclic attractors for orbits can have not only egg-like shape, but also considerably more difficult geometrical struc-
tures (see Fig. 8). In particular, the cyclic attractor similar to the Carno-cycle (see Fig. 9) describes the behavior of a pair
‘‘virus-resource’’. It has close analogy with work of a move aggregate that consumes a certain resource, but survives resis-
tance and have to come back at the starting position.

0 10 20 30 40 50 60 70 80 90 100
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Fig. 8. The multi-dimensional attractor in the phase-space PN
4 ;Q

N
4

� �
ðd1 ¼ 0:001; d2 ¼ 0:000001; d3 ¼ 0:0012; a ¼ 0:1; b ¼ 0:6; c ¼ 0:1; P1 ¼ 9000;

P2 ¼ 5000; P3 ¼ 2000; P4 ¼ 5; Q1 ¼ 50; Q2 ¼ 2; Q3 ¼ 1; Q4 ¼ 40; R1 ¼ 30; R2 ¼ 40; R3 ¼ 50; R4 ¼ 10Þ.
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Fig. 7. The periodic oscillation of the resource coordinate for Q1
2 ¼ 100.
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3.5. The quasi-chaotic behavior

At the computer model that corresponds to Fig. 8 we observe an obvious evolution non-balanced for biological population
and infection, we call this dynamical phase as the quasi-chaotic behavior. Thus, any regularity is absent here and one cannot
find even a slightly noticeable low in the behavior. We may find some analogy with a chronic hidden disease, that is healed,
but not cured. It increases non-periodically but does not reach a critical stage in an organism which passed some threshold in
its development. In this situation it is impossible to go back to the state of attracting to a stable point of equilibrium without
external influencing (see Fig. 10).

Here some comparison with the basic epidemic model (SIR-model) is relevant (for details see Lect. 4 in [8], Section 10 in
[22], and Section 13 in [23]). The main result is known as the threshold condition: S > a

r ¼ q (see Introduction). An epidemic
occurs in this model, if S > q. Addition of the terms dRI and �dRI to S and I, respectively, leads the population and infection to

5 10 15 20 25 30 35 40 45
0
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30

40

50

60
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80

90

100

Fig. 9. A Carno-type cycle in the phase-space RN
2 ;Q

N
2

� �
(with d3 = 0.0017).
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Fig. 10. Several attracting sets with overlapping basins for PN
1 ;Q

N
1

� �
ðd1 ¼ 0:95; d2 ¼ d3 ¼ 0:01; a ¼ 0:1; b ¼ 0:6; c ¼ 0:1; P1 ¼ 9000; P2 ¼ 5000; P3 ¼ 2000;

P4 ¼ 12000; Q1 ¼ 5; Q2 ¼ 1; Q3 ¼ 2; Q4 ¼ 4; R1 ¼ 30; R2 ¼ 40; R3 ¼ 50; R4 ¼ 10Þ.
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possible flips from one behavior mode to another depending on particular conditions. Changing the parameter d from an
appropriate negative to positive value one can observe appearance of bifurcation zones.

In our approach the existence space of the model is not single, like in the SIR-model, but is split into several regions. The
evolution inside each region is only partially similar to the one in SIR-model. The terms of type ±dRI appear in some regions
due to permanent transmission of the opposite species from the places with their high concentration. Namely, the migration
is caused by the probability normalization, plays an important role and produces more flexible passage from one phase to
another. Indeed, in our model a version of the above threshold condition is fulfilled in different regions in various time. It
means, in particular, that a fixed infection may be absent in most of regions but there is only a single one with strong epi-
demic tendency.

Fig. 11. a = 0.1.

Fig. 12. a = 0.115.
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Of course, we cannot use the well-known tools (the Poincare’-Bendixson and Hoph theorems) to find limit cycles, their
amount, bifurcation points, lines, and their forms since our system is essentially multi-dimensional. We observe all these
phases in the computer simulation only and until now any precise results in this direction is absent.

More deep analysis of our model shows the presence of bifurcation points in some zones of phase space. Depending on
parameters d1, d2, d3 and a, b, c and initial values of coordinates, the evolution of the whole system may sharply change its
direction passing bifurcation point and can even not reach the equilibrium state. In more details, under increasing of one of
the parameters a, b, c the model passes through all possible phases: from the equilibrium to cyclic orbits of various periods,
then quasi-chaotic behavior (a non-periodic oscillation without any obvious law) which has tendency to chaos, then some
kind of fuzzy cycles appears, and finally the model comes to collapse. To illustrate the behavior described we use the model
with the following characteristics: d1 = 0.09; d2 = 0.01; b = 0.6; c = 0.1, initial conditions: P1 = 7000; P2 = 9000; P3 = 5000;

Fig. 13. a = 0.12.

Fig. 14. a = 0.15.
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P4 = 7000; Q1 = 3; Q2 = 3; Q3 = 3; Q4 = 3.3; R1 = 45.5; R2 = 40.5; R3 = 40.5; R4 = 45.7 (see Figs. 11–18). This evolution of stages
one can be observed when a changes between 0.071 and 1.0821 and b, c from 0 to 3–4.

As for parameters d1, d2, the dependence has the inverse character. For d1 on the segment (0,380) the model passes from
the cyclic phase to the quasi-chaotic behavior, then again cycles appear, further the equilibrium state, and finally all ampli-
tudes fall to zero, any oscillations are absent, the freezing point occurs. The similar picture holds for d2 at the interval from 0
to 0.0112. Surely, bifurcation points and thresholds exist between different phases. It is the non-trivial problem to find their
exact values. This problem has to be solved for every real model separately.

4. Discussion

The main result of our work consists in the construction of complex models which demonstrate the presence of all basic
phases for coexistence of typical conflict triad substances: the state of dynamical equilibrium (a stable fixed point), the phase

Fig. 15. a = 0.2.

Fig. 16. a = 0.3.
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of the limit cyclic attractors (trajectories with periodically pulsating evolution for each of substances), the area of bifurcation
points, that corresponds, in particular, to series of the extremely complex behaviors with transitions between some cascade
of cyclic attractors, and finally, the phase close to chaotic which we call the quasi-chaotic behavior. All these phases for coex-
istence of conflict substances one can meet rather often in reality. So, the state of dynamical equilibrium is typical for the
simultaneous coexistence of different kinds of bacteria inside a living creature, when the highly dangerous microbes exist
in a healthy organism but do not exceed a critical concentration and cause obvious rejections (that is an ordinary dynamical
equilibrium). Although the considerable enough external impact is able to violate such equilibrium state and to result in cre-
ation of priorities to some kind of bacteria and symptoms of a certain illness. Other typical phase, the cyclic attractors, ob-
served, for example, when the season (cyclic) flu epidemics are caused by exhausting of the valuable vital resources and by a

Fig. 17. a = 1.

Fig. 18. a = 1.06.
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too much concentration (an overpopulation) of biological species in some regions. This phase is character of most oscillating
processes in our reality.

Certainly, the phases and states of the dynamical systems of conflict triad mentioned above appear only under appropri-
ated values of parameters and starting coordinates. In the majority of situations we observe an extremely complex, some-
times practically chaotic behavior of our system. This all means that the theory developed here is in fact only an introduction
to study of the conflict triad by the regional approach method. Of course, it can be applied as a research instrument for con-
crete tasks in conflicts with triple opponents.

It is important that our model in concrete settings allows to determine the probability of infection for considered biolog-
ical species by an epidemic disease in each separate region of common space of existence. We recall that a key point of our
constructions is a natural division of the whole territory of existence X onto a set of regions Xi, i = 1, . . . ,n with studying of
the local process of conflict interactions. Thus, the complete picture of dynamical changes takes into account redistribution
and migration processes between regions, both for biological species and for infections. In essence, a model gives not only
the statistical picture of distributions but also the quantitative characteristics for each of interacting substances in regions at
discrete time. It is possible to provide the prediction and information about the power of infection risk, periods of relative
safety and picks of sharp growth of the infection density (epidemic) using the model. Besides, it is also possible to pick re-
gions with relative stability or opposite ones with biggest growth of disease.

Finally we remark that it is possible to watch for sizes of relations such as RN
i =PN

i ; QN
i =PN

i which make sense of distribution
densities of positive vital resources and threats of infection for existence of biological species in Xi region. These sizes are
important at the decision making problem for safe of existence of biological species in a fixed region. The error of uncertainty
of such decisions depends on the range of changes for parameters d1, d2, d3, a, b, c which are controlled by external factors
with respect to the system.

We hope that the dynamical model of conflict interaction between triple intrinsic elements offered here may be used as a
flexible tool in the problem of practical forecasts. Among important dynamical parameters one can take such ones: the speed
of reproduction and spread of infection, their density and the local concentration, the rates of migration between regions and
so on.
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