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1. Introduction
Let A = A* > 1 be an unbounded self-adjoint operator in a Hilbert spafe
with the inner product(-, -)o. And let
H_ OHo O H+ (1.1)

be the rigged Hilbert space associated with in the sense that the domain
DomA = H, in the graph-norm. Here the symbal means dense and continuous
embedding. We note that a given pre-rigged @diy 3 H, of the Hilbert spaceH_
is uniquely defined as the conjugate spaceHq with respect toHy (for details
see [8, 9]).

Besides the triplet (1.1) we will use also the chain of fivecgsa

H_ JH_1 23Ho JH1 3 Hy, (1.2)

[227]
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where H; = DomAY?, and H_; is the completion ofH, in the norm || - ||_y =
A=Y2 .

Given A = A*, another self-adjoint operatoA in Hp is said to be a purely
singular perturbation ofd if the set

={f eDomANDOomA: Af = Af} is dense in Ho (1.3)

(see [3, 5, 15-17, 20-30]). Under condition (1.3) we writee Ps(A) if A is
bounded from below. We writed € Pys(A) if Dom AY2 = DomAY? (ws means
weakly singular, i.e. a perturbation belongs to thei-class), andA € Ps(A) if
the setD is dense inH; (ss stands for strongly singular, i.e. a perturbation hgdon
to the H_o-class). ThusPs(A) = Pus(A) U Pss(A).

It is clear that for eachA € Ps(A) there exists a densely defined symmetric
operator

A:=AD=AD

with nontrivial deficiency |nd|cemi(A) = dim ker(A Fz2)* #0, JImz # 0. Therefore
eachA € Ps(A) may be defined as a self-adjoint extensmnA)fdlfferent from A.

In singular perturbation theory each is fixed by some abstract boundary condition,
which corresponds to a singular perturbation. In turn a wdiang perturbation is
usually presented by a singular quadratic fopmgiven in the rigged Hilbert space
(1.2).

In the present paper we propose to use a singular quadraticyfocorresponding
to a perturbation) for the construction of a new chain of Elitbspaces similar to
(1.2), 5 3 _ 3

H_ O3H_-1 3Ho 3 H1 3 Hy, (1.4)

and then to define the perturbed operaforms an operator associated with this new
rigging (1.4).

In the paper, see below Theorem 5.1, Theorem 5.2, TheorenagdlTheorem 7.1
we establish a one-to-one correspondence between threkefanf objects: singular
perturbationsA € Psg(A), rigged Hilbert spaces of the form (1.4), and singular
gquadratic formsy with fixed properties. We extend this one-to-one correspands
to a more general set of objects involving super singulatupleations.

2. Singular quadratic forms in A-scales

Let A > 1 be a self-adjoint unbounded operator in a separable Hilbpace
Ho which is equipped in such a way that the domain Dém H, in the norm
-1+ :==1A-1l (see (1.1)). .

In the paper we discuss a new construction of singularlyupeed operatorA
in Ho. Namely, we defined as the operator associated with a new rigged Hilbert
space H_ 3 Ho I Hy, where H, = D(A). The inner product(-, D5 in H, is
defined as a perturbation of the inner product), in H.. Formally one can write
(.97 =)+ +y(, ), where the formy corresponds to a singular perturbation.
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Respectively the spack _ is the completion ofHy in the inner product of a form
() =(,)-+1(,-), where (-,-)_ denotes the inner product i_ and (-, ")
stands for the symmetric singular quadratic form which ifngel by y (see below).
The construction of{_ and H, by a given singular perturbation is one of the
main problems which we solve in the paper.

We show also that our method includes the usual well-knowpragehes in the
singular perturbations theory [2, 6, 25].

We start with recalling standard constructions connectéti the rigged Hilbert
spaces [8, 9] (see also [1]) and some definitions concermiagsingular perturbation
theory [2, 6, 7, 12, 19, 30] and singular quadratic forms [3:-20, 22, 23, 25, 27].

We remind that givenA = A* > 1 the domain Domd = H, is a complete
Hilbert space with respect to the inner produet-), := (A-, A-)o. Let H_ be the
space conjugate té{. with respect toHy. Then we get the triplet of continuously
and densely imbedding of spaces

H_ 3 Ho 3 My, (2.1)

called the rigged Hilbert space associated with
In the same way one can construct tAescale of Hilbert spaces

o TIH G OHo I He -, k=0, (2.2)
where H; = H;(A) = DomA*? in the inner product(:, -); := (A¥2., AK/2.)q. So

(v)2=0(,)+ and (-, )2 = (-, )—. Let D_; : Hy — H_; denote the canonical
identification operator,

(D k@ V) ik = (@5 V)i, ¢, ¥ € Hy,
where (-, -)_; stands for the dual inner product betwe&f , and H,. Using
the invariance property of the scale (2.2) with respect te shift one can easily
construct the canonical identification operaiy, : Hy — H; for a couple of spaces
Hk, 7‘[1, k,l e R.
We write I ; for D,fkl. Clearly, I, is the unitary operator mapping; onto Hj.

THEOREM 2.1. In the above notation the following mappings define the same
operator A¥?, k >0 in Ho:

(@) Doy = A"2,

(b) D_ijoxs2 | {f € Hijz |l Doijoxs2f € Ho} = DomA*/2,

() D_yo | {f€HolD_yof €Ho} =DomA*+/2

d) A* 2 =1y _4 | {®€Hy|lo—xo € H} =Ho, lok := D:;io : H_x — Ho.

In particular,
Dop=A=D_11|{f € Hi| D_11f € Ho} = D_2ol{f € Ho | D_20f € Ho}

and _1
A7 =1Ip ol{w € H_2 | Io_2w € Ho}.

In what follows we will use the notatio®\ := D_,,, which is the closure of
the operatorA as a mapping frontHy to H_».
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We remind, for example, that the well-known Sobolev scalespéces
W, (RY) O Ly(RY) 3 WERY), k>0,

is associated with the operatdr= —A+1, whereA denotes the Laplacian di?. In
particular, fork = 2 the canonical identification operatdg , : WZZ(R") — Lo(R%)
exactly coincides with—A + 1 if the norm in Wg(IRid), k > 1, is defined as
@l = I(—A + D20 L,.

To develop a new point of view about the construction of siady perturbed
operators by the method of the rigged Hilbert spaces we needciall the additional
definitions on singular quadratic forms and operators in Ahscale of spaces (for
more details see [13, 21, 22, 24)).

A positive quadratic formy in an abstract Hilbert spacH is said to be singular
if it is nowhere closable. Precisely this means that

YoeH, 3 ¢, € Domy such thaty, — ¢ in ‘H and y[g,] — 0O, (2.3)
where y[¢] = y (¢, ¢). Obviously a formy is singular in’H if the set
Kery :={p e Domy | y[¢] =0} is dense inH. (2.4)

In other words, (2.4) gives a simple sufficient condition fine singularity of a
positive quadratic form irH.

We say that a symmetric not necessarily positive quadration fy is singular
in H if (2.4) holds.

In the same way one can introduce a notion of singular operatolinear
densely defined operatdf is said to be singular irf{ if

VfeH, 3f,ebDomS such that f, — f and Sf, — 0 in H.

In what follows we use operator§ acting from H; to H_;, k > 1, such that
KerS C Hp. Therefore theseS are singular inHg.

We say that a Hermitian fornmy is regular inH if it is bounded from below
and closed. Each regular quadratic form is associated witbwer semi-bounded
self-adjoint operator [18]. This connections may be ex¢ehdo the wide class of
singular quadratic forms and operators considered inAkgcale (2.2).

For a densely defined symmetric quadratic fopmn H, we say thaty belongs
to the H_;-class with some fixedk > 1 if two conditions are fulfilled:

(1) v is bounded onH;, Domy = H,,

(2) vy is singular inH;_1, Kery C Hy_1.

Directly from this definition we obtain the following result

THEOREM 2.2. Each quadratic formy of the H_,-class (y is singular in Hg !)
admits the operator representation,

Y@, ¥) = (S, ¥) .k, @, ¥ € DomS = H,, (2.5)
where the associated operatdr: H, — H_, may be written in the forns = A*s,
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where s denotes a bounded self-adjoint operator Hy. such that
Kers= KerS§ = Kery C Hi_1.
EXAMPLE 2.1. Rank one singular quadratic forms

Consider in (2.1) a fixed vectow € H_\'Ho and define the operata$ acting
from H, to H_ according to

S = (p, w)+ _w, ¢ € Hy = Doms§.
Clearly S is a singular rank one operator Hy since the set
KerS={peHy | (p.w)s_ =0}

is dense inHy due tow ¢ Ho. The quadratic form associated with this operasor
has the form

Yo, ¥) 1= (¢, @)1 (@, ) 1 = (S, ) 1 = (A’Sp, ¥)_ 1 = (Sp, )+,
where the rank one operataracts in H,. as follows,

Sp = (¢, N4)+N+> with n, = A~ %0.

Clearly, thaty, belongs to theH_,-class, if w € H_\H_1, since then Ker, is
dense inH;, and y,, € H_;-class, ifw € H_1\ Ho.

In the more general case whetee H_\H_x+1, kK > 2, the singular quadratic
form

Vw((pi W) = <(p’ (!))k’_k<0), w>—k,k7 (pv 1/f € H—k
has a similar representation:

Yo @, W) = (S, V) ik = (A*Sp, ¥) ki = (S, Y.
Here sp = (¢, ni)xnk, With n; := A %w. Now the formy, belongs to theH_;-class
since w ¢ H_;41 and therefore the set Key is dense inH;_1.
EXAMPLE 2.2. Finite rank singular quadratic forms.
Let the vectorsh; € Hg, i = 1,...,n < oo be orthogonal and satisfy the condition
sparjh;} N DomA = {0}.
Then the operatoS of rank n defined as follows:

n

Sf =Y (Af,h)oAhi =Y (f i)y @,  feHy=DomS, o :=Ah,
i=1 i=1
is singular in Ho since KefS is obviously dense inHo. The quadratic form
vLf1:= (Sf, f)_ . belongs to theH_,-class if spafh;} NDomAY/? = {0}. However,
if all #; e DomAY? then this form belongs to thé{_;-class.
In the general case we have (cf. with [3, 13]) the followingule
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THEOREM 2.3. Let y be a Hermitian bounded quadratic form Hy, k > 1. Set
M, :=Kery and N, = H; © M;.
Then y € H_,-class iff
N_ N H 11 = {0}, where N_; := A*\;.
Proof: This follows from Theorem Al (see [3]) since
M CHi1 & Ny NH_jp1 = {0O). O

3. On rigged Hilbert spaces associated with singular perturations

Let

H_ 3Ho I H4+ (3.1)
be the rigged Hilbert spaces associated with a self-adjojpgrator A > 1 in
Ho. We recall that’, = DomA in the graph-norm ofA. Let A € Ps(A) be
a singular perturbation ofA. We will assume thatd > 1. In other case, i.e. if
A>m>—oco, m:=info(A) <1, we take the operatad,,_; ;== A+(m—11>1
to play the role ofA, where1 stands for the identical operator. With each operator
A there is associated a new rigged Hilbert space

H_ 3 Ho I Ha (3.2)

constructed by the standard methods usihgsee [8, 9]).
In this section we study the structure of (3.2) in terms ofgslar perturbations.
By the assumption thal > 1 the spacel{. coincides with Domi endowed
with the inner product(f, )7 = (Af, Ag)o. Thanks to A € P,(A) there exists a
linear setD dense inHy and such that

(f,8)+=(f, 87 f,g€D. (3.3)
Thus, the setD consists a proper subspace in each of the spates?.:
He=M,®N,, Hi=M_.®dN,, (3.4)
where just due to (3.3) we can write
My =M, =DC Ho. (3.5)

From (3.4) and (3.5) it follows that
Ho= Mo®No,  where Mg=AM, =AM,, Noy=AN,=AN,. (3.6)
Now we establish some more complete connections betwed) #Bd (3.2).

PROPOSITION 3.1. Given two rigged triplets(3.1) and (3.2) assume thai(3.4)
and (3.5) hold. Then the spaces(_, H_ admit the orthogonal decompositions:

H.o=M_®N., H_.=M_oN_, (3.7)
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such that ~
M_=M_, (3.8)
and _
N_NHo = {0} = N_NHo. (3.9)

Proof: Let D__, D__ denote the standard canonical identification operators in
(3.1) and~(3.2) resp. Applyingd_ ., D_ . to (3.4) we get (3.7). Fow = D_ ;¢
and o= D_ ¢, ¢ €D, due to (3.5) we have
(0, ¥)—+ = (@, ¥)_ ., v € D. (3.10)
Therefore due to density b we get

loll- = 1D- 1oll- = l¢lls = 1D- 1oll~ = @]~
Moreover, by this construction we also have
(@.n)_+=0=(&.M",. neNe  feN. (3.11)

Therefore (3.8) is proved. The relation (3.9) follows frorengdity D in Ho. O
Since A > 1 we can use Krein's formula for this operator:
At=A"14 B, (3.12)

where B is a bounded and positive operator #o with KerB = Mo, where
Mo := AD. We recall that in terms o8B the domain ofA has the description

DomA ={g e Ho:g = f + BAf, f e H, =DomA}. (3.13)

PROPOSITION3.2. For each operatord € Ps(A), A > 1, the spaceH, = DomA
has the following structure

7:[4_ :./\;14. EBN+ =M, @N+, Whel’e./\;l+ = M, =D C Hp, (3.14)
where the subspacd/, is connected with\, in the following way:
Ny={6y e Ho: 6y =ny + BAny, ny e N}, 16407 = lInylly. (3.15)

Proof. (3.14) holds due to (3.4)) and (3.5). Sin¢e, = M. ®N,, M, =D,
for each f € H, we can write

f=9¢ ®ny, o+ = Pnmy f, Ny = Pn, f,

where P, stands for the ~orthogonal projector onto the subsp&ceUsing that
H, =DomA for g e DomA by (3.13) we have

g =9+ +ny+ BA(p+ +11) = ¢4 + 04, 0t :=n4 + BAn,.

Here BAp, = 0 thanks to Ap, cKerB. By Af = Ag, we get An, = Af, that
proves (3.15). |
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Now we are able to formulate the important new result.
THE~OREM 3.1. For each A € Ps(A), A > 1, the inner product(-,-)~ in the
spaceH_ is the form-sum perturbation of the inner product k. It means that
G2 =)=+ 160, (3.16)
where the Hermitian quadratic form is singular in H_.

Proof: By construction,{_ is the completion ofHo with respect to the inner
product

(h1, h2)~ = (A" h1, A" hy)o, h1, ha € Ho.
By Krein's formula (3.12) we get
(h1, h2)~ = (A" hy, A" ho)o + T(hy, ha),

where
t(-,) = (A™*, B-)o+ (B-, A™1)o + (B-, B-)o. (3.17)

Obviously the formt is Hermitian but nonpositive. From (3.17) it follows that
Kert = Ker B = M.

We recall thatMo = AD. Therefore the inner product it{_ on vectors fromM,
is the same as irt{_,
() [ Mo=(, ) | Mo. (3.18)

This means thatr is singular in H_ since the set Ker = Mg is dense in
H_. The latter fact is true due to the general criterion (see drample [1] ):
Mo C H_ <= N_NHy= {0}, where N_ := AN,. O

(3.18) implies that in{_ = M_ & N_ the subspaceM_ = M_ and is the
completion of Mgy in the norm

Il = IIA  ullo = 1A llo, 1 € Mo,
but the subspacé/_ # A_ and is the completion of\; in the norm
=2 =2 +<inl,  neNo. (3.19)

Moreover, (3.18) means that the operatdss: Ho — H_ and A : Ho — H_
coincide not only onD but on Mg too,

AMo= M_ =AM,. (3.20)

REMARK 3.1. It is well known that forA € Pys(A) the spaceﬂl may be
produced by the form-sum method, i.e. the inner product; = (-, )1 + ¥ (-, ),
where the singular perturbation is given by a quadratic fornof the H_;-class.
The above Theorem 3.1 shows that in the more general casee wherH_,-class

and A is defined by the method of self-adjoint extensions, we canthe form-sum
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method also, but for construction of the spake. In this way the operatod is
produced as an operator associated with the rigged Hilbgates (3.2). In other
words, Theorem 3.1 has the following consequence.

THEOREM 3.2. For each A € Pg(A), A > 1, the inverse operatoA ! is uniquely
associated(in the sense of the second representation theo¢see [18])) with the
positive quadratic formy~[-]:= (-, )~

x"(h1, ho) = (Thy, Thy)o, T=A", h1, ho € Ho.
Proof. By the above constructions the forgi[-] = x_[-1+ z[-] is positive. Here
x-[-1:=1-1?> and r has a form (3.17) and is defined by a positive operagor

in H_. From A > 1 it follows that x~ < xo, Where xo[-] := (-, -)o. Therefore

x>(,)=(T-,T-)o, and T = A1 due to uniqueness of the operator representation.
Conversely, if we assumed that the quadratic foppi-] := (B-,-)o of a bounded
operator B satisfies the inequality

X-1=VYB = X0— X-1, (3.21)
and the setMy :=KerB is dense inHy then it is easy to see that the operafor
associated withy~ coincides withA~! for some A € Ps(A), A > 1. O

ExamMpLE 3.1. Construction of rank one singular perturbations by the gBdg
Hilbert spaces method

Consider a rank one singular perturbation formally given asA = A + y,,

where y, (-, ) = (- o){w, ), ® € H-\Ho, |oll- =1 stands for the singular quadratic
form. PreciselyA € P,(A) is defined by Krein’s formula
ATt = AT+ BC mon, n=A"o, B eR. (3.22)

For A > 1 the parametep should satisfy the condition
0<B<1—(A""n o
It is known that
Ag = Af, g € DomA, f € DomaA, (3.23)
where
DomA ={geH :g=f+BAf.mon=f+B(f 0 fecDomA). (3.24)
At first we introduce; as DomA equipped with the inner product
(81, 82)7 = (Ag1, g2)0 = (Af1, g2)o = (Af1, f2)o+ B(Af1. mo(n, Af2)a
= (f1, fa1+ B(f1, o) (@, f2) = (f1, [2)1 + BVu(f1, [2).
Thus, if we assume that, € H_,-class, i.e. ifw € H_»\ H_1, then

7:[1 ="H1 EBN]_, (3.25)
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where N7 is the one-dimensional space constructed by the feymClearly y,, is
singular inH; since Key, is dense inHj.
In turn, the conjugate spack _; is the completion ofHy in the inner product

(h. D)~y := (A"*h, D)o = (A" h, Do+ B(h, mo(n. Do = (h. 1)1+ B(A™ h, w) (@, A7),
i.e.

()71 = () By ) = ()1 + Bra(AH A7),
where y,(-, ) := (-, n)(n, -). Obviously, the quqdratic formy, is singular in’H_;
since Mg :={h € Ho: (h,n)o = 0} is dense inH_;. Consequently we have

Hi=H1®&N, (3.26)

where N_; is a one-dimensional space constructed by the form
Further, the spacé{, = DomA with the inner product

(81, 82)5 = (Ag1, Ag2)o = (Af1, Af2)o = (f1, f2)+ (3.27)

where vectorsfy, f» € DomaA, is connected withg1, g» € DomA according to (3.24).
In particular, g1 = f1, g2 = fo if the vectors f1, f» are orthogonal tav in the sense
of the dual inner product. Then they belong to the 3dt :=Kery,, and we have

)X I D=C)+ | D.
This means thatM, coincides with M., and therefore we have
7:‘(4_ = M+ EBN.;_, (328)

where N, is a one-dimensional space unitarily equivalent A%. Finally, the
conjugate spacé{_ is the completion ofHy in the inner product

(h1, h2)~ := (A hy, A ho)o, h1, h2 € Ho.
By Krein's formula (3.22) we get
(h1, h2)~ = (A™h1 + B(ha, mon, A" ha + B(h2, Mom)o
= (A ha, A7 h2)o + T (ha, ha) = (h1, ho)— + T, (ha, ho),
where the Hermitian quadratic form, has the form
(-, ) = BAT o1, o+ BC, Mo, A™H)o + B2(, Mo, o

=B 100, Yo+ BC, Mo+, Do + B¢ Mo, o, (3.29)
with 74 := A='n and where we usedn||3 = 1. Thus (cf. with (3.16))

The quadratic formsg, is obviously singular in}_ since vectorsy, n. ¢ H.., but
it is nonpositive. By the latter reason it is impossible tegant the spac&{_ as
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a sum’H_ ® N_. However, we have
7:{_ :M_GBJ\N[_, ./\;[+ :M+, (331)

where N is conjugate to\.,.

As a general result of the above analysis we conclude thayfas H_,-class a
singular rank one perturbation admits a construction byfthim-sum method along
two ways:

(1) to define A as the operator associated with a new triptét; = Ho 3 Ha,
where the inner products if{_1, H, have the form-sum representations:

()71 =Gy )1+ BYwls o), ()7 = (, )1+ Bra(A™h, A7,

(2) to defineA~! as the operator associated by the second representatiorerne
(see [18]) with the quadratic formy_(-,-) := (-, )~ which is a singular form-sum
perturbation of(-,-)_ (see (3.30)).

4. The singularity phenomenon

Let S ¢ G be a pair of linear sets and, ), (-,-)~ be two inner products on

G. Let H, 'H denote the corresponding Hilbert spaces constructed inaadatd
way. Assume that
(1) the above inner products coincide @ i.e.

('v') |S: ('7')N|Ss

(2) the setS is dense both i+ and A.

Then one can naively think that the spacks H are identical. However, this
is not true. In generalH # H in the sense thatlg|l # |lgl|” for g € G\ S. In
other words, the quadratic form[-] := (-, )T =) is nontrivial and singular both
in H and H in the sense that Ker— H,H. However, the Hermitian formr is
not positive. Indeed, if we assume that> 0 then the spacé{ should have the
structure of an orthogonal sum{ = H @& H, (see [24]) that is impossible under
(1) and Q).

We will call the above described situation with condition3, (2) as asingularity
phenomenon

In fact we already met this phenomenon in the previous sectidamely, for
each A € Ps(A), A > 1, the corresponding Hilbert spadé_ contains the same
linear setM, with two properties: {) the inner products irf{_ and H_ restricted
to this set are identical(-, )~ | Mo = (-,-)— | Mo, (2) Mo is dense both in
H_ and ‘H_. Indeed, we recall that{_ is constructed as the completion &t
with respect to the inner produgt, )~ = (A1 ., A1 .)o, where A1 is defined
by Krein’s formula (3.12) with a positive operata8 which is nonzero only on
No := Ho© M. So @) is fulfilled. The condition {) is evident due to (3.18). We
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remark that the density of\, in each H_ can be proven independently in the
following way.

LEMMA 4.1 Let A € Ps(A), A > 1, and let H_ be the completion of+, in
the inner product(3.16) where the quadratic fornt is defined by(3.17) Then the

subspaceMy := Kert is dense inH_:
Mo H_. (4.1)
Therefore the quadratic formr is singular not only in7{_ but in each_, too.

Proof: By construction Mo C H- since A is defined by a singular form. So,
we need to prove onlyMo C H_. Let h € Hp = RamA. Then h = Ag with
some g € DomA. Thanks to the density of the s = M, := A~ M; in Ho,

there exists a sequengg € M, such that| g, — gllo > 0. Set f, := Ap, = Ag,.
Obviously f, € M. Let us check that the sequengg converges to the vectok

in H_. Indeed, using thai—1A¢p, = ¢, we have
Ih— full” = 1A — f)llo= 1A" (Ag — Ap)llo = llg — @ullo — O. O

We can face the singularity phenomenon in a slightly othemfd_et A be the
symmetric densely defined restriction #f= A* > 1 in Hgy. So, M, = DomA Ho.
Let A be a strongly positive self-adjoint extension Afand H_ be the corresponding
space constructed by the inner prodyet)™ := (A~1., A=1.)o. Then the subspace
Mo = ﬁ/\/u = AM, = AM, has two properties:1j it is dense both in{_ and
H_ and @) the norms|-||~ and||-||_ coincide onM, due toM_ := AMq = AMo.

5. Construction of the A-scale by a singular quadratic form

In this section we discuss connections of the new rigged ddillspace (3.2)
with a quadratic formy € H_,(A)-class associated to a singular perturbation.

We start with the rigged triplet (3.1) associated to the foperatorA = A* > 1
in Hp and take in the consideration a chain of five spaces

H.=H ,3H_ 13HodH1OH,=H,.(=DomA), (5.1)

which consists of a part of thel-scale (2.2). We remind that both (3.1) and the
whole scale (2.2) can be reconstructed by any couples ofespa¢, I H; or
H_r 3 Ho, k >0, from the A-scale (see [8]).
Given a positive quadratic forny € H_»-class define a new inner product on
Ho:
(h1, h2)~y = (A"*h1, ho)o+ ¥ (A" ha, A7Yh), hi,ha € Ho.  (5.2)

We note that (5.2) is well defined since the operalapT1 maps Hp onto H,
and therefore vectors\=*h;, A=*h, € H, = Domy. Let H_; be the Hilbert space
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corresponding to the inner product (5.2), i®.; is the completion ofH, in the
norm

112y = QA2 5+ ylA=hDY2, (5.3)
Assume thaty is such that
-1 =<1 llo. (5.4)
Then -
H_1 3 Ho, (5.5)
and one can extend this couple of spaces to the rigged triplet
7:(_1 O Ho O 7:{1, (5.6)
and construct the associated operator
A= [),1,1 [ {f € Hy [)71,1f € Ho}, (5.7)

where [),1,1 - 'H, — H_, is the standard canonical isomorphism. Cleaﬁyz 1
since by (5.4),

I-llo< I~ 1I7 = 1A~ llo. (5.8)

Further, by A we can introduce the chain of five spaces similar to (5.1),
H_=H_p 3H_1 3 Ho 3 Hy 3 Ha = Hy(= DomA). (5.9)
PrRoOPOSITION 5.1. Let a quadratic formy € H_»-class satisfies the condition
—IfIE <yF1<IfIE3=1fIE  fe€Ho=DomA. (5.10)

Then the associated operatot € Ps(A).
Proof: From (5.10) we have
—(Af, o = 7If1 < IAfIE = (Af, o, f € My
This implies
—(A . Yo < y[AT*R] < IBII§ — (A h, Yo, h € Ho,
since eachf = A~k for someh € Ho. In other terms
—l1R12y < y[ATHR] < IlRlIG — 12124

what is equivalent to 1 ) )
0<y[A™"hl+ A2, < lIAllG

Therefore condition (5.4) is fulfilled and by the constrootibefore Proposition 5.1
we get the operatoA > 1. We need to check now that € Psg(A). To this aim we
remark thaty[A~1h] =0, h € Mo, where My := AKery. ThereforeA~*h = A~1h,
heMop and Af = Af, f e Kery :=D. Thus A € Ps(A) since Key C ’Hl. 0

The chain (5.9) may be constructed using the oper&tof{, — H_ associated
with y (see (2.5)). So, letS = A%s, where s is a bounded operator ift{, such

that y[-] = (s, )+
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Introduce the bounded operatdr: Ho — H_ acting as follows,
Th= 1+ SA Y, h € Ho,

where 1 stands for an identical mapping.
Using T one can define a new inner product &ty,

(h,)= :=(Th,Tl)_ VY h,l € Ho. (5.11)

Assume
1211~ < llkllo, h € Ho, (5.12)

and define/{_ as the completion o+, in the norm|4||~. Due to (5.12) we get
H_ 3 'Ho. By the standard procedure one can constrict and defineA as the
operator associated with the tripleti{_ = Ho 3 H..

ProOPOSITION 5.2 Let s be a positive bounded operator if,. Assume that
the inequality

—(Af. Po = (f, /+ < IIFIE = (Af. oo  feHs (5.13)

holds and
Kers= M, C H;i.

Let the rigged Hilbert space{_ 3 Ho 0 H, be constructed bys = A%s and T
according to the described above way. Then the associattd this rigged Hilbert

space operatorA € Ps(A) and A > 1.

Proof: From (5.11) it follows that the associated with the new edgHilbert
space operator has the representation

At=AT=Aa"+4sA 1 =A"1 + B
By this construction KeB = My := AM_ and therefore
AD=A|D, D=M,.

Thus A € Ps((A) since the setD is dense inHi. Further, the inequalityd > 1 is
equivalent to (5.12) which follows from (5.13). O

We shall say that the chains (5.1) and (5.9) sygimilar (=singularly similar) if
H NH, =DCH (5.14)

and
IA1T = 11f Nl feD. (5.15)

We get an important result.

THEOREM 5.1. The associated with{5.9) operator A € Ps((A), A > 1, if and
only if the chains(5.1) and (5.9) are s-similar.
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Proof: By (5.15) we have

(Af.Do=(Af.Do,  f.leD.
Since D is dense inHy we can introduce the symmetric operat&r
A=A |D=A|D.

Thus, both A and A are different self-adjoint extensions of. In particular,
A € Ps(A) since in fact the seD is dense inH;. O

We emphasize that one cannot change condition (5.15) ietadmdition|| 1| =
I fll+ f €D.

The following theorem is the main result of this section.

THEOREM 5.2. There exists a one-to-one correspondence between thregefam
of objects: the operatorsA € Pss(A), A > 1, the quadratic formsy e H_,-class

with condition (5.10) and the chains of spaceg®.9) which are s-similar to (5.1).
These correspondences are fixed by the formulae

y[f1= (A" h, hyo— (Af. fo,  h=Af  feH;,  (5.16)

(h, D~y = (A, Do= (h, )1+ y (A7 h, A71D), h,1 € Ho. (5.17)

Proof: By an operatorA € Ps(A), A > 1, we can define a forny € H_,-class

according to (5.16). This form satisfies condition (5.10)csiA > 1. By using the

form y one can introduce the spadé_; completing the spacé, with respect
to the inner product(h, )™, := (h,1)-1 + y (A~ h, A7Y), h,1 € Ho. Then starting

with the so-called pre-rigged pai{_; 7 H, one can construct the chain of spaces
(5.9). Clearly, we get the chain which issimilar to (5.1) by Theorem 5.1. Finally,

starting from (5.9) we can reconstrudt as the operator associated with this chain.
O

Of course, the same result is true in the general case wherenot necessarily
strongly positive but only bounded from below.
Indeed, let

A € Ps(A), A>m, m := info (A) < 1.
Then the quadratic formy is defined by a formula of the form (5.16) with the
operatorsA, A replaced byA, = A+a, A, = A+a, resp., wheres =1—m > 0:
yIf1= (A h o= (Auf. flo.  h=Af,  feH,,
Obviously y € H_,-class and satisfies the inequalities
—(Aafs o = vIf1 = (Aaf, Aaf)o — (Aaf, o, f €Hy.

Having y one can introduce the spadé_, as the completion of-{o in the norm
corresponding to the inner product

()71 = (A, Yo+ yIA R
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Then, starting with the pre-rigged coupl¢_1 1 Hp we construct a whole chain of
spaces of type (5.9) by the standard methods. Surely, tl@s chill be s-similar to
the chain of the form (5.1) which is constructed Ry. Finally, we may reconstruct
the operatorA, as associated with the latter chain and returnAte= A, — a. Of
course, in the above round of implications one can start aith object: an operator
= Pss(A), a quadratic formy € H_,-class, or, finally, a chain ok-similar to
(5.1) spaces of form (5.9).

6. Singular rank one perturbation of a higher order

In this section we show that the method of rigged Hilbert sgamay be applied
in the singular perturbation theory of a higher order (thecalled super singular
perturbation theory, see e.g. [10] and references wheréimwever, our method
differs from the approach developed in [10], where the styiace is changed by
the procedure of the orthogonal extension.

We will consider simplest case of rank-one perturbationst L

H_=H_; O H_k/z O Ho O Hk/z OHe=Hy, k> 2, (6.1)

be the A-scale of Hilbert spaces associated with an operates A* > 1 in Ho.
Fix a vectorw € H_;\H_r+1, kK > 2. Then the quadratic form

Yo (@, ¥) = (@, O)k,—k{@, V) k.t @, ¥ € Hy, (6.2)
obviously belongs tdH_;-class since the set

Kery = My = My :={p € Hi : (¢, 0)k,—r = O}
is dense inH;_; just due tow ¢ H_,,;1. For example, ifk = 3, then M; is

dense inH, = DomA, and it is impossible to define the perturbed operatoby

any standard method. Here we will define the operatoin Ho by the method of
rigged Hilbert spaces.
With this aim we at first construct by and y,, a new scale of Hilbert spaces

'Ff_ = ﬂ—k ] 7‘~f_k/2 O Ho O 'ka/z - 7’2]( = 7‘~(+, k> 2, (6.3)

and then introduced as the associated operator. We recall that the chain (6.3) is
fixed by every couple of spaces of the forhty 3 H; or H_; 3 Ho, j > 0, where
H; or H_; may be chosen from the infinite scale of spaces (6.3). We ehtius

spaceﬁ_k/z which is defined byA and y, as the completion of{y; with respect
to the inner product

(h1, h2)~yp = (A™%ha, ho) + By (A™%he, A™%hg),  h1,hp e Ho, B ER.
(6.4)
We recall that the operatad—*/? is isometric as a map frorft{g onto ;. So, we
get the inequality
” : ||:k/2 < || : ”0
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only if the coupling constanp satisfies the condition
0<B+Imli<1  myz:=AFweH. (6.5)

Hence, under (6.5) the embeddir‘i@_k/z 1 Ho holds. Now one can extend this
pre-rigged couple to the whole scale (6.3). By using (6.3) dedéine the operator
AkIZ py

A¥2 .= Doy = D_yjox2 | {9 € Hijz : D_ijou/29 € Hol,

where Dy, D_k/z,k/z denote the canonical identification operators in the sdalg).(
Of course, the operatoA*/2 is a strongly singular perturbation of*/2, i.e. A*/2 ¢
Pss(A¥/?). Finally, by the spectral theorem we can defifie= (A*/2)%k = Dy ,. This
operator we call the super singular perturbation Aofcorresponding to a singular
rank-one quadratic forny, € H_;-class,k > 2, where w € H_;\H_j1.

THEOREM 6.1. Given two chains of Hilbert space(@.l) and (6.3) assume that

for somek > 2 the difference of the inner products IH_;,» and H_;,» defines a
rank-one positive quadratic form ofi:

BYols ) i= () k2 — (Ve @ € Hop \ Hogan,

where a constang satisfies inequality{6.5). Then this form admits the interpretation
as a super singulaf{_-class perturbation ofA, and define the uniquely a§sociated
with the rigged triplet’ H_;,» 3 Ho 3 Hy2 self-adjoint in Ho operator Ak/2 ¢

Pss(A¥/?) as well as the super singularly perturbed operatdrassociated with the
scale (6.3).

Proof: The result is true due to the arguments based on Theorems8e dlso
Example 3.1). O

EXAMPLE 6.1. A model %44 +85—4".

Here we consider a rank one singular perturbation=§ —§” € W2‘3(R) of the
operatord*/dx* in L,(R). Formally this perturbation is given by the expression:

d*/dx* + B8 — 8") = d*/dx* + By.,

where y,,(-, -) := (-, w)(w, -) and B € R . Precisely we construai*/dx*+ (8 —§")
using the method of rigged Hilbert spaces as follows.
We associatal*/dx* + p(8 — 8”) with the perturbed scale of Sobolev spaces

W, 4(R) O W, 2(R) O Lo(R) 3 W2(R) O WH(R), k > 0. (6.6)
By definition,
d*/dx* 4+ B8 —8") == D_p2 | {p € W2lp® (x) + B(p(0)8(x) — ¢"(0)8"(x)) € Ly},

where D_,, : W2 — W, 2 stands for the unitary identification operator and all
derivatives are taken in the generalized sense. The cha) (Gay be constructed
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starting from the pre-rigged pai, 2(R) 1 La(R), where W, %(R) is the completion
of Lo(R) endowed with the inner product

(/)72 1= (fs @)y-2 + Bra((L = d*/dx*) "2 f, (1 — d*/dx*)"?g).
We observe thatv =§ — §” as a vector inW, 4(R) admits the representation

1

o= (1—d?/dx?)s = (1 — d?/dx?)?y, where n(x) = Ee*‘xl,
and therefore we can derive the positive operator

d4/dx*+ B —8") = (1 — d?/dx®)? + B8 — 8") + 2d%/dx?* — 1
using Krein’s formula

P
22+ )

[(1—d%/dx??+ S — )]t = A —d?/dx®) 2 — (> mon, (6.7)

where 8 should satisfy the condition
0<B<1—(A—d?*/dx®"n, ),

The corresponding integral kernels in (6.7) have expliejfiresentations. The domain
of the operatord*/dx* + (8 — 8”) has the following description:

Dom(d*/dx*+B(8—8")) = {g €Ly glx) = w(x)+§<<p(0)—go”(0>)e—'”}, peW;.

7. On the s-similarity of Hilbert scales
Let A, A > 1 be a pair of self-adjoint operators iHy and let
H_x 3 Ho 3 Hy, (7.1)
Hox JHo I M, k>0, (7.2)

be the scales of Hilbert spaces associated with the opsratord, resp.
We say that scales (7.1), (7.2) asesimilar in the generalized sense and write

{Hi} ~ {H,} if there existsk > 1 such that the set

Dy = Hae N Hax (7.3)
is dense inH,
Hy 3 Dk, (7.4)
and
lelle = llelly s ¢ € D. (7.5)

Conditions (7.3), (7.4) imply that both spacééy, Hz admit the orthogonal
decompositions

Ho = Mo & Nag, ﬂZk :./\;lzk @NZk, (7.6)
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such that the subspace$iy, Mo, are identical and dense if;:
My, = MZk = D, C Hy. (7.7)

THEOREM 7.1. The scales of Hilbert spaceg§.1) and (7.2) are s-similar in the
generalized sense(H;} ~ {Hy}, iff for somek > 1 the operator A* is a strongly
singular perturbation ofAX, i.e. AF e Pss(AX).

Proof: By the construction of scales (7.1) and (7.2) the inner petsl in ., Hy
are defined by the quadratic forms

(@, ) == (A%, ¥)o,  Tile, ¥) = (A*g, ¥)o.
Due to (7.5) we have

(@, ¥ = (Ao, ¥)o = (0, ¥); = (A0, ¥)o. ¢, ¥ € Dy
Since Dy is dense inH; (see (7.4)) the restrictions of*, A* to D, coincide,
AR | D = A | Dy (7.8)

Therefore these restrictions produce the same denselyedeBgmmetric operator
(A%)° in Ho. This operator is closed sin®; = My, = My is the closed subspace
both in Hy and Hy. Clearly each of the operatord*, A¥ is the self-adjoint
extension of(A%)°. We recall that since the sé®, is dense inH;, the Friedrichs
extension of (A¥)° coincides with A*. So, by definition, any other self-adjoint
extension of (AK)° belongs toPss(A¥). Thus A € Psy(A¥). The inverse assertion
evidently is also true. O

We remark that due to (7.7), similarly as for (7.5), we have
lollax = llelln, ¢ € Dh. (7.9)

However, in general, the s@?;, does not belong tdukm?hk. For this reason (7.9)
does not imply thatd% is a singular perturbation of%.

We note also that according to Theorem 5.2, see (5.16), X5thé singular
quadratic form defined by

yA* AT = (AT e — (A7, )0

belongs to theH_,-class with respect to the operatdf since the setD; is dense
in Hy. In the case wherel=* € P,s(A*), the spacesty, H; coincide as sets it
but have different norms. Thus, the quadratic foprip] := (A¥@, p)o — (A*e, @)o is
bounded in; although belongs to thé{_;-class with respect to the operatar.
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