Remarks on the inverse spectral theory for singularly perturbed operators

S. Albeverio^{*}, A. Konstantinov[†], and V. Koshmanenko[‡]

Abstract. Let A be an unbounded from above self-adjoint operator in a separable Hilbert space \mathcal{H} and $E_A(\cdot)$ its spectral measure. We discuss the inverse spectral problem for singular perturbations \tilde{A} of A (\tilde{A} and A coincide on a dense set in \mathcal{H}). We show that for any $a \in \mathbb{R}$ there exists a singular perturbation \tilde{A} of A such that \tilde{A} and A coincide in the subspace $E_A((-\infty, a))\mathcal{H}$ and simultaneously \tilde{A} has an additional spectral branch on $(-\infty, a)$ of an arbitrary type. In particular, \tilde{A} may possess the prescribed spectral properties in the resolvent set of the operator A on the left from a point a. Moreover, for an arbitrary self-adjoint operator T in \mathcal{H} there exists \tilde{A} such that T is unitary equivalent to a part of \tilde{A} acting in an appropriate invariant subspace.

2000 Mathematics Subject Classification: 47A10, 47A55.

Key words: singular perturbation, self-adjoint extension, spectrum

^{*}Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany; SFB 611, Bonn, Germany; BiBoS, Bielefeld - Bonn, Germany; IZKS, Bonn, Germany, CERFIM, Locarno, Switzerland; Acc Arch., Mendrisio, Switzerland, e-mail: albeverio@uni-bonn.de

[†]Department of Mathematics, Kyiv University, 64 Volodymyrs'ka str, 01033, Kyiv, Ukraine, e-mail: konst@faust.kiev.ua.

[‡]Institute of Mathematics, National Academy of Sciences, 3 Tereshchenkivs'ka str, Kyiv, 01601, Ukraine, e-mail: kosh@imath.kiev.ua

1 Introduction

Let A be a self-adjoint unbounded operator defined on the domain $\mathfrak{D}(A) \equiv \operatorname{dom}(A)$ in a separable Hilbert space \mathcal{H} with the inner product (\cdot, \cdot) . We shall say that an operator $\tilde{A} \neq A$ in \mathcal{H} is a (pure) singular perturbation of A if the set

$$\mathfrak{D} := \{ f \in \mathfrak{D}(A) \cap \mathfrak{D}(\tilde{A}) \, | \, Af = \tilde{A}f \}$$

is dense in \mathcal{H} . In this case one can define a densely defined symmetric operator $A_0 := A \upharpoonright \mathfrak{D} = \tilde{A} \upharpoonright \mathfrak{D}$. If in addition \tilde{A} is self-adjoint then A and \tilde{A} are different self-adjoint extensions of A_0 .

We will denote by $\sigma(A)$, $\rho(A)$, and $E_A(\cdot)$ the spectrum, the resolvent set, and the spectral measure of A, respectively. The point, singular continuous, and absolutely continuous spectrum of a self-adjoint operator A are denoted by $\sigma_p(A)$, $\sigma_{sc}(A)$, and $\sigma_{ac}(A)$, respectively. For a Borel set $\Delta \subset \mathbb{R}$ we set $A_\Delta := A \upharpoonright_{E_A(\Delta)\mathcal{H}}$. Clearly, A_Δ is as a self-adjoint operator in $\mathcal{H}_{A,\Delta} :=$ $\operatorname{Ran}(E_A(\Delta))$.

Assume that an open set $J \subset \mathbb{R}$ is a subset of $\rho(A)$. One can ask the question, whether there exists a singular perturbation \tilde{A} having prescribed spectral properties in J. We show that the answer is positive if A is not semi-bounded from above and $J \subset (-\infty, a)$ for some $a \in \mathbb{R}$.

We remark that the first detailed investigation of the spectrum of selfadjoint extensions within a gap J = (a, b) $(-\infty \leq a < b < +\infty)$ of a symmetric operator A_0 with finite deficiency indices (n, n) was carried out by M.G.Krein [15]. Namely, he proved that for any auxiliary self-adjoint operator T with the condition dim $(\operatorname{Ran}(E_T(J))) \leq n$, there exist a selfadjoint extension \tilde{A} such that

$$\tilde{A}_J \simeq T_J. \tag{1.1}$$

Here $A \simeq B$ means that A is unitary equivalent to B. For the operator T with an arbitrary pure point spectrum this result was generalized in [7] to the case of A_0 with infinite deficiency indices.

Further this problem was intensively studied in a series of papers [2, 8, 9]. The complete solution of the above problem was recently obtained in [10]. It was shown that in the case J = (a, b) and $n \leq \infty$ for any auxiliary self-adjoint operator T there exist a self-adjoint extension \tilde{A} of A_0 satisfying (1.1). In particular it means that there exists a self-adjoint extension \tilde{A} of A_0 having an arbitrary beforehand given structure and type of spectrum in the gap J.

On the other hand it is known that a similar result is not valid in the essentially more difficult case of a symmetric operator with several gaps.

This problem was studied in [1, 6, 11], where the spectral properties of selfadjoint extensions were described in terms of abstract boundary conditions and the corresponding Weyl functions. In particular, in [1] it was considered a symmetric operator A_0 of the special structure, namely,

$$A_0 = \bigoplus_{k=1}^{\infty} S_k$$

where each S_k is unitary equivalent to a fixed densely defined closed symmetric operator S with equal positive deficiency indices. It was assumed that there exists a self-adjoint extension S^0 of S such that open set $J \subset \rho(S^0) \cap \mathbb{R}$. Then one can associate to the pair $\{S, S^0\}$ a boundary triple $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ (see, [11]) such that $S^0 = S^* \upharpoonright \ker \Gamma_0$. Under the additional assumption that the Weyl function M (see, [1, 11]) corresponding to Π is monotone with respect to J it was shown that for any auxiliary self-adjoint operator T there exist a self-adjoint extension \tilde{A} of A_0 satisfying (1.1).

In the present paper we consider the above problem from the point of view of singular perturbation theory. Instead of self-adjoint extensions of a fixed symmetric operator A_0 we consider singular perturbations \tilde{A} of a fixed self-adjoint operator A. Therefore the corresponding symmetric operator A_0 is not unique. This gives the freedom of choice of a dense domain $\mathfrak{D} \equiv$ $\mathfrak{D}(A_0) = \mathfrak{D}(A) \cap \mathfrak{D}(\tilde{A})$ and allows to involve in the consideration a wider class of operators \tilde{A} . In particular, we can consider instead of an interval (a, b) an arbitrary open set J which is upper semi-bounded (cf., [10]). We also show that for an an arbitrary self-adjoint operator T in \mathcal{H} there exists a self-adjoint singular perturbation \tilde{A} such that T is unitary equivalent to a certain part of \tilde{A} acting in an appropriate invariant subspace.

The spectral inverse problem in such a setting (in the case of the point spectrum) have been investigated in [3, 13]. In particular, it was shown that for any unbounded self-adjoint operator A and a sequence $\{\lambda_k : k \ge 1\}$ of real numbers there exists a singular perturbation \tilde{A} of A such that all λ_k are eigenvalues of \tilde{A} . Moreover in [14, 12, 3, 13, 4] the inverse eigenvalue problem of the form

$$A\psi_k = \lambda_k \psi_k, \ k = 1, 2, \dots$$

was studied, for a given sequence $\{\lambda_k : k \ge 1\}$ of real numbers and an orthonormal system $\{\psi_k : k \ge 1\}$ satisfying the condition

$$\overline{\operatorname{span}\{\psi_k: k \ge 1\}} \cap \mathfrak{D}(A) = \{0\}.$$

Here \overline{M} denotes the closure of the set M.

The aim of this note is to present new observations in the problem of construction of singular perturbations \tilde{A} with the prescribed spectral properties, in particular, in the resolvent set of the operator A.

2 Two theorems

In the following we assume, without loss of generality, that an unbounded self-adjoint operator A in a separable Hilbert space \mathcal{H} is not semi-bounded from above. The main results of this note are formulated in the following two theorems.

Theorem 2.1. Let A be an unbounded (at least from above) self-adjoint operator in a separable Hilbert space \mathcal{H} . Then for any fixed $a \in \mathbb{R}$ and an auxiliary self-adjoint operator T in \mathcal{H} there exists a self-adjoint singular perturbation \tilde{A} of A of the form

$$A = A_{(-\infty,a)} \oplus A', \tag{2.1}$$

where the self-adjoint operator A' in $\mathcal{H}_{[a,\infty)} = E_A([a,\infty))\mathcal{H}$ is such that

$$A'_{(-\infty,a)} \simeq T_{(-\infty,a)}.$$
(2.2)

In particular, for an arbitrary open set $J \subset \rho(A) \cap (-\infty, a)$ there exists a self-adjoint singular perturbation \tilde{A} of the form (2.1) such that

$$\tilde{A}_J = A'_J \simeq T_J. \tag{2.3}$$

Moreover, we will show that for an arbitrary self-adjoint operator T in \mathcal{H} there exists a self-adjoint singular perturbation \tilde{A} such that T is unitary equivalent to an appropriate part of \tilde{A} .

Theorem 2.2. Let A be an unbounded self-adjoint operator in a separable Hilbert space \mathcal{H} and T be an arbitrary auxiliary self-adjoint operator in \mathcal{H} . Then there exists a self-adjoint singular perturbation \tilde{A} of A of the form

$$\tilde{A} = A' \oplus A'', \tag{2.4}$$

where A' is similar to T,

$$A' \simeq T. \tag{2.5}$$

3 Proofs

Proof of Theorem 2.1. Fix $a \in \mathbb{R}$ and consider the orthogonal decomposition $A = A_{(-\infty,a)} \oplus A_{[a,\infty)}$ where the self-adjoint operators $A_{(-\infty,a)}$ and $A_{[a,\infty)}$ act in the Hilbert spaces $\mathcal{H}_{(-\infty,a)}$ and $\mathcal{H}_{[a,\infty)}$, resp. Let \dot{A} be an arbitrary densely defined symmetric restriction of $A_{[a,\infty)}$ with infinite deficiency indices. Then $\dot{A} \geq a$ and according to [10] for any auxiliary self-adjoint operator T there exists a self-adjoint extension A' of \dot{A} (acting in $\mathcal{H}_{[a,\infty)}$) such that $A'_{(-\infty,a)} \simeq T_{(-\infty,a)}$. Define the singular perturbation \tilde{A} of A by

$$\tilde{A} := A_{(-\infty,a)} \oplus A'. \tag{3.1}$$

Clearly \tilde{A} satisfies (2.2). In particular, for any open subset $J \subset \rho(A) \cap (-\infty, a)$ one can take T_J instead of $T_{(-\infty,a)}$, and get in the same way a selfadjoint extension A' of \dot{A} such that

$$A'_{(-\infty,a)} = A'_J \simeq T_J. \tag{3.2}$$

By (3.1) and (3.2)

$$\tilde{A}_{(-\infty,a)} = A_{(-\infty,a)} \oplus A'_{(-\infty,a)} \simeq A_{(-\infty,a)} \oplus T_J.$$
(3.3)

Note that $A_{(-\infty,a)} = A_{(-\infty,a)\setminus J}$ since $J \subset \rho(A)$. Therefore (see, (3.3)) \tilde{A} satisfies (4.1).

Proof of Theorem 2.2. First suppose in addition that the operator A is not semi-bounded from below (recall that we assume throughout the paper that A is not semi-bounded from above). Denote $\mathbb{R}_+ := [0, \infty), \mathbb{R}_- := (-\infty, 0)$. In this case the positive and negative parts $A^{\pm} := A_{\mathbb{R}_{\pm}}$ of A are unbounded selfadjoint operators in $\mathcal{H}_{\pm} := \mathcal{H}_{\mathbb{R}_{\pm}}$. So we can apply Theorem 2.1 separately to A^+ and A^- . Let T be an arbitrary self-adjoint operator in \mathcal{H} . Then by Theorem 2.1 there exist self-adjoint singular perturbations $\widetilde{A^{\pm}}$ of A^{\pm} in \mathcal{H}_{\pm} such that

$$\widetilde{A^+}_{(-\infty,0)} \simeq T^-$$
, and $\widetilde{A^-}_{[0,\infty)} \simeq T^+$.

Define the operator

$$\widetilde{A} := \widetilde{A^+} \oplus \widetilde{A^-} = \widetilde{A^+}_{(-\infty,0)} \oplus \widetilde{A^+}_{[0,\infty)} \oplus \widetilde{A^-}_{(-\infty,0)} \oplus \widetilde{A^-}_{[0,\infty)}.$$

It has the form (2.4) with

$$A' := \widetilde{A^+}_{(-\infty,0)} \oplus \widetilde{A^-}_{[0,\infty)}, \text{ and } A'' := \widetilde{A^+}_{[0,\infty)} \oplus \widetilde{A^-}_{[0,\infty)}.$$

Clearly, \tilde{A} is a singular perturbation of A such that its part A' satisfies the condition (2.5).

Consider now the case of a semi-bounded operator A. Suppose that $A \ge a, a \in \mathbb{R}$. Then one can decompose $[a, \infty)$ into a union of mutually disjoint Borel sets $\Delta_k \subset [a+k,\infty)$:

$$[a,\infty) = \bigcup_{k=0}^{\infty} \Delta_k,$$

in such a way that each $A^{(k)} := A_{\Delta_k}$ is an unbounded operator in the subspace $\mathcal{H}_k := \mathcal{H}_{\Delta_k}$. Note that

$$A = \bigoplus_{k=0}^{\infty} A^{(k)}.$$

Let T be an arbitrary self-adjoint operator in \mathcal{H} . Set $T^{(0)} := T_{(-\infty,a)}, T^{(k)} =: T_{[a+k-1,a+k)}, k \geq 1$. Then

$$T = \bigoplus_{k=0}^{\infty} T^{(k)}.$$

Applying Theorem 2.1 to $A^{(k)}$ we obtain that there exists a self-adjoint singular perturbation $\widetilde{A^{(k)}}$ of $A^{(k)}$ in \mathcal{H}_k such that

$$\widetilde{A^{(k)}}_{(-\infty,a+k)} \simeq T^{(k)}.$$
(3.4)

Define the singular perturbation \tilde{A} of A by

$$\tilde{A} := \bigoplus_{k=0}^{\infty} \widetilde{A^{(k)}}.$$

Clearly, $\tilde{A} = A' \oplus A''$, where

$$A' := \bigoplus_{k=0}^{\infty} \widetilde{A^{(k)}}_{(-\infty,a+k)}, \text{ and } A'' := \bigoplus_{k=0}^{\infty} \widetilde{A^{(k)}}_{[a+k,\infty)}.$$

By (3.4) we have that

$$A' \simeq T$$

4 Discussion

We emphasize that the singular perturbations \tilde{A} in Theorems 2.1 and 2.2 are not uniquely defined since in our considerations the symmetric restrictions of $A_{[a,\infty)}$ and $A^{(k)}$ are arbitrary.

Theorem 2.1 shows that the spectral properties of \tilde{A} and T in $J \subset \rho(A) \cap (-\infty, a)$ are the same. In particular

$$\sigma_{\sharp}(A) \cap J = \sigma_{\sharp}(T) \cap J$$
 for $\sharp = ac, sc, p.$

Besides, on $E_A((-\infty, a) \setminus J)\mathcal{H}$ the operators A and \tilde{A} coincide. If an unbounded self-adjoint operator A is not semi-bounded from below then one can replace in Theorem 2.1 $(-\infty, a)$ by (a, ∞) .

Note also that Theorem 2.2 shows that for an arbitrary Borel set $\Delta \subset \mathbb{R}$ there exists a self-adjoint singular perturbation \tilde{A} of the form (2.4) such that

 $A'_{\Delta} \simeq T_{\Delta}.$

In particular, one can construct \tilde{A} such that $\sigma_{ac}(\tilde{A}) = \sigma_{sc}(\tilde{A}) = \overline{\sigma_p(\tilde{A})} = \mathbb{R}$.

We remark that Theorem 2.1 shows that for any fixed $a \in \mathbb{R}$ there exists a singular perturbation \tilde{A} which coincides with A on the subspace $E_A((-\infty, a))\mathcal{H}$ and has any before given additional kind of spectra on the left of the point a. Theorem 2.1 can be in some sense improved using the paper [16] and combining it with results from [10]. The following theorem holds.

Theorem 4.1. Let A be an unbounded (at least from above) self-adjoint operator in a separable Hilbert space \mathcal{H} . Then for any fixed $a \in \mathbb{R}$ and an auxiliary self-adjoint operator T in \mathcal{H} there exists a self-adjoint singular perturbation \tilde{A} of A such that

$$\tilde{A}_{(-\infty,a)} \simeq T_{(-\infty,a)}.$$
(4.1)

However this variant of our main result does not ensure that \tilde{A} coincides with A on the subspace $E_A((-\infty, a))\mathcal{H}$.

Further, taking into account the paper [17] Theorem 2.2 takes the following stronger form:

Theorem 4.2. Let A be an unbounded (at least from above) self-adjoint operator in a separable Hilbert space \mathcal{H} . Then for any auxiliary self-adjoint operator T in \mathcal{H} , which is unbounded from above, there exists a self-adjoint singular perturbation \tilde{A} of A such that $\tilde{A} \simeq T$. One of the aim of our short paper is to show how recent results of usual spectral theory of self-adjoint extensions imply the corresponding results for singular perturbations. So Theorem 2.2 can be considered in particular as a simple proof of a weak version of the corresponding result from [17].

By the way Theorem 4.2 shows that the only condition for the existence of a singular perturbation obeying $\tilde{A} \simeq T$ is that both operators A and T together either semi-bounded from above or semi-bounded from below. However, if this condition is satisfied, then one can produce by singular perturbation any self-adjoint operator up to unitary equivalence.

Acknowledgments

This work was partly supported by DFG 436 UKR 113/78 grant. Authors would like to thank H.Naidhardt for drawing our attention to [10] and [17].

References

- [1] Albeverio S., Brasche J.F., Malamud M., Neidhardt H., Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, University of Bonn, SFB 611, Preprint no. 166 (2004), accepted to publ. in J. Funct. Anal.
- [2] Albeverio S., Brasche J.F., Neidhardt H., On inverse spectral theory of self-adjoint extensions: mixed types of spectra, J. Funct. Anal., 154, 130-173 (1998).
- [3] Albeverio S., Dudkin M., Konstantinov A., and Koshmanenko V., On the point spectrum of *H*₋₂-class singular perturbations, *Math. Nachr.* 208, No. 1-2, (2007) 20-27.
- [4] Albeverio S., Konstantinov A., and Koshmanenko V., On inverse spectral theory for singularly perturbed operator: point spectrum, *Inverse Problems*, 21, (2005) 1871-1878.
- [5] Albeverio S., Kurasov P. Singular perturbations of differential operators and solvable Schrödinger type operators, Cambridge: Univ. Press, 2000.
- [6] Brasche J.F., Malamud M.M., Neidhardt H., Weyl function and spectral properties of self-adjoint extensions, *Integr. Eq. Oper. Theory*, 43, 264-289 (2002).
- [7] Brasche J.F., Neidhardt H., J.Weidmann, On the point spectrum of self-adjoint extensions, *Math. Zeitschr.*, 214, 343-355 (1993).

- [8] Brasche J.F., Neidhardt H., On the absolutely continuous spectrum of self-adjoint extensions, J. Funct. Anal., 131, 364-385 (1995).
- [9] Brasche J.F., Neidhardt H., On the singular continuous spectrum of self-adjoint extensions, *Math. Zeitschr.*, 222, 533-542 (1996).
- [10] Brasche J.F., Spectral theory of self-adjoint extensions. Spectral theory of Schrödinger operators, Contemp. Math., **340**, 51-96 (2004).
- [11] Derkach V.A., Malamud M.M., General Resolvents and the Boundary Value Problem for Hermitian Operators with Gaps, J. Funct. Anal., 95, 1-95 (1991).
- [12] Dudkin M.E., Koshmanenko V.D., On the point spectrum arising under finite rank perturbations of self-adjoint operators, Ukrainian Math. J., 55, No. 9, 1269-1276 (2003).
- [13] Konstantinov A.Yu., Point spectrum of singularly perturbed operators, Ukrainian Math. J., 57, No. 5, (2005).
- [14] Koshmanenko V., A variant of inverse negative eigenvalues problem in singular perturbation theory, *Methods Funct. Anal. Topology*, 8, No.1, 49-69 (2002).
- [15] Krein M.G. Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I, *Math. Zbornik*, **20**(62), No.3, 431-495 (1947).
- [16] Neidhardt H., Zagrebnov V.A., Does each symmetric operator have a stability domain ? *Rev. Math. Phys.*, **10**, No. 6 (1998) 829-850.
- [17] Schmüdgen K., On restrictions of unbounded symmetric operators, Operator Theory, 11 (1984), No. 2, 379-393.