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We discuss a new approach in singular perturbation theory which is based on the method
of rigged Hilbert spaces. LetA be a self-adjoint unbounded operator in a state spaceH0 and
H− = H0 = H+ be the rigged Hilbert space associated withA in the sense that domA = H+

in the graph-norm. We propose to define the perturbed operatorÃ as the self-adjoint operator
uniquely associated with a new rigged Hilbert spaceH̃− = H0 = H̃+ constructed using a given
perturbation ofA. We show that the well-known form-sum and self-adjoint extensions methods
are included in the above construction. Moreover, we show that the super singular perturbations
may also be described in our framework.
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1. Introduction
Let A = A∗ ≥ 1 be an unbounded self-adjoint operator in a Hilbert spaceH0

with the inner product(·, ·)0. And let

H− = H0 = H+ (1.1)

be the rigged Hilbert space associated withA in the sense that the domain
DomA = H+ in the graph-norm. Here the symbol= means dense and continuous
embedding. We note that a given pre-rigged pairH0 = H+ of the Hilbert spaceH−

is uniquely defined as the conjugate space toH+ with respect toH0 (for details
see [8, 9]).

Besides the triplet (1.1) we will use also the chain of five spaces

H− = H−1 = H0 = H1 = H+, (1.2)

[227]
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where H1 = DomA1/2, and H−1 is the completion ofH0 in the norm ‖ · ‖−1 =
‖A−1/2 · ‖.

Given A = A∗, another self-adjoint operator̃A in H0 is said to be a purely
singular perturbation ofA if the set

D := {f ∈ DomA ∩ DomÃ : Af = Ãf } is dense in H0 (1.3)

(see [3, 5, 15–17, 20–30]). Under condition (1.3) we writeÃ ∈ Ps(A) if Ã is
bounded from below. We writeÃ ∈ Pws(A) if DomA1/2 = DomÃ1/2 (ws means
weakly singular, i.e. a perturbation belongs to theH−1-class), andÃ ∈ Pss(A) if
the setD is dense inH1 (ss stands for strongly singular, i.e. a perturbation belongs
to the H−2-class). ThusPs(A) = Pws(A) ∪ Pss(A).

It is clear that for eachÃ ∈ Ps(A) there exists a densely defined symmetric
operator

Å := A|D = Ã|D

with nontrivial deficiency indicesn±(Å) = dim ker(Å∓ z)∗ 6= 0, Imz 6= 0. Therefore
each Ã ∈ Ps(A) may be defined as a self-adjoint extension ofÅ, different fromA.
In singular perturbation theory each̃A is fixed by some abstract boundary condition,
which corresponds to a singular perturbation. In turn a singular perturbation is
usually presented by a singular quadratic formγ given in the rigged Hilbert space
(1.1).

In the present paper we propose to use a singular quadratic form γ (corresponding
to a perturbation) for the construction of a new chain of Hilbert spaces similar to
(1.2),

H̃− = H̃−1 = H0 = H̃1 = H̃+, (1.4)

and then to define the perturbed operatorÃ as an operator associated with this new
rigging (1.4).

In the paper, see below Theorem 5.1, Theorem 5.2, Theorem 6.1, and Theorem 7.1
we establish a one-to-one correspondence between three families of objects: singular
perturbationsÃ ∈ Pss(A), rigged Hilbert spaces of the form (1.4), and singular
quadratic formsγ with fixed properties. We extend this one-to-one correspondences
to a more general set of objects involving super singular perturbations.

2. Singular quadratic forms in A-scales

Let A ≥ 1 be a self-adjoint unbounded operator in a separable Hilbert space
H0 which is equipped in such a way that the domain DomA = H+ in the norm
‖ · ‖+ := ‖A · ‖ (see (1.1)).

In the paper we discuss a new construction of singularly perturbed operatorÃ
in H0. Namely, we defineÃ as the operator associated with a new rigged Hilbert
space H̃− = H0 = H̃+, where H̃+ = D(Ã). The inner product(·, ·)∼+ in H̃+ is
defined as a perturbation of the inner product(·, ·)+ in H+. Formally one can write
(·, ·)∼+ = (·, ·)+ + γ (·, ·), where the formγ corresponds to a singular perturbation.
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Respectively the spacẽH− is the completion ofH0 in the inner product of a form
(·, ·)∼− = (·, ·)− + τ(·, ·), where (·, ·)− denotes the inner product inH− and τ(·, ·)
stands for the symmetric singular quadratic form which is defined by γ (see below).
The construction ofH̃− and H̃+ by a given singular perturbationγ is one of the
main problems which we solve in the paper.

We show also that our method includes the usual well-known approaches in the
singular perturbations theory [2, 6, 25].

We start with recalling standard constructions connected with the rigged Hilbert
spaces [8, 9] (see also [1]) and some definitions concerning the singular perturbation
theory [2, 6, 7, 12, 19, 30] and singular quadratic forms [3, 13–20, 22, 23, 25, 27].

We remind that givenA = A∗ ≥ 1 the domain DomA ≡ H+ is a complete
Hilbert space with respect to the inner product(·, ·)+ := (A·, A·)0. Let H− be the
space conjugate toH+ with respect toH0. Then we get the triplet of continuously
and densely imbedding of spaces

H− = H0 = H+, (2.1)

called the rigged Hilbert space associated withA.
In the same way one can construct theA-scale of Hilbert spaces

· · · = H−k = H0 = Hk = · · · , k ≥ 0, (2.2)

where Hk ≡ Hk(A) = DomAk/2 in the inner product(·, ·)k := (Ak/2·, Ak/2·)0. So
(·, ·)2 = (·, ·)+ and (·, ·)−2 = (·, ·)−. Let D−k,k : Hk → H−k denote the canonical
identification operator,

〈D−k,kϕ,ψ〉−k,k = (ϕ, ψ)k, ϕ, ψ ∈ Hk,

where 〈·, ·〉−k,k stands for the dual inner product betweenH−k and Hk. Using
the invariance property of the scale (2.2) with respect to the shift one can easily
construct the canonical identification operatorDl,k : Hk → Hl for a couple of spaces
Hk, Hl, k, l ∈ R.

We write Ik,l for D−1
l,k . Clearly, Ik,l is the unitary operator mappingHl onto Hk.

THEOREM 2.1. In the above notation the following mappings define the same
operator Ak/2, k > 0 in H0:

(a) D0,k ≡ Ak/2,
(b) D−k/2,k/2 | {f ∈ Hk/2 | D−k/2,k/2f ∈ H0} ≡ DomAk/2,
(c) D−k,0 | {f ∈ H0 | D−k,0f ∈ H0} ≡ DomAk/2,
(d) A−k/2 = I0,−k | {ω ∈ H−k | I0,−kω ∈ Hk} ≡ H0, I0,−k := D−1

−k,0 : H−k → H0.

In particular,

D0,2 = A = D−1,1|{f ∈ H1 | D−1,1f ∈ H0} = D−2,0|{f ∈ H0 | D−2,0f ∈ H0}

and
A−1 = I0,−2|{ω ∈ H−2 | I0,−2ω ∈ H0}.

In what follows we will use the notationA := D−2,0, which is the closure of
the operatorA as a mapping fromH0 to H−2.
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We remind, for example, that the well-known Sobolev scale ofspaces

W−k
2 (Rd) = L2(R

d) = W k
2 (R

d), k > 0,

is associated with the operatorA = −1+1, where1 denotes the Laplacian onRd . In
particular, for k = 2 the canonical identification operatorD0,2 : W 2

2 (R
d) → L2(R

d)

exactly coincides with−1 + 1 if the norm in W k
2 (R

d), k > 1, is defined as
‖ϕ‖k := ‖(−1+ 1)k/2ϕ‖L2.

To develop a new point of view about the construction of singularly perturbed
operators by the method of the rigged Hilbert spaces we need to recall the additional
definitions on singular quadratic forms and operators in theA-scale of spaces (for
more details see [13, 21, 22, 24]).

A positive quadratic formγ in an abstract Hilbert spaceH is said to be singular
if it is nowhere closable. Precisely this means that

∀ϕ ∈ H, ∃ ϕn ∈ Domγ such thatϕn → ϕ in H and γ [ϕn] → 0, (2.3)

where γ [ϕ] = γ (ϕ, ϕ). Obviously a formγ is singular inH if the set

Kerγ := {ϕ ∈ Domγ | γ [ϕ] = 0} is dense inH. (2.4)

In other words, (2.4) gives a simple sufficient condition forthe singularity of a
positive quadratic form inH.

We say that a symmetric not necessarily positive quadratic form γ is singular
in H if (2.4) holds.

In the same way one can introduce a notion of singular operator. A linear
densely defined operatorS is said to be singular inH if

∀f ∈ H, ∃fn ∈ DomS such that fn → f and Sfn → 0 in H.

In what follows we use operatorsS acting from Hk to H−k, k ≥ 1, such that
KerS < H0. Therefore theseS are singular inH0.

We say that a Hermitian formγ is regular inH if it is bounded from below
and closed. Each regular quadratic form is associated with alower semi-bounded
self-adjoint operator [18]. This connections may be extended to the wide class of
singular quadratic forms and operators considered in theA-scale (2.2).

For a densely defined symmetric quadratic formγ in H0 we say thatγ belongs
to the H−k-class with some fixedk ≥ 1 if two conditions are fulfilled:
(1) γ is bounded onHk, Domγ = Hk,
(2) γ is singular inHk−1, Kerγ < Hk−1.
Directly from this definition we obtain the following result.

THEOREM 2.2. Each quadratic formγ of the H−k-class (γ is singular in H0 !)
admits the operator representation,

γ (ϕ,ψ) = 〈Sϕ,ψ〉−k,k, ϕ, ψ ∈ DomS = Hk, (2.5)

where the associated operatorS : Hk → H−k may be written in the formS = Aks,
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where s denotes a bounded self-adjoint operator inHk such that

Kers = KerS = Kerγ < Hk−1.

EXAMPLE 2.1. Rank one singular quadratic forms.

Consider in (2.1) a fixed vectorω ∈ H−\H0 and define the operatorS acting
from H+ to H− according to

Sϕ = 〈ϕ, ω〉+,−ω, ϕ ∈ H+ = DomS.

Clearly S is a singular rank one operator inH0 since the set

KerS = {ϕ ∈ H+ | 〈ϕ, ω〉+,− = 0}

is dense inH0 due toω /∈ H0. The quadratic form associated with this operatorS
has the form

γω(ϕ, ψ) := 〈ϕ, ω〉+,−〈ω,ψ〉−,+ = 〈Sϕ,ψ〉−,+ = 〈A2sϕ,ψ〉−,+ = (sϕ,ψ)+,

where the rank one operators acts in H+ as follows,

sϕ = (ϕ, η+)+η+, with η+ := A−2ω.

Clearly, that γω belongs to theH−2-class, if ω ∈ H−\H−1, since then Kerγω is
dense inH1, and γω ∈ H−1-class, if ω ∈ H−1\H0.

In the more general case whereω ∈ H−k\H−k+1, k > 2, the singular quadratic
form

γω(ϕ, ψ) := 〈ϕ, ω〉k,−k〈ω,ψ〉−k,k, ϕ, ψ ∈ H−k

has a similar representation:

γω(ϕ, ψ) = 〈Sϕ,ψ〉−k,k = 〈Aksϕ,ψ〉−k,k = (sϕ,ψ)k.

Here sϕ = (ϕ, ηk)kηk, with ηk := A−kω. Now the formγω belongs to theH−k-class
since ω /∈ H−k+1 and therefore the set Kerγω is dense inHk−1.

EXAMPLE 2.2. Finite rank singular quadratic forms.

Let the vectorshi ∈ H0, i = 1, . . . , n < ∞ be orthogonal and satisfy the condition

span{hi} ∩ DomA = {0}.

Then the operatorS of rank n defined as follows:

Sf =

n
∑

i=1

(Af, hi)0Ahi =

n
∑

i=1

〈f, ωi〉+,−ωi, f ∈ H+ = DomS, ωi := Ahi,

is singular in H0 since KerS is obviously dense inH0. The quadratic form
γ [f ] := 〈Sf, f 〉−,+ belongs to theH−2-class if span{hi}∩DomA1/2 = {0}. However,
if all hi ∈ DomA1/2 then this form belongs to theH−1-class.

In the general case we have (cf. with [3, 13]) the following result.
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THEOREM 2.3. Let γ be a Hermitian bounded quadratic form inHk, k > 1. Set

Mk := Kerγ and Nk = Hk ⊖ Mk.

Then γ ∈ H−k-class iff

N−k ∩ H−k+1 = {0}, where N−k := AkNk.

Proof: This follows from Theorem A1 (see [3]) since

Mk < Hk−1 ⇔ N−k ∩ H−k+1 = {0}. 2

3. On rigged Hilbert spaces associated with singular perturbations

Let
H− = H0 = H+ (3.1)

be the rigged Hilbert spaces associated with a self-adjointoperator A ≥ 1 in
H0. We recall thatH+ = DomA in the graph-norm ofA. Let Ã ∈ Ps(A) be
a singular perturbation ofA. We will assume thatÃ ≥ 1. In other case, i.e. if
Ã ≥ m > −∞, m := infσ(Ã) < 1, we take the operator̃Am−1 := Ã+ (m−1)1 ≥ 1
to play the role ofÃ, where1 stands for the identical operator. With each operator
Ã there is associated a new rigged Hilbert space

H̃− = H0 = H̃+ (3.2)

constructed by the standard methods usingÃ (see [8, 9]).
In this section we study the structure of (3.2) in terms of singular perturbations.
By the assumption thatÃ ≥ 1 the spaceH̃+ coincides with DomÃ endowed

with the inner product(f, g)∼+ = (Ãf, Ãg)0. Thanks to Ã ∈ Ps(A) there exists a
linear setD dense inH0 and such that

(f, g)+ = (f, g)∼+, f, g ∈ D. (3.3)

Thus, the setD consists a proper subspace in each of the spacesH+, H̃+:

H+ = M+ ⊕ N+, H̃+ = M̃+ ⊕ Ñ+, (3.4)

where just due to (3.3) we can write

M+ = M̃+ = D < H0. (3.5)

From (3.4) and (3.5) it follows that

H0 = M0 ⊕ N0, where M0 = AM+ = ÃM+, N0 = AN+ = ÃÑ+. (3.6)

Now we establish some more complete connections between (3.1) and (3.2).

PROPOSITION 3.1. Given two rigged triplets(3.1) and (3.2) assume that(3.4)
and (3.5) hold. Then the spacesH−, H̃− admit the orthogonal decompositions:

H− = M− ⊕ N−, H̃− = M̃− ⊕ Ñ−, (3.7)
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such that
M− = M̃−, (3.8)

and
N− ∩ H0 = {0} = Ñ− ∩ H0. (3.9)

Proof: Let D−,+, D̃−,+ denote the standard canonical identification operators in
(3.1) and (3.2) resp. ApplyingD−,+, D̃−,+ to (3.4) we get (3.7). Forω = D−,+ϕ

and ω̃ = D̃−,+ϕ, ϕ ∈ D, due to (3.5) we have

〈ω,ψ〉−,+ = 〈ω̃, ψ〉∼−,+, ψ ∈ D. (3.10)

Therefore due to density ofD we get

‖ω‖− = ‖D−,+ϕ‖− = ‖ϕ‖+ = ‖D̃−,+ϕ‖∼
− = ‖ω̃‖∼

−.

Moreover, by this construction we also have

〈ω, η〉−,+ = 0 = 〈ω̃, η̃〉∼−,+, η ∈ N+, η̃ ∈ Ñ+. (3.11)

Therefore (3.8) is proved. The relation (3.9) follows from density D in H0. 2

Since Ã ≥ 1 we can use Krein’s formula for this operator:

Ã−1 = A−1 + B, (3.12)

where B is a bounded and positive operator inH0 with KerB = M0, where
M0 := AD. We recall that in terms ofB the domain ofÃ has the description

DomÃ = {g ∈ H0 : g = f + BAf, f ∈ H+ = DomA}. (3.13)

PROPOSITION3.2. For each operatorÃ ∈ Ps(A), Ã ≥ 1, the spaceH̃+ = DomÃ
has the following structure

H̃+ = M̃+ ⊕ Ñ+ = M+ ⊕ Ñ+, where M̃+ = M+ = D < H0, (3.14)

where the subspacẽN+ is connected withN+ in the following way:

Ñ+ = {θ+ ∈ H0 : θ+ = η+ + BAη+, η+ ∈ N+}, ‖θ+‖∼
+ = ‖η+‖+. (3.15)

Proof. (3.14) holds due to (3.4)) and (3.5). SinceH+ = M+ ⊕N+, M+ = D,
for each f ∈ H+ we can write

f = ϕ+ ⊕ η+, ϕ+ = PM+f, η+ = PN+f,

where PL stands for the orthogonal projector onto the subspaceL. Using that
H̃+ = DomÃ for g ∈ DomÃ by (3.13) we have

g = ϕ+ + η+ + BA(ϕ+ + η+) = ϕ+ + θ+, θ+ := η+ + BAη+.

Here BAϕ+ = 0 thanks toAϕ+ ∈KerB. By Af = Ãg, we get Aη+ = Ãθ+ that
proves (3.15). 2
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Now we are able to formulate the important new result.

THEOREM 3.1. For each Ã ∈ Ps(A), Ã ≥ 1, the inner product(·, ·)∼− in the

spaceH̃− is the form-sum perturbation of the inner product inH−. It means that

(·, ·)∼− = (·, ·)− + τ(·, ·), (3.16)

where the Hermitian quadratic formτ is singular in H−.

Proof: By construction,H̃− is the completion ofH0 with respect to the inner
product

(h1, h2)
∼
− := (Ã−1h1, Ã

−1h2)0, h1, h2 ∈ H0.

By Krein’s formula (3.12) we get

(h1, h2)
∼
− = (A−1h1, A

−1h2)0 + τ(h1, h2),

where
τ(·, ·) := (A−1·, B·)0 + (B·, A−1·)0 + (B·, B·)0. (3.17)

Obviously the formτ is Hermitian but nonpositive. From (3.17) it follows that

Kerτ = KerB = M0.

We recall thatM0 = AD. Therefore the inner product iñH− on vectors fromM0
is the same as inH−,

(·, ·)− | M0 = (·, ·)∼− | M0. (3.18)

This means thatτ is singular in H− since the set Kerτ = M0 is dense in
H−. The latter fact is true due to the general criterion (see forexample [1] ):
M0 < H− ⇐⇒ N− ∩ H0 = {0}, whereN− := AN0. 2

(3.18) implies that inH̃− = M̃− ⊕ Ñ− the subspaceM̃− = M− and is the
completion ofM0 in the norm

‖µ‖∼
− = ‖A−1µ‖0 = ‖Ã−1µ‖0, µ ∈ M0,

but the subspaceÑ− 6= N− and is the completion ofN0 in the norm

‖η‖
∼,2
− = ‖η‖2

− + τ [η], η ∈ N0. (3.19)

Moreover, (3.18) means that the operatorsA : H0 → H− and Ã : H0 → H̃−

coincide not only onD but on M0 too,

AM0 = M− = ÃM0. (3.20)

REMARK 3.1. It is well known that forÃ ∈ Pws(A) the spaceH̃1 may be
produced by the form-sum method, i.e. the inner product(·, ·)∼1 = (·, ·)1 + γ (·, ·),
where the singular perturbation is given by a quadratic formγ of the H−1-class.
The above Theorem 3.1 shows that in the more general case where γ ∈ H−2-class
and Ã is defined by the method of self-adjoint extensions, we can use the form-sum
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method also, but for construction of the spaceH̃−. In this way the operatorÃ is
produced as an operator associated with the rigged Hilbert space (3.2). In other
words, Theorem 3.1 has the following consequence.

THEOREM 3.2. For eachÃ ∈ Ps(A), Ã ≥ 1, the inverse operator̃A−1 is uniquely
associated(in the sense of the second representation theorem(see [18])) with the
positive quadratic formχ∼

− [·] := (·, ·)∼−:

χ∼
− (h1, h2) = (T h1, T h2)0, T ≡ Ã−1, h1, h2 ∈ H0.

Proof. By the above constructions the formχ∼
− [·] = χ−[·]+ τ [·] is positive. Here

χ−[·] := ‖ · ‖2
− and τ has a form (3.17) and is defined by a positive operatorB

in H−. From Ã ≥ 1 it follows that χ∼
− ≤ χ0, where χ0[·] := (·, ·)0. Therefore

χ∼
− (·, ·) = (T ·, T ·)0, and T = Ã−1 due to uniqueness of the operator representation.

Conversely, if we assumed that the quadratic formγB[·] := (B·, ·)0 of a bounded
operatorB satisfies the inequality

χ−1 ≤ γB ≤ χ0 − χ−1, (3.21)

and the setM0 :=KerB is dense inH0 then it is easy to see that the operatorT
associated withχ∼

− coincides withÃ−1 for some Ã ∈ Ps(A), Ã ≥ 1. 2

EXAMPLE 3.1. Construction of rank one singular perturbations by the rigged
Hilbert spaces method.

Consider a rank one singular perturbatioñA formally given as Ã = A + γω,
whereγω(·, ·) = 〈·, ω〉〈ω, ·〉, ω ∈ H−\H0, ‖ω‖− = 1 stands for the singular quadratic
form. PreciselyÃ ∈ Ps(A) is defined by Krein’s formula

Ã−1 = A−1 + β(·, η)0η, η = A−1ω, β ∈ R. (3.22)

For Ã ≥ 1 the parameterβ should satisfy the condition

0< β ≤ 1 − (A−1η, η)0.

It is known that

Ãg = Af, g ∈ DomÃ, f ∈ DomA, (3.23)

where

DomÃ = {g ∈ H : g = f + β(Af, η)0η = f + β〈f, ω〉η, f ∈ DomA}. (3.24)

At first we introduceH̃1 as DomÃ equipped with the inner product

(g1, g2)
∼
1 := (Ãg1, g2)0 = (Af1, g2)0 = (Af1, f2)0 + β(Af1, η)0(η,Af2)0

= (f1, f2)1 + β〈f1, ω〉〈ω, f2〉 = (f1, f2)1 + βγω(f1, f2).

Thus, if we assume thatγω ∈ H−2-class, i.e. ifω ∈ H−2 \ H−1, then

H̃1 = H1 ⊕ Ñ1, (3.25)
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where Ñ1 is the one-dimensional space constructed by the formγω. Clearly γω is
singular in H1 since Kerγω is dense inH1.

In turn, the conjugate spacẽH−1 is the completion ofH0 in the inner product

(h, l)∼−1 := (Ã−1h, l)0 = (A−1h, l)0+β(h, η)0(η, l)0 = (h, l)−1+β〈A−1h, ω〉〈ω,A−1l〉,

i.e.
(·, ·)∼−1 = (·, ·)−1 + βγη(·, ·) = (·, ·)−1 + βγω(A

−1·, A−1·),

where γη(·, ·) := (·, η)(η, ·). Obviously, the quadratic formγη is singular in H−1

since M0 := {h ∈ H0 : (h, η)0 = 0} is dense inH̃−1. Consequently we have

H̃−1 = H−1 ⊕ Ñ−1, (3.26)

where Ñ−1 is a one-dimensional space constructed by the formγη.
Further, the spaceH̃+ = DomÃ with the inner product

(g1, g2)
∼
+ = (Ãg1, Ãg2)0 = (Af1, Af2)0 = (f1, f2)+, (3.27)

where vectorsf1, f2 ∈ DomA, is connected withg1, g2 ∈ DomÃ according to (3.24).
In particular,g1 = f1, g2 = f2 if the vectorsf1, f2 are orthogonal toω in the sense
of the dual inner product. Then they belong to the setM+ :=Kerγω, and we have

(·, ·)∼+ | D = (·, ·)+ | D.

This means thatM̃+ coincides withM+, and therefore we have

H̃+ = M+ ⊕ Ñ+, (3.28)

where Ñ+ is a one-dimensional space unitarily equivalent toN0. Finally, the
conjugate spaceH̃− is the completion ofH0 in the inner product

(h1, h2)
∼
− := (Ã−1h1, Ã

−1h2)0, h1, h2 ∈ H0.

By Krein’s formula (3.22) we get

(h1, h2)
∼
− = (A−1h1 + β(h1, η)0η,A

−1h2 + β(h2, η)0η)0

= (A−1h1, A
−1h2)0 + τω(h1, h2) = (h1, h2)− + τω(h1, h2),

where the Hermitian quadratic formτω has the form

τω(·, ·)= β(A−1·, η)0(η, ·)0 + β(·, η)0(η,A
−1·)0 + β2(·, η)0(η, ·)0

= β(·, η+)0(η, ·)0 + β(·, η)0(η+, ·)0 + β2(·, η)0(η, ·)0, (3.29)

with η+ := A−1η and where we used‖η‖2
0 = 1. Thus (cf. with (3.16))

(·, ·)∼− = (·, ·)− + τω(·, ·). (3.30)

The quadratic formsτω is obviously singular inH− since vectorsη, η+ /∈ H+, but
it is nonpositive. By the latter reason it is impossible to present the spacẽH− as
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a sumH− ⊕ Ñ−. However, we have

H̃− = M̃− ⊕ Ñ−, M̃+ = M+, (3.31)

where Ñ− is conjugate toÑ+.
As a general result of the above analysis we conclude that forγω ∈ H−2-class a

singular rank one perturbation admits a construction by theform-sum method along
two ways:

(1) to define Ã as the operator associated with a new tripletH̃−1 = H0 = H̃1,
where the inner products iñH−1, H̃1 have the form-sum representations:

(·, ·)∼−1 = (·, ·)−1 + βγω(·, ·), (·, ·)∼1 = (·, ·)1 + βγω(A
−1·, A−1·),

(2) to defineÃ−1 as the operator associated by the second representation theorem
(see [18]) with the quadratic form̃χ−(·, ·) := (·, ·)∼− which is a singular form-sum
perturbation of(·, ·)− (see (3.30)).

4. The singularity phenomenon

Let S ⊂ G be a pair of linear sets and(·, ·), (·, ·)∼ be two inner products on
G. Let H, H̃ denote the corresponding Hilbert spaces constructed in a standard
way. Assume that

(1) the above inner products coincide onS, i.e.

(·, ·) | S = (·, ·)∼ | S,

(2) the setS is dense both inH and H̃.
Then one can naively think that the spacesH, H̃ are identical. However, this

is not true. In generalH 6= H̃ in the sense that‖g‖ 6= ‖g‖∼ for g ∈ G \ S. In
other words, the quadratic formτ [·] := (·, ·)∼ − (·, ·) is nontrivial and singular both
in H and H̃ in the sense that Kerτ < H, H̃. However, the Hermitian formτ is
not positive. Indeed, if we assume thatτ ≥ 0 then the spaceH̃ should have the
structure of an orthogonal sum:̃H = H ⊕ Hτ (see [24]) that is impossible under
(1) and (2).

We will call the above described situation with conditions (1), (2) as asingularity
phenomenon.

In fact we already met this phenomenon in the previous section. Namely, for
each Ã ∈ Ps(A), Ã ≥ 1, the corresponding Hilbert spacẽH− contains the same
linear setM0 with two properties: (1) the inner products inH̃− and H− restricted
to this set are identical:(·, ·)∼− | M0 = (·, ·)− | M0, (2) M0 is dense both in
H̃− and H−. Indeed, we recall thatH̃− is constructed as the completion ofH0

with respect to the inner product(·, ·)∼− = (Ã−1 ·, Ã−1 ·)0, where Ã−1 is defined
by Krein’s formula (3.12) with a positive operatorB which is nonzero only on
N0 := H0 ⊖M0. So (2) is fulfilled. The condition (1) is evident due to (3.18). We
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remark that the density ofM0 in each H̃− can be proven independently in the
following way.

LEMMA 4.1 Let Ã ∈ Ps(A), Ã ≥ 1, and let H̃− be the completion ofH0 in
the inner product(3.16) where the quadratic formτ is defined by(3.17). Then the
subspaceM0 := Kerτ is dense inH̃−:

M0 < H̃−. (4.1)

Therefore the quadratic formτ is singular not only inH− but in eachH̃−, too.

Proof: By constructionM0 < H− since Ã is defined by a singular form. So,
we need to prove onlyM0 < H̃−. Let h ∈ H0 = RanÃ. Then h = Ãg with
some g ∈ DomÃ. Thanks to the density of the setD = M+ := A−1M0 in H0,
there exists a sequenceϕn ∈ M+ such that‖ϕn − g‖0 → 0. Set fn := Aϕn = Ãϕn.
Obviously fn ∈ M0. Let us check that the sequencefn converges to the vectorh
in H̃−. Indeed, using thatÃ−1Aϕn = ϕn we have

‖h− fn‖
∼
− = ‖Ã−1(h− fn)‖0 = ‖Ã−1(Ãg − Aϕn)‖0 = ‖g − ϕn‖0 → 0. 2

We can face the singularity phenomenon in a slightly other form. Let Å be the
symmetric densely defined restriction ofA = A∗ ≥ 1 in H0. So,M+ := DomÅ < H0.
Let Ã be a strongly positive self-adjoint extension ofÅ and H̃− be the corresponding
space constructed by the inner product(·, ·)∼− := (Ã−1·, Ã−1·)0. Then the subspace
M0 := ÅM+ = AM+ = ÃM+ has two properties: (1) it is dense both inH− and
H̃− and (2) the norms‖·‖∼

− and‖·‖− coincide onM0 due toM− := AM0 = ÃM0.

5. Construction of the Ã-scale by a singular quadratic form

In this section we discuss connections of the new rigged Hilbert space (3.2)
with a quadratic formγ ∈ H−2(A)-class associated to a singular perturbation.

We start with the rigged triplet (3.1) associated to the freeoperatorA = A∗ ≥ 1
in H0 and take in the consideration a chain of five spaces

H− ≡ H−2 = H−1 = H0 = H1 = H2 ≡ H+(= DomA), (5.1)

which consists of a part of theA-scale (2.2). We remind that both (3.1) and the
whole scale (2.2) can be reconstructed by any couples of spaces: H0 = Hk or
H−k = H0, k > 0, from theA-scale (see [8]).

Given a positive quadratic formγ ∈ H−2-class define a new inner product on
H0:

(h1, h2)
∼
−1 := (A−1h1, h2)0 + γ (A−1h1, A

−1h2), h1, h2 ∈ H0. (5.2)

We note that (5.2) is well defined since the operatorA−1 maps H0 onto H+

and therefore vectorsA−1h1, A
−1h2 ∈ H+ = Domγ . Let H̃−1 be the Hilbert space
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corresponding to the inner product (5.2), i.e.H̃−1 is the completion ofH0 in the
norm

‖ · ‖∼
−1 := (‖A−1/2 · ‖2

0 + γ [A−1·])1/2. (5.3)

Assume thatγ is such that
‖ · ‖∼

−1 ≤ ‖ · ‖0. (5.4)

Then
H̃−1 = H0, (5.5)

and one can extend this couple of spaces to the rigged triplet

H̃−1 = H0 = H̃1, (5.6)

and construct the associated operator

Ã := D̃−1,1 | {f ∈ H̃1 : D̃−1,1f ∈ H0}, (5.7)

where D̃−1,1 : H̃1 → H̃−1 is the standard canonical isomorphism. ClearlyÃ ≥ 1
since by (5.4),

‖ · ‖0 ≤ ‖ · ‖∼
1 = ‖Ã · ‖0. (5.8)

Further, by Ã we can introduce the chain of five spaces similar to (5.1),

H̃− ≡ H̃−2 = H̃−1 = H0 = H̃1 = H̃2 ≡ H̃+(= DomÃ). (5.9)

PROPOSITION 5.1. Let a quadratic formγ ∈ H−2-class satisfies the condition

−‖f ‖2
1 ≤ γ [f ] ≤ ‖f ‖2

2 − ‖f ‖2
1, f ∈ H2 = DomA. (5.10)

Then the associated operator̃A ∈ Pss(A).

Proof: From (5.10) we have

−(Af, f )0 ≤ γ [f ] ≤ ‖Af ‖2
0 − (Af, f )0, f ∈ H+.

This implies

−(A−1h, h)0 ≤ γ [A−1h] ≤ ‖h‖2
0 − (A−1h, h)0, h ∈ H0,

since eachf = A−1h for someh ∈ H0. In other terms

−‖h‖2
−1 ≤ γ [A−1h] ≤ ‖h‖2

0 − ‖h‖2
−1

what is equivalent to
0 ≤ γ [A−1h] + ‖h‖2

−1 ≤ ‖h‖2
0.

Therefore condition (5.4) is fulfilled and by the construction before Proposition 5.1
we get the operator̃A ≥ 1. We need to check now that̃A ∈ Pss(A). To this aim we
remark thatγ [A−1h] = 0, h ∈ M0, whereM0 := AKerγ . ThereforeÃ−1h = A−1h,
h ∈ M0, and Ãf = Af , f ∈ Kerγ := D. Thus Ã ∈ Pss(A) since Kerγ < H1. 2

The chain (5.9) may be constructed using the operatorS : H+ → H− associated
with γ (see (2.5)). So, letS = A2s, where s is a bounded operator inH+ such
that γ [·] = (s·, ·)+.
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Introduce the bounded operatorT : H0 → H− acting as follows,

Th = (1 + SA−1)h, h ∈ H0,

where 1 stands for an identical mapping.
Using T one can define a new inner product onH0,

(h, l)∼− := (Th,Tl)− ∀ h, l ∈ H0. (5.11)

Assume
‖h‖∼

− ≤ ‖h‖0, h ∈ H0, (5.12)

and defineH̃− as the completion ofH0 in the norm ‖h‖∼
−. Due to (5.12) we get

H̃− = H0. By the standard procedure one can constructH̃+ and defineÃ as the
operator associated with the triplet :̃H− = H0 = H̃+.

PROPOSITION 5.2 Let s be a positive bounded operator inH+. Assume that
the inequality

−(Af, f )0 ≤ (sf, f )+ ≤ ‖f ‖2
+ − (Af, f )0, f ∈ H+ (5.13)

holds and
Kers = M+ < H1.

Let the rigged Hilbert spaceH̃− = H0 = H̃+ be constructed byS = A2s and T
according to the described above way. Then the associated with this rigged Hilbert
space operatorÃ ∈ Pss(A) and Ã ≥ 1.

Proof: From (5.11) it follows that the associated with the new rigged Hilbert
space operator has the representation

Ã−1 := A−1T = A−1 + AsA−1 = A−1 + B.

By this construction KerB = M0 := AM+ and therefore

Ã|D = A|D, D ≡ M+.

Thus Ã ∈ Pss(A) since the setD is dense inH1. Further, the inequalityÃ ≥ 1 is
equivalent to (5.12) which follows from (5.13). 2

We shall say that the chains (5.1) and (5.9) ares-similar (=singularly similar) if

H+ ∩ H̃+ =: D < H1 (5.14)

and
‖f ‖∼

1 = ‖f ‖1, f ∈ D. (5.15)

We get an important result.

THEOREM 5.1. The associated with(5.9) operator Ã ∈ Pss(A), Ã ≥ 1, if and
only if the chains(5.1) and (5.9) are s-similar.
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Proof: By (5.15) we have

(Ãf, l)0 = (Af, l)0, f, l ∈ D.

Since D is dense inH0 we can introduce the symmetric operatorÅ,

Å := Ã | D = A | D.

Thus, both A and Ã are different self-adjoint extensions of̊A. In particular,
Ã ∈ Pss(A) since in fact the setD is dense inH1. 2

We emphasize that one cannot change condition (5.15) into the condition‖f ‖∼
+ =

‖f ‖+, f ∈ D.
The following theorem is the main result of this section.

THEOREM 5.2. There exists a one-to-one correspondence between three families
of objects: the operatorsÃ ∈ Pss(A), Ã ≥ 1, the quadratic formsγ ∈ H−2-class
with condition (5.10), and the chains of spaces(5.9) which are s-similar to (5.1).
These correspondences are fixed by the formulae

γ [f ] = (Ã−1h, h)0 − (Af, f )0, h = Af, f ∈ H+, (5.16)

(h, l)∼−1 = (Ã−1h, l)0 = (h, l)−1 + γ (A−1h,A−1l), h, l ∈ H0. (5.17)

Proof: By an operatorÃ ∈ Pss(A), Ã ≥ 1, we can define a formγ ∈ H−2-class
according to (5.16). This form satisfies condition (5.10) since Ã ≥ 1. By using the
form γ one can introduce the spacẽH−1 completing the spaceH0 with respect
to the inner product(h, l)∼−1 := (h, l)−1 + γ (A−1h,A−1l), h, l ∈ H0. Then starting

with the so-called pre-rigged pair̃H−1 = H0 one can construct the chain of spaces
(5.9). Clearly, we get the chain which iss-similar to (5.1) by Theorem 5.1. Finally,
starting from (5.9) we can reconstruct̃A as the operator associated with this chain.
2

Of course, the same result is true in the general case whereÃ is not necessarily
strongly positive but only bounded from below.

Indeed, let

Ã ∈ Pss(A), Ã ≥ m, m := infσ(Ã) < 1.

Then the quadratic formγ is defined by a formula of the form (5.16) with the
operatorsÃ, A replaced byÃa = Ã+a, Aa = A+a, resp., wherea = 1−m > 0:

γ [f ] = (Ã−1
a h, h)0 − (Aaf, f )0, h = Af, f ∈ H+.

Obviously γ ∈ H−2-class and satisfies the inequalities

−(Aaf, f )0 ≤ γ [f ] ≤ (Aaf,Aaf )0 − (Aaf, f )0, f ∈ H+.

Having γ one can introduce the spacẽH−1 as the completion ofH0 in the norm
corresponding to the inner product

(·, ·)∼−1 := (A−1
a ·, ·)0 + γ [A−1

a ·].
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Then, starting with the pre-rigged couplẽH−1 = H0 we construct a whole chain of
spaces of type (5.9) by the standard methods. Surely, this chain will be s-similar to
the chain of the form (5.1) which is constructed byAa. Finally, we may reconstruct
the operatorÃa as associated with the latter chain and return toÃ = Ãa − a. Of
course, in the above round of implications one can start withany object: an operator
Ã ∈ Pss(A), a quadratic formγ ∈ H−2-class, or, finally, a chain ofs-similar to
(5.1) spaces of form (5.9).

6. Singular rank one perturbation of a higher order

In this section we show that the method of rigged Hilbert spaces may be applied
in the singular perturbation theory of a higher order (the so-called super singular
perturbation theory, see e.g. [10] and references wherein). However, our method
differs from the approach developed in [10], where the statespace is changed by
the procedure of the orthogonal extension.

We will consider simplest case of rank-one perturbations. Let

H− ≡ H−k = H−k/2 = H0 = Hk/2 = Hk ≡ H+, k > 2, (6.1)

be theA-scale of Hilbert spaces associated with an operatorA = A∗ ≥ 1 in H0.
Fix a vectorω ∈ H−k\H−k+1, k > 2. Then the quadratic form

γω(ϕ, ψ) := 〈ϕ, ω〉k,−k〈ω,ψ〉−k,k, ϕ, ψ ∈ Hk, (6.2)

obviously belongs toH−k-class since the set

Kerγ = M+ ≡ Mk := {ϕ ∈ Hk : 〈ϕ, ω〉k,−k = 0}

is dense inHk−1 just due to ω /∈ H−k+1. For example, if k = 3, then Mk is
dense inH2 = DomA, and it is impossible to define the perturbed operatorÃ by
any standard method. Here we will define the operatorÃ in H0 by the method of
rigged Hilbert spaces.

With this aim we at first construct byA and γω a new scale of Hilbert spaces

H̃− ≡ H̃−k = H̃−k/2 = H0 = H̃k/2 = H̃k ≡ H̃+, k > 2, (6.3)

and then introduceÃ as the associated operator. We recall that the chain (6.3) is
fixed by every couple of spaces of the formH0 = H̃j or H̃−j = H0, j > 0, where
H̃j or H̃−j may be chosen from the infinite scale of spaces (6.3). We choose the
spaceH̃−k/2 which is defined byA and γω as the completion ofH0 with respect
to the inner product

(h1, h2)
∼
−k/2 := (A−k/2h1, h2)+ βγ (A−k/2h1, A

−k/2h2), h1, h2 ∈ H0, β ∈ R.
(6.4)

We recall that the operatorA−k/2 is isometric as a map fromH0 onto Hk. So, we
get the inequality

‖ · ‖∼
−k/2 ≤ ‖ · ‖0
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only if the coupling constantβ satisfies the condition

0 ≤ β + ‖ηk‖
2
k/2 ≤ 1, ηk/2 := A−kω ∈ Hk. (6.5)

Hence, under (6.5) the embedding̃H−k/2 = H0 holds. Now one can extend this
pre-rigged couple to the whole scale (6.3). By using (6.3) wedefine the operator
Ãk/2 by

Ãk/2 := D̃0,k = D̃−k/2,k/2 | {ϕ ∈ Hk/2 : D̃−k/2,k/2ϕ ∈ H0},

where D̃0,k, D̃−k/2,k/2 denote the canonical identification operators in the scale (6.3).
Of course, the operator̃Ak/2 is a strongly singular perturbation ofAk/2, i.e. Ãk/2 ∈

Pss(A
k/2). Finally, by the spectral theorem we can defineÃ := (Ãk/2)2/k ≡ D̃0,2. This

operator we call the super singular perturbation ofA corresponding to a singular
rank-one quadratic formγω ∈ H−k-class,k > 2, where ω ∈ H−k\H−k+1.

THEOREM 6.1. Given two chains of Hilbert spaces(6.1) and (6.3) assume that
for somek > 2 the difference of the inner products iñH−k/2 and H−k/2 defines a
rank-one positive quadratic form onH0:

βγω(·, ·) := (·, ·)∼−k/2 − (·, ·)−k/2, ω ∈ H−k \ H−k+1,

where a constantβ satisfies inequality(6.5). Then this form admits the interpretation
as a super singularH−k-class perturbation ofA, and define the uniquely associated
with the rigged triplet H̃−k/2 = H0 = H̃k/2 self-adjoint in H0 operator Ãk/2 ∈

Pss(A
k/2) as well as the super singularly perturbed operatorÃ associated with the

scale (6.3).

Proof: The result is true due to the arguments based on Theorem 5.2 (see also
Example 3.1). 2

EXAMPLE 6.1. A model d4

dx4 + δ − δ′′.

Here we consider a rank one singular perturbationω := δ− δ′′ ∈ W−3
2 (R) of the

operatord4/dx4 in L2(R). Formally this perturbation is given by the expression:

d4/dx4 + β(δ − δ′′) = d4/dx4 + βγω,

where γω(·, ·) := 〈·, ω〉〈ω, ·〉 and β ∈ R . Precisely we constructd4/dx4 + β(δ− δ′′)
using the method of rigged Hilbert spaces as follows.

We associated4/dx4 + β(δ − δ′′) with the perturbed scale of Sobolev spaces

W̃−4
2 (R) = W̃−2

2 (R) = L2(R) = W̃ 2
2 (R) = W̃ 4

2 (R), k > 0. (6.6)

By definition,

d4/dx4 + β(δ − δ′′) := D̃−2,2 | {ϕ ∈ W̃ 2
2 |ϕ(4)(x)+ β(ϕ(0)δ(x)− ϕ′′(0)δ′′(x)) ∈ L2},

where D̃−2,2 : W̃ 2
2 → W̃−2

2 stands for the unitary identification operator and all
derivatives are taken in the generalized sense. The chain (6.6) may be constructed
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starting from the pre-rigged pair̃W−2
2 (R) = L2(R), whereW̃−2

2 (R) is the completion
of L2(R) endowed with the inner product

(f, g)∼−2 := (f, g)
W−2

2
+ βγω((1 − d2/dx2)−2f, (1 − d2/dx2)−2g).

We observe thatω = δ − δ′′ as a vector inW−4
2 (R) admits the representation

ω = (1 − d2/dx2)δ = (1 − d2/dx2)2η, where η(x) =
1

2
e−|x|,

and therefore we can derive the positive operator

d4/dx4 + β(δ − δ′′) = (1 − d2/dx2)2 + β(δ − δ′′)+ 2d2/dx2 − 1

using Krein’s formula

[(1 − d2/dx2)2 + β(δ − δ′′)]−1 = (1 − d2/dx2)−2 −
β

2(2 + β)
(·, η)0η, (6.7)

where β should satisfy the condition

0< β ≤ 1 − ((1 − d2/dx2)−1η, η)L2.

The corresponding integral kernels in (6.7) have explicit representations. The domain
of the operatord4/dx4 + β(δ − δ′′) has the following description:

Dom(d4/dx4+β(δ−δ′′)) =

{

g ∈ L2 | g(x) = ϕ(x)+
β

2
(ϕ(0)−ϕ′′(0))e−|x|

}

, ϕ ∈ W 4
2 .

7. On the s-similarity of Hilbert scales

Let A, Ã ≥ 1 be a pair of self-adjoint operators inH0 and let

H−k = H0 = Hk, (7.1)

H̃−k = H0 = H̃k, k > 0, (7.2)

be the scales of Hilbert spaces associated with the operators A, Ã, resp.
We say that scales (7.1), (7.2) ares-similar in the generalized sense and write

{Hk} ∼ {H̃k} if there existsk ≥ 1 such that the set

Dk := H2k ∩ H̃2k (7.3)

is dense inHk,
Hk = Dk, (7.4)

and
‖ϕ‖k = ‖ϕ‖∼

k , ϕ ∈ Dk. (7.5)

Conditions (7.3), (7.4) imply that both spacesH2k, H̃2k admit the orthogonal
decompositions

H2k = M2k ⊕ N2k, H̃2k = M̃2k ⊕ Ñ2k, (7.6)
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such that the subspacesM2k, M̃2k are identical and dense inHk:

M2k = M̃2k ≡ Dk < Hk. (7.7)

THEOREM 7.1. The scales of Hilbert spaces(7.1) and (7.2) are s-similar in the
generalized sense,{Hk} ∼ {H̃k}, iff for some k ≥ 1 the operator Ãk is a strongly
singular perturbation ofAk, i.e. Ãk ∈ Pss(A

k).

Proof: By the construction of scales (7.1) and (7.2) the inner products inHk, H̃k

are defined by the quadratic forms

γk(ϕ, ψ) := (Akϕ,ψ)0, γ̃k(ϕ, ψ) := (Ãkϕ,ψ)0.

Due to (7.5) we have

(ϕ, ψ)k = (Akϕ,ψ)0 = (ϕ, ψ)∼k = (Ãkϕ,ψ)0, ϕ, ψ ∈ Dk.

Since Dk is dense inHk (see (7.4)) the restrictions ofAk, Ãk to Dk coincide,

Ak | Dk = Ãk | Dk. (7.8)

Therefore these restrictions produce the same densely defined symmetric operator
(Ak)◦ in H0. This operator is closed sinceDk = M2k = M̃2k is the closed subspace
both in H2k and H̃2k. Clearly each of the operatorsAk, Ãk is the self-adjoint
extension of(Ak)◦. We recall that since the setDk is dense inHk, the Friedrichs
extension of (Ak)◦ coincides with Ak. So, by definition, any other self-adjoint
extension of(Ak)◦ belongs toPss(A

k). Thus Ãk ∈ Pss(A
k). The inverse assertion

evidently is also true. 2

We remark that due to (7.7), similarly as for (7.5), we have

‖ϕ‖2k = ‖ϕ‖∼
2k, ϕ ∈ Dk. (7.9)

However, in general, the setDk does not belong toH4k ∩ H̃4k. For this reason (7.9)
does not imply thatÃ2k is a singular perturbation ofA2k.

We note also that according to Theorem 5.2, see (5.16), (5.17), the singular
quadratic form defined by

γ (A−k·, A−k·) := (Ã−k·, ·)0 − (A−k·, ·)0

belongs to theH−2-class with respect to the operatorAk since the setDk is dense
in Hk. In the case wherẽA−k ∈ Pws(A

k), the spacesH̃k, Hk coincide as sets inH0

but have different norms. Thus, the quadratic formγ [ϕ] := (Ãkϕ, ϕ)0 − (Akϕ, ϕ)0 is
bounded inHk although belongs to theH−1-class with respect to the operatorAk.
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