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Abstract. Let A be an unbounded from above self-adjoint operator in a
separable Hilbert space H and EA(·) its spectral measure. We discuss the
inverse spectral problem for singular perturbations Ã of A (Ã and A coincide
on a dense set in H). We show that for any a ∈ R there exists a singular
perturbation Ã of A such that Ã and A coincide in the subspace EA((−∞, a))H
and simultaneously Ã has an additional spectral branch on (−∞, a) of an
arbitrary type. In particular, Ã may possess the prescribed spectral properties
in the resolvent set of the operator A on the left from a point a. Moreover, for
an arbitrary self-adjoint operator T in H there exists Ã such that T is unitary
equivalent to a part of Ã acting in an appropriate invariant subspace.
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1 Introduction

Let A be a self-adjoint unbounded operator defined on the domain D(A) ≡
dom(A) in a separable Hilbert space H with the inner product (·, ·). We shall
say that an operator Ã 6= A in H is a (pure) singular perturbation of A if
the set

D := {f ∈ D(A) ∩D(Ã) |Af = Ãf}
is dense in H. In this case one can define a densely defined symmetric
operator A0 := A ¹ D = Ã ¹ D. If in addition Ã is self-adjoint then A and Ã
are different self-adjoint extensions of A0.

We will denote by σ(A), ρ(A), and EA(·) the spectrum, the resolvent set,
and the spectral measure of A, respectively. The point, singular continuous,
and absolutely continuous spectrum of a self-adjoint operator A are denoted
by σp(A), σsc(A), and σac(A), respectively. For a Borel set ∆ ⊂ R we set
A∆ := A ¹EA(∆)H. Clearly, A∆ is as a self-adjoint operator in HA,∆ :=
Ran(EA(∆)).

Assume that an open set J ⊂ R is a subset of ρ(A). One can ask the
question, whether there exists a singular perturbation Ã having prescribed
spectral properties in J . We show that the answer is positive if A is not
semi-bounded from above and J ⊂ (−∞, a) for some a ∈ R.

We remark that the first detailed investigation of the spectrum of self-
adjoint extensions within a gap J = (a, b) (−∞ ≤ a < b < +∞) of a
symmetric operator A0 with finite deficiency indices (n, n) was carried out
by M.G.Krein [15]. Namely, he proved that for any auxiliary self-adjoint
operator T with the condition dim(Ran(ET (J))) ≤ n, there exist a self-
adjoint extension Ã such that

ÃJ ' TJ . (1.1)

Here A ' B means that A is unitary equivalent to B. For the operator T
with an arbitrary pure point spectrum this result was generalized in [7] to
the case of A0 with infinite deficiency indices.

Further this problem was intensively studied in a series of papers [2, 8, 9].
The complete solution of the above problem was recently obtained in [10]. It
was shown that in the case J = (a, b) and n ≤ ∞ for any auxiliary self-adjoint
operator T there exist a self-adjoint extension Ã of A0 satisfying (1.1). In
particular it means that there exists a self-adjoint extension Ã of A0 having
an arbitrary beforehand given structure and type of spectrum in the gap J .

On the other hand it is known that a similar result is not valid in the
essentially more difficult case of a symmetric operator with several gaps.
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This problem was studied in [1, 6, 11], where the spectral properties of self-
adjoint extensions were described in terms of abstract boundary conditions
and the corresponding Weyl functions. In particular, in [1] it was considered
a symmetric operator A0 of the special structure, namely,

A0 =
∞⊕

k=1

Sk,

where each Sk is unitary equivalent to a fixed densely defined closed symmet-
ric operator S with equal positive deficiency indices. It was assumed that
there exists a self-adjoint extension S0 of S such that open set J ⊂ ρ(S0)∩R.
Then one can associate to the pair {S, S0} a boundary triple Π = {H, Γ0, Γ1}
(see, [11]) such that S0 = S∗ ¹ ker Γ0. Under the additional assumption that
the Weyl function M (see, [1, 11]) corresponding to Π is monotone with re-
spect to J it was shown that for any auxiliary self-adjoint operator T there
exist a self-adjoint extension Ã of A0 satisfying (1.1).

In the present paper we consider the above problem from the point of
view of singular perturbation theory. Instead of self-adjoint extensions of a
fixed symmetric operator A0 we consider singular perturbations Ã of a fixed
self-adjoint operator A. Therefore the corresponding symmetric operator A0

is not unique. This gives the freedom of choice of a dense domain D ≡
D(A0) = D(A) ∩ D(Ã) and allows to involve in the consideration a wider
class of operators Ã. In particular, we can consider instead of an interval
(a, b) an arbitrary open set J which is upper semi-bounded (cf., [10]). We
also show that for an an arbitrary self-adjoint operator T in H there exists
a self-adjoint singular perturbation Ã such that T is unitary equivalent to a
certain part of Ã acting in an appropriate invariant subspace.

The spectral inverse problem in such a setting (in the case of the point
spectrum) have been investigated in [3, 13]. In particular, it was shown that
for any unbounded self-adjoint operator A and a sequence {λk : k ≥ 1} of
real numbers there exists a singular perturbation Ã of A such that all λk are
eigenvalues of Ã. Moreover in [14, 12, 3, 13, 4] the inverse eigenvalue problem
of the form

Ãψk = λkψk, k = 1, 2, ...

was studied, for a given sequence {λk : k ≥ 1} of real numbers and an
orthonormal system {ψk : k ≥ 1} satisfying the condition

span{ψk : k ≥ 1} ∩D(A) = {0}.

Here M denotes the closure of the set M.
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The aim of this note is to present new observations in the problem of con-
struction of singular perturbations Ã with the prescribed spectral properties,
in particular, in the resolvent set of the operator A.

2 Two theorems

In the following we assume, without loss of generality, that an unbounded
self-adjoint operator A in a separable Hilbert space H is not semi-bounded
from above. The main results of this note are formulated in the following
two theorems.

Theorem 2.1. Let A be an unbounded (at least from above) self-adjoint
operator in a separable Hilbert space H. Then for any fixed a ∈ R and
an auxiliary self-adjoint operator T in H there exists a self-adjoint singular
perturbation Ã of A of the form

Ã = A(−∞,a) ⊕ A′, (2.1)

where the self-adjoint operator A′ in H[a,∞) = EA([a,∞))H is such that

A′
(−∞,a) ' T(−∞,a). (2.2)

In particular, for an arbitrary open set J ⊂ ρ(A) ∩ (−∞, a) there exists a
self-adjoint singular perturbation Ã of the form (2.1) such that

ÃJ = A′
J ' TJ . (2.3)

Moreover, we will show that for an arbitrary self-adjoint operator T in
H there exists a self-adjoint singular perturbation Ã such that T is unitary
equivalent to an appropriate part of Ã.

Theorem 2.2. Let A be an unbounded self-adjoint operator in a separable
Hilbert space H and T be an arbitrary auxiliary self-adjoint operator in H.
Then there exists a self-adjoint singular perturbation Ã of A of the form

Ã = A′ ⊕ A′′, (2.4)

where A′ is similar to T ,
A′ ' T. (2.5)
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3 Proofs

Proof of Theorem 2.1. Fix a ∈ R and consider the orthogonal decomposition
A = A(−∞,a) ⊕ A[a,∞) where the self-adjoint operators A(−∞,a) and A[a,∞)

act in the Hilbert spaces H(−∞,a) and H[a,∞), resp. Let Ȧ be an arbitrary
densely defined symmetric restriction of A[a,∞) with infinite deficiency indices.

Then Ȧ ≥ a and according to [10] for any auxiliary self-adjoint operator T

there exists a self-adjoint extension A′ of Ȧ (acting in H[a,∞)) such that

A′
(−∞,a) ' T(−∞,a). Define the singular perturbation Ã of A by

Ã := A(−∞,a) ⊕ A′. (3.1)

Clearly Ã satisfies (2.2). In particular, for any open subset J ⊂ ρ(A) ∩
(−∞, a) one can take TJ instead of T(−∞,a), and get in the same way a self-

adjoint extension A′ of Ȧ such that

A′
(−∞,a) = A′

J ' TJ . (3.2)

By (3.1) and (3.2)

Ã(−∞,a) = A(−∞,a) ⊕ A′
(−∞,a) ' A(−∞,a) ⊕ TJ . (3.3)

Note that A(−∞,a) = A(−∞,a)\J since J ⊂ ρ(A). Therefore (see, (3.3)) Ã
satisfies (4.1).

Proof of Theorem 2.2. First suppose in addition that the operator A is not
semi-bounded from below (recall that we assume throughout the paper that
A is not semi-bounded from above). Denote R+ := [0,∞), R− := (−∞, 0). In
this case the positive and negative parts A± := AR± of A are unbounded self-
adjoint operators in H± := HR± . So we can apply Theorem 2.1 separately
to A+ and A−. Let T be an arbitrary self-adjoint operator in H. Then by

Theorem 2.1 there exist self-adjoint singular perturbations Ã± of A± in H±
such that

Ã+
(−∞,0) ' T−, and Ã−

[0,∞) ' T+.

Define the operator

Ã := Ã+ ⊕ Ã− = Ã+
(−∞,0) ⊕ Ã+

[0,∞) ⊕ Ã−
(−∞,0) ⊕ Ã−

[0,∞).

It has the form (2.4) with

A′ := Ã+
(−∞,0) ⊕ Ã−

[0,∞), and A′′ := Ã+
[0,∞) ⊕ Ã−

[0,∞).
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Clearly, Ã is a singular perturbation of A such that its part A′ satisfies the
condition (2.5).

Consider now the case of a semi-bounded operator A. Suppose that
A ≥ a, a ∈ R. Then one can decompose [a,∞) into a union of mutually
disjoint Borel sets ∆k ⊂ [a + k,∞):

[a,∞) =
∞⋃

k=0

∆k,

in such a way that each A(k) := A∆k
is an unbounded operator in the subspace

Hk := H∆k
. Note that

A =
∞⊕

k=0

A(k).

Let T be an arbitrary self-adjoint operator in H. Set T (0) := T(−∞,a), T (k) =:
T[a+k−1,a+k), k ≥ 1. Then

T =
∞⊕

k=0

T (k).

Applying Theorem 2.1 to A(k) we obtain that there exists a self-adjoint sin-

gular perturbation Ã(k) of A(k) in Hk such that

Ã(k)
(−∞,a+k) ' T (k). (3.4)

Define the singular perturbation Ã of A by

Ã :=
∞⊕

k=0

Ã(k).

Clearly, Ã = A′ ⊕ A′′, where

A′ :=
∞⊕

k=0

Ã(k)
(−∞,a+k), and A′′ :=

∞⊕

k=0

Ã(k)
[a+k,∞).

By (3.4) we have that
A′ ' T.
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4 Discussion

We emphasize that the singular perturbations Ã in Theorems 2.1 and 2.2 are
not uniquely defined since in our considerations the symmetric restrictions
of A[a,∞) and A(k) are arbitrary.

Theorem 2.1 shows that the spectral properties of Ã and T in J ⊂ ρ(A)∩
(−∞, a) are the same. In particular

σ](Ã) ∩ J = σ](T ) ∩ J for ] = ac, sc, p.

Besides, on EA((−∞, a) \ J)H the operators A and Ã coincide. If an un-
bounded self-adjoint operator A is not semi-bounded from below then one
can replace in Theorem 2.1 (−∞, a) by (a,∞).

Note also that Theorem 2.2 shows that for an arbitrary Borel set ∆ ⊂ R
there exists a self-adjoint singular perturbation Ã of the form (2.4) such that

A′
∆ ' T∆.

In particular, one can construct Ã such that σac(Ã) = σsc(Ã) = σp(Ã) = R.

We remark that Theorem 2.1 shows that for any fixed a ∈ R there
exists a singular perturbation Ã which coincides with A on the subspace
EA((−∞, a))H and has any before given additional kind of spectra on the
left of the point a. Theorem 2.1 can be in some sense improved using the
paper [16] and combining it with results from [10]. The following theorem
holds.

Theorem 4.1. Let A be an unbounded (at least from above) self-adjoint
operator in a separable Hilbert space H. Then for any fixed a ∈ R and
an auxiliary self-adjoint operator T in H there exists a self-adjoint singular
perturbation Ã of A such that

Ã(−∞,a) ' T(−∞,a). (4.1)

However this variant of our main result does not ensure that Ã coincides
with A on the subspace EA((−∞, a))H.

Further, taking into account the paper [17] Theorem 2.2 takes the follow-
ing stronger form:

Theorem 4.2. Let A be an unbounded (at least from above) self-adjoint
operator in a separable Hilbert space H. Then for any auxiliary self-adjoint
operator T in H, which is unbounded from above, there exists a self-adjoint
singular perturbation Ã of A such that Ã ' T .
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One of the aim of our short paper is to show how recent results of usual
spectral theory of self-adjoint extensions imply the corresponding results for
singular perturbations. So Theorem 2.2 can be considered in particular as a
simple proof of a weak version of the corresponding result from [17].

By the way Theorem 4.2 shows that the only condition for the existence
of a singular perturbation obeying Ã ' T is that both operators A and
T together either semi-bounded from above or semi-bounded from below.
However, if this condition is satisfied, then one can produce by singular
perturbation any self-adjoint operator up to unitary equivalence.
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