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Abstract. Let A ≥ 0 be a self-adjoint unbounded operator in a Hilbert space H.
Let H1⊂ H ⊂ H−1 be the rigged Hilbert space associated with A, where the norms

in H±1 are defined as ‖·‖±1 = ((A + 1)±1·, ·)1/2. Given ψj ∈ H1 \ D(A), a sequence
of vectors orthonormal in H, and Ej ≤ 0, j = 1, ..., N, a sequence of non-positive
numbers, we explicitly construct an operator T, acting from H1 to H−1, such that

the perturbed operator Ã = A+̃T , defined by the generalized operator sum, solves

the negative eigenvalues problem, Ãψj = Ejψj . We show that T is uniquely defined
if rank T = N . Besides we give a general description of all self-adjoint operators

T ′ : H1 →H−1 such that Ã′ = A+̃T ′ solve the same negative eigenvalues problem.

1. Introduction

Let A ≥ 0 be a positive unbounded self-adjoint operator in a complex separable
Hilbert space H with an inner product (·, ·) and the norm ‖·‖ . We will assume that
inf‖f‖=1(Af, f) = 0 and (Af, f) > 0, f 6= 0, i.e., that A is invertible.

Let {Hk(A)}k∈R1 be the A−scale of Hilbert spaces (for details see below Ap-
pendix). Here we use only the following part of this scale:

(1) H−1 ⊃ H0 ≡ H ⊃ H1,

where H1 ≡ H1(A) coincides with the domain D(A1/2) in the norm ‖ϕ‖1 := ‖(A +
I)1/2ϕ‖, where I stands for identity, and H−1 ≡ H−1(A) is the dual space (H−1

is the completion of H in the norm ‖f‖−1 := ‖(A + I)−1/2f‖). Obviously A is
bounded as a map from H1 to H−1, and therefore the expression 〈ϕ,Aψ〉 has sense
for any ϕ,ψ ∈ H1, where 〈·, ·〉 denotes the dual inner product between H1 and H−1.

Let T : H1 → H−1 be a closed symmetric operator acting in the A−scale. We
say that an operator T : H1 → H−1 is H−singular if the range R(T ) contains
elements which do not belong to H. It may happens that R(T ) ∩ H = {0} and
moreover that T belongs to the H−1-class (see Appendix).

Given A and T we construct the singularly perturbed operator Ã = A+̃T using
the operation of generalized operator sum, which extends the well-known form-sum
procedure. By definition (for details see Appendix and ref. [11,12,18,23,25], [28])
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2 V. KOSHMANENKO

the generalized operator sum, Ã = A+̃T, is the “restriction” of the operator sum
A + T : H1 → H−1 onto H, where A stands for the closure of A as an operator
from H1 to H−1. Precisely,

(2) D(Ã) = {ϕ ∈ H1 ∩ D(T ) : Aϕ + Tϕ ∈ H}, Ãϕ = Aϕ + Tϕ.

In this paper we discuss the following variant of the inverse negative eigenvalues
problem (c.f. with [3], [15]).

Let ψj ∈ H1(A) \ D(A), j = 1, ..., N, be an arbitrary sequence of vectors, which
is orthonormal in H, (ψj , ψk) = δjk, and let Ej ≤ 0, j = 1, ..., N, be a sequence of
non-positive numbers. We want to construct a singular operator T : H1 → H−1

(possibly of the H−1-class) such that the perturbed operator Ã = A+̃T is self-
adjoint in H and solves the negative eigenvalues problem,

(3) Ãψj = Ejψj , j = 1, ..., N.

In this paper we construct the required operator T by the explicit inductive
method using, at each step, a rank one singular perturbation.

We start with an observation that for any self-adjoint operator A, a regular rank
one perturbation A1 = A + α1 (·, ω1) ω1 with ω1 = (A− E1)ψ1 and α1 = − 1

(ψ1,ω1)

solves the problem A1ψ1 = E1ψ1 for any beforehand given real number E1 and
any vector ψ1 ∈ D(A), under the condition that (Aψ1, ψ1) 6= E1 ‖ψ1‖2 (in fact
this condition might be omitted). We can repeat this simple construction for any
real number E2 and any other vector ψ2 ∈ D(A), taking A1 in place of A. Then
the operator A2 = A1 + α2 (·, ω2)ω2 with ω2 = (A1 − E2)ψ2 and α2 = − 1

(ψ2,ω2)

solves the problem A2ψ2 = E2ψ2. If ψ2 ⊥ ψ1, then, at the second step, the previous
eigenvalue pair, E1, ψ1, is preserved, i.e., the operator A2 solves also the problem
A2ψ1 = E1ψ1. Similarly by induction, at the Nth step, we obtain the operator
AN = AN−1 +αN (·, ωN )ωN which is a rank N perturbation of A and which solves
the problem (3) with ψj ∈ D(A), (ψj , ψk) = δjk, j, k = 1, ..., N, and any real
numbers Ej .

We will show in this paper that just described way admits an extension to the
case where all ψj ∈ H1(A)\D(A) and Ej ≤ 0. Moreover a similar result is true (see
[17]) for an arbitrary self-adjoint operator A in the case where ψj ∈ H, span{ψj}∩
D(A) = {0} , and Ej ∈ R1.

We remark that in the case of a rank one perturbation, Ã = A+̃α 〈·, ω〉ω, such
that Ã solves the problem Ãψ = Eψ, there exists a one-to-one correspondence
between the sets of pairs {E, ψ} and {α, ω}. Moreover this fact allows us to prove
the uniqueness theorem for the operator T in the representation Ã = A+̃T under
the condition that rank T = N .

In general, the operator T is not unique. In section 5 we give a description of
all set operators T ′ : H1 → H−1 such that Ã′ = A+̃T ′ solves the same negative
eigenvalues problem.

2. Singular rank one perturbations

Here we show (by explicit construction) that for any ψ ∈ H1 and a real E there
exists a unique (singular) rank one perturbation Ã of A, which solves the problem

Ãψ = Eψ.
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We start with a brief account in the theory of weak singular rank one perturba-
tion of A which might be considered now as a bounded from below (unbounded)
operator (for more details see Appendix and [5,7,16,23,24,25,30]).

Let a vector ω ∈ H−1 \ H, ‖ω‖−1 = 1 be fixed. We assign to ω the bounded
operator T = T ω = 〈·, ω〉ω acting from H1(A) to H−1(A) as follows:

T ωϕ = 〈ϕ, ω〉ω, ϕ ∈ H1(A).

It is known that each T ω produces a family of self-adjoint singular rank one pertur-
bations Ã = Aα,ω with a parameter α ∈ (R1 \ {0}) ∪∞ which is called a coupling
constant. We always write

Aα,ω = A+̃αT ω = A+̃α 〈·, ω〉ω.

If α 6= ∞, then Aα,ω is defined as the generalized operator sum [18]. In the case
α = ∞, the operator A∞,ω is defined (cf. with [16]) as the Friedrichs extension of
the densely defined symmetric operator

◦
A := A ¹ D,

where the domain
D ={ϕ ∈ D(A) : 〈ϕ, ω〉 = 0}

is the maximal dense in H lineal on which all Aα,ω coincide with A. In any case
the resolvent of Aα,ω has the representation by Krein’s formula,

(4)
R̃z = (Aα,ω − zI)−1 = (A− zI)−1 − 1

α−1 + 〈ηz, ω〉 (·, ηz)ηz,

= Rz − b−1
α (z)(·, ηz)ηz

where

(5) Rz = (A− zI)−1, ηz = Rzω, Rz = (A− zI)−1, b α(z) =
1
α

+ 〈ηz, ω〉 .

The domain D(Aα,ω) belongs to H1(A) and may be described as follows. For any
z from resolvent set of Aα,ω,

D(Aα,ω) =
{
ψ ∈ H1(A) : ψ = ϕ− b−1

α (z) 〈ϕ, ω〉 ηz, ϕ ∈ D(A)
}

,

and
(Aα,ω − zI)ψ = (A− zI)ϕ.

For α = ∞, b∞(z) = 〈ηz, ω〉 and we get the Friedrichs extension A∞,ω of
◦
A,

which, in the case of a positive operator A, can be described also as follows:

D(A∞,ω) = {ψ ∈ H1(A) : ψ = ϕ− 〈ϕ, ω〉 η, ϕ ∈ D(A)},
A∞,ωψ = Aϕ + 〈ϕ, ω〉 η,

where we put η = (A+ I)−1ω and use the equality 〈η, ω〉 = ‖ω‖ 2
−1 = 1. Thus each

Aα,ω is a self-adjoint extension of
◦
A.
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Let now A be a positive operator. It is known (for details, see [4,5,7,8,25,24])
that a pair ψ ∈ D(Aα,ω) \ D(A), E < 0, solves the eigenvalue problem Aα,ωψ =
Eψ, if and only if the vector ψ has the form

ψ = (A− E)−1ω

and E is a root of the equation

(6) b α(E) =
1
α

+ 〈ηE , ω〉 = 0.

Does there exist a solution E of (6) for any α if ω ∈ H−1 \H is fixed ? We give
an answer to this question under the assumptions that α < 0.

Let us consider the function

(7) a ω(E) := 〈ηE , ω〉 =
〈
(A + E)−1ω, ω

〉
=

∫ ∞

0

1
λ− E

dµ ω(λ), E ≤ 0,

where dµ ω(λ) = d 〈E λω, ω〉 stands for the spectral measure of A associated to ω
and where E λ is the resolution of identity for A. It is possible that a ω(0) = ∞.
Evidently, a ω(E) is a continuous, nonnegative, and non-decreasing function on
E ∈ (−∞, 0] with

lim
E→−∞

a ω(E) = 0.

Due to (6), Aα,ωψ = Eψ for some vector ψ ∈ D(Aα,ω) \ D(A) if and only if

(8) 〈ω,REω〉 = − 1
α

.

Thus the answer to the above question depends of whether the value

a ω(0) := lim
E→0

a ω(E)

is finite or not. Since a ω(E) grows monotonically from 0 to a ω(0), when E runs
over the interval (−∞, 0], a solution E ≤ 0 always exists for all negative α such
that

− 1
α
≤ a ω(0).

Therefore if
a ω(0) =

∫ ∞

0

1
λ

dµ ω(λ) < ∞,

then the maximal value of the coupling constant α insuring the existence of a
solution E ≤ 0 is

α = − 1
a ω(0)

.

However if
lim
E→0

a ω(E) = a ω(0) = +∞,

then Aα,ω possesses a negative eigenvalue E for any fixed α < 0. We emphasize that
the solution E, if it exists, is unique since the function a ω(E) grows monotonically
when E → 0.
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We can give some characterization of vectors ω such that Aα,ω possesses an
eigenvalue E < 0 for any fixed α < 0. We need some additional preparations before
formulating of our result.

Introduce the “homogeneous” version of the positive space H1(A). Let H1 ≡
H1(A) denote the completion of D(A) under the norm ‖f‖H1

:= (Af, f)1/2. We
recall that by assumption A is invertible. It is clear that ‖·‖H1

≤ ‖·‖H1
and

therefore ‖·‖H−1
≥ ‖·‖H−1

, where H−1 ≡ H−1(A) is the completion of the range
R(A) under the inner product (f, g)H−1 := (A−1f, g). Thus we have

(9) H−1(A) ⊇ H−1(A), H1(A) ⊇ H1(A).

We observe (see (7)) that
a ω(0) = ‖ω‖2H−1

.

Therefore ω ∈ H−1 iff a ω(0) < ∞. Thus if we assume that ω ∈ H−1, then
limE→0 a ω(E) = a ω(0) < ∞, and the root E of equation (8) is absent, if the
value of the coupling constant satisfies − 1

a ω(0) < α < 0 . Indeed if E is a root of

the equation α = − 〈
ω, (A−E)−1ω

〉−1 then the coupling constant α should satisfy
the inequality

− 1
α
≤ a ω(0).

Thus we have the following result (cf. with [4]).

Theorem 1. For a fixed element ω ∈ H−1 \ H, ‖ω‖−1 = 1, the operator Aα,ω =
A+̃α 〈·, ω〉ω possesses exactly one negative eigenvalue E < 0 for any α < 0 , if and
only if

(10) ω ∈ H−1 \H−1.

In such a case, the uniquely defined eigenvalue E is a root of the equation

(11) a ω(E) + α−1 = 0,

and the corresponding eigenvector has the form ψ = (A− E)−1ω.

In the considered situation we have a one-to-one correspondence between pairs
{α, ω} and {E, ψ} . Now we show that such a correspondence exists in a more
general situation.

Theorem 2. For each bounded from below (unbounded) self-adjoint operator A in
H, any nonzero vector ψ ∈ H1, and a real number E, there exists a uniquely defined
rank one (singular) perturbation Ã = Aα,ω with ω ∈ H−1 and α given by

(12) ω = (A−E)ψ, α = − 1
〈ψ, (A−E)ψ〉 ,

which solves the problem

(13) Ãψ = Eψ.
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In other words, the operator

(14) Ã = Aα,ω = A+̃α 〈·, ω〉ω

with ω ∈ H−1 and a coupling constant α ∈ (R1 \ {0}) ∪ ∞ defined by (12), for
any beforehand given vector 0 6= ψ ∈ H1 and a real number E, solves the problem
(13). We put Ã = A, if ω = 0, i.e., if Aψ = Eψ. Conversely if Ã is a rank one
weak singular perturbation of A (see Appendix) and Ã solves the problem (13),
then this operator admits the representation (14), where the coupling constant α
and the element ω are uniquely connected (precisely ω is defined up to the factor
eiθ) with ψ and E satisfying relations (12). Thus this relations establish a one-to-
one correspondence between {E, ψ} and {α, ω} under the condition that Ã solves
problem (13).

Proof. Let ψ ∈ H1 and E ∈ R1 be given. In the trivial case where ψ ∈ D(A) and
Aψ = Eψ, we put Ã = A, and (13) is satisfied. Otherwise ω 6= 0 and α 6= 0 too.
Assume α 6= ∞. By the direct checking we find that the operator

(15) Ã = A+̃
(
− 1
〈ψ, (A−E)ψ〉

)
〈·, (A−E)ψ〉 (A−E)ψ,

solves the problem Ãψ = Eψ. Moreover for any other operator Ã′ = A+̃α′

〈·, ω′ 〉ω′, ω′ 6= 0, α′ 6= ∞, which solves the same problem, the element ω′ nec-
essarily has the form ω′ = eiθω, θ ∈ [0, 2π) and α′ = α, where ω and α are given
by (12). If ψ and E are such that 〈Aψ, ψ〉 = E ‖ψ‖2 , (ω 6= 0), then α = ∞, we
define Ã by Krein’s formula

(16) R̃z = (A∞,ω − zI)−1 = (A− zI)−1 − 1
〈ηz, ω〉 (·, ηz)ηz,

with ηz = Rzω where ω = (A−E)ψ. We recall that now Aψ 6= Eψ. By the
direct checking we find that R̃zψ = 1

E−z ψ, i.e., Ã = A∞,ω solves the problem (13).

Conversely if Ã is the Friedrichs extension of a symmetric operator
◦
A defined by

some element ω ∈ H−1 \H, and Ã solves the problem (13), then the resolvent of Ã

has the form (16) where necessarily ω = (A−E)ψ, and 〈Aψ, ψ〉 = E ‖ψ‖2, which
corresponds to α = ∞. ¤

Thus in the family of rank one perturbations Aα,ω such that each Aα,ω solves
the problem Ãψ = Eψ with a real E and some ψ ∈ H1, we have a one-to-one
correspondence between pairs {E ∈ R1, ψ ∈ H1} and {α ∈ (R1 \ {0}) ∪ ∞, ω ∈
H−1}.

We remark also that a similar result is true (for details see [17]) for a strongly
(pure) singular rank one perturbation Ã ∈ Pss(A) (for notation see Appendix) with
ψ ∈ H and ω ∈ H−2. In this case, the operator Ã may be defined for any beforehand
given E ∈ R1 and ψ ∈ H by Krein’s formula

(Ã− z)−1 = (A− z)−1 + b−1
z (·, ηz)ηz, Im z 6= 0,

with
ηz = (A− E)(A− z)−1ψ
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and
bz = (E − z)(ψ, ηz).

The above described procedure of constructing the operator Ã which solves the
problem (13) is called the inverse eigenvalues method in the singular perturbation
theory. In the next section we will use this methods in the case of finite rank
perturbations.

3. Singular finite rank perturbations

Let A = A∗ ≥ 0 be invertible. Given a sequence of vectors ψj ∈ H1(A) \ D(A)
orthonormal in H and a sequence of non-positive numbers Ej ≤ 0, j = 1, ..., N,
introduce the sequence of operators A1, ..., AN as follows. At the first step we put

A1 = A+̃α1 〈·, ω1〉ω1, ω1 ≡ ω0
1 = (A− E1)ψ1

with
α1 = − 1

〈ψ1, (A− E1)ψ1〉 = − 1
〈ψ1,Aψ1〉 − E1

= − 1
a0
11 − E1

,

where
a0
11 := 〈ψ1,Aψ1〉 .

We remark that under starting assumptions ∞ 6= α1 < 0 since 〈ψ1,Aψ1〉 > 0 and
−E ≥ 0. According to constructions of the previous section, A1 is a weak singular
rank one perturbation of A, which solves the problem A1ψ1 = E1ψ1 and therefore
it is a uniquely defined by beforehand given vector ψ1 ∈ H1(A) \D(A) and number
E1 ≤ 0. We note that A1 may be written also in the form

A1 = E1Pψ1 ⊕A⊥1 ,

where Pψ1 stands for the orthogonal projector onto the vector ψ1 and A⊥1 is the
part of A acting in the subspace orthogonal to ψ1. It is clear that A⊥1 ≥ 0.

At the second step we construct a weak singular rank one perturbation of A1,

A2 = A1+̃α2

〈·, ω1
2

〉
ω1

2 , ω1
2 = (A1 − E2)ψ2,

where
ω1

2 = (A1 − E2)ψ2 ∈ H−1(A1),

since ψ2 ∈ H1(A) and norms in H1(A) and H1(A1) are equivalent, and where

α2 = − 1
〈ψ2, (A1 − E2)ψ2〉 = − 1

a1
22 − E2

.

We find that

a1
22 := 〈ψ2,A1ψ2〉 = 〈ψ2,Aψ2〉+ α1 |〈ψ2, ω1〉|2 = a0

22 −
1

a0
11 − E1

|a0
21|2,

a0
21 := 〈ψ2, Aψ1〉 ,
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and therefore

α2 = − 1

a0
22 − E2 − |a0

21|2
a0
11 − E1

.

By the construction, A2 solves the problem A2ψ2 = E2ψ2, and moreover it solves
the problem A2ψ1 = E1ψ1 too since ψ1 ⊥ ψ2. Thus by our construction and due
to Theorem 2, the operator A2 is uniquely defined by the vectors ψj ∈ H1(A) and
the numbers Ej ≤ 0, j = 1, 2, singular rank two perturbation of A, which solves
the eigenvalues problem A2ψj = Ejψj , j = 1, 2. We note that A2 may be written
in the form

A2 = E1Pψ1 ⊕ E2Pψ2 ⊕A⊥2 ,

where Pψj , j = 1, 2, stand for the orthogonal projectors onto vector ψj and A⊥2 is
the part of A2 acting in the subspace orthogonal to the vectors ψ1, ψ2. Obviously
A2, as a rank two perturbation of A, has the representation

A2 = A+̃T2

with a singular rank two operator T2 : H1(A) → H−1(A),

T2 = α1

〈·, ω0
1

〉
ω0

1 + α2

〈·, ω1
2

〉
ω1

2 ,

which can also be written in the form

T2 =
2∑

j,k=1

tjk 〈·, ωj〉ωk, ωj := (A− Ej)ψj ,

where

t11 = α1 + α2(α1)2
∣∣a0

21

∣∣2 ,

t12 = α1α2a
0
21,

t21 = α1α2a
0
12,

t22 = α2.

Thus

A2 = A+̃T2 = A+̃




2∑

j,k=1

tjk 〈·, ωj〉ωk


 .

We can continue our constructions to any finite step up to n = N . At the nth
step we construct a weak singular rank one perturbation of the operator An−1,

An = An−1+̃αn

〈·, ωn−1
n

〉
ωn−1

n ,

where
ωn−1

n = (An−1 − En)ψn ∈ H−1(An−1)
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since the norms in H1(A) and H1(An−1) are equivalent and ψn ∈ H1(A), and where

αn = − 1〈
ψn, ωn−1

n

〉 = − 1
an−1

nn − En

,

an−1
nn := 〈ψn,An−1ψn〉

= 〈ψn,An−2ψn〉+ αn−1|
〈
ψn, ωn−2

n−1

〉 |2 ≡ an−2
nn + αn−1|an−2

n,n−1|2,

with
an−2

n,n−1 = 〈ψn,An−2ψn−1〉 .
Thus

αn = − 1

an−2
nn − En −

|an−2
n,n−1|2

an−3
n−1,n−1 − En−1 − · · · − |a0

21|2
a0
11 − E1

.

We set

(17) AN = An = A+̃α1 〈·, ω1〉ω1+̃ · · · +̃αn

〈·, ωn−1
n

〉
ωn−1

n , N = n.

By Theorem 2 the operator AN is uniquely defined by a vector ψN ∈ H1(A)
and a number EN ≤ 0, weak singular rank one perturbation of An−1 which solves
the eigenvalues problem ANψN = ENψN . Moreover by induction, AN is uniquely
defined by the vectors ψj ∈ H1(A) and the numbers Ej ≤ 0, j = 1, ...N, weak
singular rank N perturbation of A, which solves the eigenvalues problem ANψj =
Ejψj for all Ej ≤ 0.

We note also that AN can be written in the form

AN = E1Pψ1 ⊕ · · · ⊕ ENPψN ⊕A⊥N ,

where Pψj , j = 1, ..., N, stands for the orthogonal projector onto the vector ψj , and
A⊥N is the part of AN acting in the subspace orthogonal to the vectors ψj .

The above result we formulate as

Theorem 3. Let Ã be a rank N weak singular perturbation of a self-adjoint oper-
ator A ≥ 0, i.e.,

Ã ≡ AN = A+̃TN ,

where TN : H1(A) → H−1(A) is a H−singular rank N operator (see Appendix).
Let a set of vectors ψj ∈ H1(A) \ D(A), orthonormal in H, and numbers Ej ≤ 0,

j = 1, ..., N , be arbitrary and fixed. Then Ã solves the eigenvalues problem

Ãψj = Ejψj , Ej ≤ 0, j = 1, ..., N,

if and only if the operator TN admits the representation in the form

(18) TN =
N∑

j=1

αj

〈
·, ωj−1

j

〉
ωj−1

j ,
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where the coupling constants αj and the elements ωj−1
j are uniquely defined by the

vectors ψj and the numbers Ej according to the inductive formulae

ωj−1
j := (Aj−1 − Ej)ψj(19)

αj := − 1〈
ψj , ω

j−1
j

〉 .(20)

Thus we have a one-to-one correspondence between the set of any beforehand
given vectors ψj ∈ H1(A) \ D(A) orthonormal in H and numbers Ej ≤ 0, j =
1, ..., N, and a set of weak singular rank N perturbations Ã (see Appendix) which
solve the eigenvalues problem (3); this correspondence is fixed by (18), (19), and
(20).

Proof is inductive and uses Theorem 2. In one direction, the theorem is proved
by the above described explicit construction of the operators AN (see (17)). In
the opposite direction theorem is proved in the case N = 1 (Theorem 2). In the
general case, N > 1, we use the following reasoning. Assume Ã is a rank N weak
singular perturbation of A ≥ 0, i.e., Ã = A+̃T, with some H−singular rank N
closed symmetric operator T : H1(A) → H−1(A) (in fact T is self-adjoint). Assume
Ã solves the eigenvalues problem (3). Then

(AN − Ã)ψj = 0, j = 1, ..., N,

where AN is defined by (17), and therefore

TNψj = Tψj = −ωj−1
j , j = 1, ..., N.

This means that TN = T since all the vectors ωj−1
j are linearly independent by

construction, and both TN , T are rank N self-adjoint operators. Thus Ã = AN . ¤

We remark that the required operators T of rank N can be constructed in another
way as follows [29]. Put

T =
N∑

i,j=1

tij 〈·, ωi〉ωj , ωj := (A−Ej)ψj .

We assert that Ã = A+̃T solves the problem (3), if (tij)
N
i,j=1 is, up to sign, the

matrix inverse to

a = (akj)
N
k,j=1 , akj := 〈ψk, (A− Ej)ψj〉 .

Indeed, the equation Ãψk = Ekψk can be equivalently rewritten in the form

Aψk +
N∑

i,j=1

tij 〈ψk, ωi〉ωj = Ekψk,
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or
N∑

i,j=1

tijakiωj =
N∑

j=1

αjkωj = −(A− Ek)ψk = −ωk,

where αjk =
∑N

i=1 tijaki. Because the vectors ωj , j = 1, ..., N are linearly indepen-
dent, we conclude that Ãψk = Ekψk, k = 1, ..., N, holds if and only if αjk = −δjk.
This means that tij = −(a−1)ij , where a−1 denote the matrix inverse to a. Thus if
we put

(21) T =
N∑

i,j=1

(−1)(a−1)ij 〈·, ωi〉ωj ,

then Ã = A+̃T solves the problem (3).

4. Sequential method

Let an operator A ≥ 0 be as above, ψj ∈ H1(A)\D(A) be a sequences of vectors
orthonormal in H, and Ej < 0, j = 1, ..., N, be a sequence of negative numbers.

In this section we develop another sequential method of an explicit construction
of the operator T : H1 → H−1 such that Ã = A+̃T is self-adjoint and solves the
negative eigenvalues problem,

(22) Ãψj = Ejψj , Ej < 0, j = 1, ..., N.

Similar to the previous section, in the construction given below we consecutively
use only (singular) rank one perturbations of the form α 〈·, ω〉 ω : H1 → H−1,
0 6= α ∈ R1, where the vectors

ω ∈ N−1 := span {(A−Ek)ψk}N
k=1 ⊂ H−1.

Let us introduce the following notations. Put

Ak
0 ≡ A, k = 1, ..., N,

and define the operators

Ak
1 := Ak

0+̃t1k

〈·, ωk
1

〉
ωk

1 , t1k = − 1〈
ψ1, ωk

1

〉 ,

where
ωk

1 = (Ak
0 −NEkδ1k)ψ1 ∈ H−1

(here we used the same notation as in the previous section for different vectors
ω ∈ N−1). Similarly we define the operators

(23) Ak
j := Ak

j−1+̃t1k

〈·, ωk
j

〉
ωk

j , t1k = − 1〈
ψj , ωk

j

〉 , j ≥ 1,

where

(24) ωk
j = (Ak

j−1 −NEkδjk)ψj ∈ H−1,
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and Ak
j−1 is the closure of Ak

j−1 as a map from H1 to H−1. We note that each
operator Ak

j can be represented in the form Ak
j = A+̃T k

j , where T k
j is a rank j

self-adjoint operator acting from H1 to H−1 (one can easily find its explicit form).
By definition we put

(25) A(k) := Ak
j=N = A+̃T (k),

where

T (k) := T k
j=N =

N∑

j=1

tjk

〈·, ωk
j

〉
ωk

j .

Define also

(26) Ã :=
1
N

N∑

k=1

A(k),

and T : H1 → H−1 as follows:

(27) T =
1
N

N∑

k=1

T (k) =
1
N

N∑

k,j=1

tkj

〈·, ωk
j

〉
ωk

j ,

where the vectors ωk
j ∈ H−1 are given by (24) and where all the coefficients

(28) tjk = − 1〈
ψj , ωk

j

〉 = − 1〈
ψj , (Ak

j−1 −NEkδjk)ψj

〉 < ∞.

Our aim in this section is to prove

Theorem 4. Given a sequence of vectors ψj ∈ H1(A) \ D(A) orthonormal in H
and a sequence of negative numbers Ej < 0, j = 1, ..., N, let Ã be the operator
constructed according to (23)–(28). Then Ã is self-adjoint and solves the negative
eigenvalues problem (22) in the exact sense, i.e., Ãψ = Eψ, E < 0, E 6= Ej , implies
ψ ≡ 0.

To prove this, we start with

Proposition 1. The operator Ã defined by (26) coincides with the generalized
operator sum,

(29) Ã = A+̃T.

Proof. Using above notations and definitions (see (23)–(28)), we have

A(1) ≡ A1
j=N = A1

j=N−1+̃tN1

〈·, ω1
N

〉
ω1

N

= A1
N−2+̃tN−1,1

〈·, ω1
N−1

〉
ω1

N−1+̃tN1

〈·, ω1
N

〉
ω1

N

= A+̃
N∑

j=1

tj1
〈·, ω1

j

〉
ω1

j .
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Similarly for any k ≥ 1,

A(k) ≡ Ak
j=N = Ak

j=N−1+̃tNk

〈·, ωk
N

〉
ωk

N

= A+̃
N∑

j=1

tjk

〈·, ωk
j

〉
ωk

j ≡ A+̃T (k).

Therefore,

Ã =
1
N

N∑

k=1

A(k) = A+̃
1
N

N∑

k=1

T (k) = A+̃T.

¤
Let

Ak
0 : H1 → H−1,

Ak
j : H1 → H−1, k, j = 1, ..., N,

denote closures of the operators A and Ak
j as maps from H1 to H−1.

Proposition 2. All the operators Ak
0 , Ak

j are self-adjoint in the sense of a pair of
spaces.

Proof. Recall that Ak
0 ≡ A, and Ak

j = Ak
j−1+̃tjk

〈·, ωk
j

〉
ωk

j . By the construction,
all these operators, as maps from H1 to H−1, are densely defined symmetric and
bounded. Therefore their closures are self-adjoint. ¤
Proposition 3.

Ak
j ψl = 0, if l ≤ j < k.

Proof. By the construction, for j = 1 and any k > 1 we have

(30) Ak
1ψ1 = Ak

1ψ1 = Aψ1 − 1
〈ψ1,Aψ1〉 〈ψ1,Aψ1〉Aψ1 = 0.

Similarly, for j = 1 and any k > 2,

Ak
2ψ2 = Ak

2ψ2 = Ak
1ψ2 − 1〈

ψ2,Ak
1ψ2

〉 〈
ψ2,Ak

1ψ2

〉
Ak

1ψ2 = 0,

and also

Ak
2ψ1 = Ak

2ψ1 = Ak
1ψ1 − 1〈

ψ2,Ak
1ψ2

〉 〈
ψ1,Ak

1ψ2

〉
Ak

1ψ2 = 0,

since Ak
1ψ1 = 0 , and

〈
ψ1,Ak

1ψ2

〉
=

〈
Ak

1ψ1, ψ2

〉
= 0 due to (30), where we used the

self-adjointness of the operator Ak
1 in the A−scale (see the previous Proposition).

By induction for an arbitrary l ≤ j < k we have

Ak
j ψl = Ak

j ψl = Ak
j−1ψl − 1〈

ψj ,Ak
j−1ψj

〉 〈
ψl,Ak

j−1ψj

〉
Ak

j−1ψj = 0,

since Ak
j−1ψl = 0 if l ≤ j−1 < k, and

〈
ψl,Ak

j−1ψj

〉
=

〈
Ak

j−1ψl, ψj

〉
= 0 too, where

we again used that operators Ak
j−1 are self-adjoint in the A−scale. ¤
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Proposition 4.
Ak

j ψl = δjkNEkψl, if l ≤ j = k.

Proof. Let l < j = k. Then similarly to the previous arguments, we have

Ak
j ψl = Ak

j ψl

= Ak
j−1ψl − 1〈

ψk−1,Ak
k−1ψk−1

〉 〈
ψl,Ak

k−1ψk−1

〉
Ak

k−1ψk−1 = 0,

since 〈
ψl,Ak

k−1ψk−1

〉
=

〈
Ak

k−1ψl, ψk−1

〉

and Ak
k−1ψl = 0, l ≤ j = k − 1. In the case where l = j = k we have

Ak
kψk = Ak

kψk

= Ak
k−1ψ −

1〈
ψk, (Ak

k−1 −NEk)ψk

〉 〈
ψk, (Ak

k−1 −NEk)ψk

〉
(Ak

k−1 −NEk)ψk

= Ak
k−1ψk − (Ak

k−1 −NEk)ψk = NEkψk.

¤
Proposition 5. Let k < j. Then

(31) Ak
j ψk = NEkψk, if k < j,

and

(32) Ak
j ψl = 0, if l ≤ j, l 6= k.

Proof. By the definition

Ak
j ψk = Ak

j ψk = Ak
j−1ψk − 1〈

ψj , (Ak
j−1 −NEkδj−1,k)ψj

〉

× 〈
ψk, (Ak

j−1 −NEkδj−1,k)ψj

〉
(Ak

j−1 −NEkδj−1,k)ψj .

Assume k = j − 1, then obviously Ak
j−1ψk = NEkψk. Besides,

〈
ψk,Ak

j−1ψj

〉
=

〈
Ak

j−1ψk, ψj

〉
= Ek 〈ψk, ψj〉 = 0,

since ψk ⊥ ψj , k 6= j. Thus Ak
j ψk = NEkψk, if j = k + 1. By induction, we have a

similar relation for any j > k, i.e., (31) is proved. To prove (32) we have to consider
only the case l ≤ j, l > k, since the case l < k is already proved in the previous
proposition.

At the first step, put j = k + 1 = l. Then we have

Ak
k+1ψk = Ak

k+1ψk

= Ak
kψk − 1〈

ψk+1,Ak
kψk+1

〉 〈
ψk+1,Ak

kψk+1

〉
Ak

kψk+1 = 0.
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At the second step we take j = k + 2, and consider l = k + 1, k + 2. By a direct
computation we have

Ak
k+2ψk+1 = Ak

k+2ψk+1

= Ak
k+1ψk+1 − 1〈

ψk+2,Ak
k+1ψk+2

〉 〈
ψk+1,Ak

k+1ψk+2

〉
Ak

k+1ψk+2 = 0,

since 〈
ψk+1,Ak

k+1ψk+2

〉
=

〈
Ak

k+1ψk+1, ψk+2

〉
= 0

and Ak
k+1ψk+1 = 0 similarly to the previous arguments. In the case l = k + 2, we

have

Ak
k+2ψk+2 = Ak

k+2ψk+2

= Ak
k+1ψk+2 − 1〈

ψk+2,Ak
k+1ψk+2

〉 〈
ψk+2,Ak

k+1ψk+2

〉
Ak

k+1ψk+2 = 0.

Similarly we obtain the same relation for j = k + 3, l = k + 1, k + 2, k + 3. And so
on. ¤

As a consequence we obtain

Proposition 6.

(33) A(k)ψl = NEkδklψk, if k, l = 1, ..., N.

Proof. To check this assertion, it is convenient to present the above considered
operators in the form of the operator array,




A1
0 = A

A1
2 = A
·
·
·

A1
N = A







A1
1 A1

2 · · · A1
N = A(1)

A2
1 A2

2 · · · A2
N = A(2)

· · A3
3 · · ·

· · · · · ·
· · · · · ·

AN
1 · · · · AN

N = A(N)




and consequently to look and check the assertion for each operator using the pre-
vious propositions. We remark only that A2

1 = A3
1 = · · · = AN

1 , A3
2 = A4

2 = · · ·
= AN

2 ,... ¤
We emphasize that each operator A(k) does not depend on the order in which

the pairs {ψj , δjkNEj}N
j=1 are taking in the construction of this operator. In other

words,
A(k) = Ak

j=N = Ak
P (j)=N ,

where P : {1, ..., N} → {i1, ..., iN} denotes a permutation in the set of indices
{1, ..., N} , which preserves the index k. Therefore each A(k) admits the represen-
tation

(34) A(k) = A(k,0)+̃t0kk

〈
·, ωk,0

2

〉
ωk,0

2 ,
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where A(k,0) is constructed by the inverse eigenvalues method from a sequence of
pairs {ψj , 0}N

j=1,j 6=k , and

ωk,0
2 = (A(k,0) −NEk)ψk,

t0kk = − 1〈
ψk, ωk,0

2

〉 .

Here we again used the additive property of generalized sums. Clearly, each A(k,0)

is positive,

(35) A(k,0) ≥ 0,

and moreover it solves the problem

(36) A(k,0)ψj = 0, j 6= k.

Proof of Theorem 4. Directly from (26), (29) and the above propositions it follows
that Ã is self-adjoint and (22) is fulfilled. So we have to prove only that there
absent additional negative eigen-solutions for the operator Ã defined by (26).

Assume Ãψ = Eψ, E < 0, for some vector ψ. Clearly, ψ /∈ N := span{ψk}N
k=1 ,

and moreover ψ should be orthogonal to this subspace. However each operator A(k)

is positive in the subspace Hª N (see (35), (36)). Therefore ψ = 0, and Ã solves
the problem (22) in the exact sense. ¤

We remark that the operator T defined by (27) satisfies

Rank T ≤ 2N.

Indeed by our constructions all elements ωk
j in (27) belong to the subspace

N−1 = span {Aψk, (A−NEj)ψj}N
k,j=1 .

In other words, for the range of the operator T, we have

R(T ) ⊂ N−1 ⊂ H−1.

Evidently, dimN−1 ≤ 2N. Therefore Rank T ≤ 2N also.

Another explicit solution of the problem (3) with an operator T of rank 2N can
be obtained as follows [29]. Assume for a moment that all the vectors ψj ∈ D(A).
Then we can introduce in H the N−dimensional subspace N = span {ψj}N

j=1 and
the operator

T ′ =
N∑

i=1

Ei(·, ψi)ψi.

Let P =
∑N

i=1(·, ψi)ψi be the orthogonal projection onto N in H. Then the oper-
ator

Ã = (I − P )A(I − P ) + T ′ = A + T,

T = PAP − PA−AP + T ′
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obviously solves the problem (3). In a general situation, where ψj ∈ H1(A), the
explicit solution of (3) can be presented in the form Ã = A+̃T , where T has the
form

T = T ′ +
N∑

i=1

[(
N∑

k=1

(·, ψk) 〈Aψk, ψi〉ψi

)
− 〈·,Aψi〉ψi − 〈·, ψi〉Aψi

]
.

Finally we remark that among all other operators Ã that give a solution of
the negative eigenvalue problem (3) our construction (see (26)–(29)) possesses the
rather specific property. Namely, each operator A(k), k = 1, ..., N, solves the follow-
ing negative eigenvalue problem: A(k)ψj = E′

j ψj , where ψj are the same vectors as
in (3), while E′

k = NEk and E′
j = 0, if j 6= k. We note that each A(k) is a rank N per-

turbation of A (see (23)–(25)) and by our construction (A(k) = limj→k Ak
j ) at any

step the operator Ak
j (which is a rank j perturbation of A) also solves the negative

eigenvalues problem. Moreover each operator of the form A(k1,...,ki) = A(k1) + ...+
A(ki), ki ≤ N , also solves the negative eigenvalues problem, A(k1,...,ki)ψj = E′

j ψj ,
where E′

j = NEj , if at last one of the indices k1, ..., ki coincides with j and E′
j = 0

otherwise.

5. A description of T

Let A ≥ 0 be as above. Let Ã ∈ Pad(A). This means that Ã can be represented
by the generalized sum, Ã = A+̃T, of A and a bounded self-adjoint operator T :
H1(A) → H−1(A) (see Appendix). Assume that Ã solves the negative eigenvalues
problem (3) with Ej < 0, j = 1, ..., N, in the exact sense, i.e., the set {ψj , Ej}N

j=1

exhausts all eigen-solutions of equation (3) with negative eigenvalues. In this section
we find a general description of the operators T.

Assume for a moment that the range

R(T ) ⊂ H−1(A)

(see (9)) and that T, as an operator from H1(A) to H−1(A), is bounded,

(37) |QT [f ]| = |〈Tf, f〉| ≤ M ‖f‖2H1
,

where QT [f ] stands for the quadratic form of T. Then by the Birman-Schwinger
principle [14] the operator Ã α = A+̃αT does not have any negative eigenvalues if
0 ≤ |α| ≤ 1

M . Indeed, (37) implies

αQT [f ] ≤ 〈Af, f〉 , if 0 ≤ |α| ≤ 1
M

,

since 〈Af, f〉 = ‖f‖2H1
. Therefore in this case,

〈Af, f〉+ α 〈Tf, f〉 ≥ 0.

This means that the quadratic form of Ã α is positive and hence Ã α does not
possess any negative eigenvalue.

Conversely, if Ã = A+̃T is positive, Ã ≥ 0, then

(38) −QT [f ] ≤ ‖f‖2H1
≡ 〈Af, f〉 .

Therefore, in this case T may be considered as an operator (not necessarily bounded)
acting from H1(A) to H−1(A) and which obeys the inequality

(39) −QT [f ] ≤ 〈Af, f〉 , f ∈ H1(A) ∩ D(T ).
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Theorem 5. Let an operator Ã′ = A+̃T ′ belong to the class Pad(A) (see Appen-
dix). Then it solves the negative eigenvalues problem (3) with Ej < 0, j = 1, ..., N,
in the exact sense if and only if T ′ admits the representation

(40) T ′ = TN + Tad,

where TN has the form (18) and the quadratic form QTad [f ] =〈Tadf, f〉 obeys the
inequality

(41) −QTad [f ] ≤ 〈Af, f〉

and, besides,

(42) Ker Tad ⊃ N : = span {ψj}N
j=1 .

Proof. Let Ã′ = A+̃T ′ solve the negative eigenvalues problem (3) with Ej < 0,

j = 1, ..., N, in the exact sense. Consider the operator AN = A+̃TN constructed in
Section 3 that also solves the same problem. Define

Tad = Ã′ −AN : H1(A) → H−1(A),

where Ã′ = A+T ′ and AN = A + TN . So Tad = T ′ − TN , and we can write

Ã′ = A+̃T ′ = A+̃(Tad + TN ).

We will show that Tad satisfies (41) and (42). Indeed (42) is fulfilled since both Ã′

and AN solve the same negative eigenvalues problem and therefore Tad equals zero
on the subspace

N = span {ψj}N
j=1 .

Thus we have only to prove that the quadratic form of QTad [f ] obeys the inequality
(41) on the subspace H⊥

1 (A) which is defined as the closure of H⊥1 (A) = H1(A)ª
N in H1(A). By the additive property of generalized operator sums (see Appendix)
we have

(43) Ã′ = A+̃(Tad + TN ) =
(
A+̃TN

)
+̃Tad = AN +̃Tad.

Therefore

Ã′ = Ã′
¹ ⊕

N∑

j=1

EjPψj =


A¹

N ⊕
N∑

j=1

EjPψj


 +̃Tad =

(
A¹

N +̃T ¹
ad

)
⊕

N∑

j=1

EjPψj ,

where ¹ stands for the restriction onto subspace H⊥1 (A) and where we used that

Tad = T ¹
ad ⊕ 0. We note now that both Ã′

¹
and A¹

N are positive, since Ã′ and AN

solve the problem (3) in the exact sense. Thus the operator Ã′
¹

can be viewed as
a perturbation of the positive operator A¹

N by T ¹
ad. By the arguments before this

theorem,
−

〈
T ¹

1f, f
〉
≤

〈
A¹

Nf, f
〉

.
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Hence we can conclude that

−QTad¹ [f ] ≤ 〈
A¹f, f

〉
, f ∈ H⊥

1 (A) ∩ D(T ¹
1 ),

since, by the constructions of Section 3, it is obvious that AN ≤ A. Therefore the
quadratic form of the operator Tad obeys the inequality (41).

Conversely, let T ′ admit the representation (40), T ′ = TN + Tad, where TN is
constructed in Section 3 and Tad obeys inequality (41) and satisfies (42). Then
Ãad := A+̃Tad is positive and coincides with A on N ⊂ Ker Tad. Now we note that
if we will construct the operator TN (see Section 3) starting from Ãad, instead of
A, we get the same operator since this construction involves only the values of A

on the subspace N where both A and Ãad coincide. Thus we can write

TN (Ãad) = TN (A) = TN .

Therefore by the additive property of the generalized sum,

Ã′ = A+̃T ′ = (A+̃Tad)+̃TN .

Now we remark that by the construction of Section 3 the operator (A+̃Tad)+̃TN

solves the starting negative eigenvalues problem. ¤

6. Appendix. Generalized operator sum. Additive representation

Here we introduce two families of operators Ã, which we denote by Pws(A) and
Pad(A), and discuss the question about the additive representation of Ã in the form
of a generalized sum, Ã = A+̃T, with T : H1 → H−1.

Given A ≥ 0 in H (with obvious changes, one can assume that A is bounded
from below) introduce an A-scale of the Hilbert spaces,

(44) H−s ⊃ H0 ≡ H ⊃ Hs, s > 0,

where Hs ≡ Hs(A) = D(As/2) in the norm ‖ϕ‖s := ‖(A + I)s/2ϕ‖, and I stands
for the identity, and H−s ≡ H−s(A) is the dual space with respect to Hs (H−s is
the completion of H in the norm ‖f‖−s := ‖(A + I)−s/2f‖). Obviously, D =A + I
is unitary as a map from H2 to H, and moreover both maps D : H1→ H−1 and
D : H → H−2 are isometric. So the operator

D :=(A + I)cl ≡ A + I : H → H−2

is unitary, where cl stands for the closure. The following relations hold (for details
see [10], [13]):

〈f, ϕ〉 = (f, ϕ), f ∈ H, ϕ ∈ Hs, s ≥ 0,

(ω,Dϕ)−1 = 〈ω, ϕ〉 = (D−1ω, ϕ)1, ω ∈ H−1, ϕ ∈ H1,

(ω,Df)−2 = (D−1ω, f), ω ∈ H−2, f ∈ H,(45)

where (·, ·)s denotes the inner product in Hs and 〈·, ·〉 stands for the dual inner
product (the pairing) in the A−scale.
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By definition (see [2,19,20,21,25]), a self-adjoint operator Ã6=A is said to be a
(pure) singular perturbation of A if Ã coincides with A on some linear subset D
dense in H. The class of all such operators is denoted by Ps(A). Thus Ã6=A
belongs to the class Ps(A) iff the set

(46) D := {f ∈ D (Ã) ∩ D (A) : Af = Ãf} is dense in H.

We say that Ã6=A belongs to the class of weak (pure) singular perturbations of A,
and write

(47) Ã ∈ Pws(A),

if besides (46) the following condition holds:

(48) D(Ã) ⊂ H1.

Otherwise we write

(49) Ã ∈ Pss(A)

for a strong (pure) singular perturbations of A. We say that Ã is a rank N weak
(not necessarily pure) singular perturbation of A if D(Ã) ⊂ H1 and the resolvent
difference Rz(Ã) − Rz(A) for one z ∈ ρ(Ã) ∩ ρ(A), and therefore for all such z, is
a rank N operator.

An important fact is that each operator Ã ∈ Pws(A), (Ã 6= A∞, where A∞ de-
notes the Friedrichs extension of the symmetric operator A ¹D) admits an additive
representation in the form of a generalized sum, Ã = A+̃T , with T acting in the A-
scale, T : H1→H−1 (see Theorem 3 in [26], Theorem 7 in [27]). Before formulating
this result, we need in some preparations.

Let 0 6= T be a closed symmetric operator acting in the A−scale, from H1 to
H−1. Note that the adjoint operator T ∗ is defined with respect to the dual inner
product 〈·, ·〉 between H1 and H−1, so T ∗ acts also from H1 to H−1. Thus

〈Tϕ, ψ〉 = 〈ϕ, Tψ〉, ϕ, ψ ∈ D(T ) ⊂ D(T ∗) ⊂ H−1.

We say that an operator T : H1 → H−1 is H−singular if the range R(T )
contains elements which do not belong to H. An operator T is said to be pure
singular with respect to H or shortly, pure H−singular (see [25,21,27,6]), if its
range essentially belongs to the space H−1, i.e., if

R(T )cl,−1 ∩H = {0},

where cl,-1 stands for the closure in H−1. It is known (see [26] Theorem A) that T
is pure H−singular if the set

(50) Ker T is dense in H.

Since T is a closed operator, the set M1 = Ker T is a closed subspace in H1. We
write

(51) T ∈ H−1 − class,
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if the set

(52) Ker T ∩ D(A) is dense in M1.

Obviously the set Ker T ∩ D(A) is a proper closed subspace in H2. We denote
it by M2. Now (50) and (52) can be rewritten as

(53) M cl,1
2 = M1, Mcl,0

1 = H2,

where cl, 0 (cl,1) stands for the closure in H, (resp. in H1). Of course from (53) it
also follows that Mcl,0

2 = H2.
We will interpret the operators T as objects carrying singular perturbations

of A (see [2,21,6,25]). For the construction of the perturbed operator Ã we use
the generalized operator sum approach which extends the well-known form-sum
method. Let us recall this construction (for more details see [10],[12], [11,25,23,18]).

Given a symmetric operator T : H1 → H−1 let us define the generalized operator
sum, Ã = A+̃T, as the ”restriction” of the operator sum A + T : H1 → H−1 onto
H, where recall, A stands for the closure of A as an operator from H1 to H−1.

Precisely,

(54) D(Ã) = {ϕ ∈ H1 ∩ D(T ) : Aϕ + Tϕ ∈ H}, Ãϕ = Aϕ + Tϕ.

We note that separately each component Aϕ and Tϕ in general belong to H−1. It
is easily seen that Ã always is a Hermitian (symmetric) operator, i.e., (Ãϕ, ψ) =
(ϕ, Ãψ), ϕ, ψ ∈ D(Ã), but in general, it is not necessarily densely defined in H.
Surely if D(T ) ⊆ D(A) and R(T ) ⊆H then A+̃T coincides with the usual operator
sum A+T . It has been shown [10,11,12] (see also [27,18]) that the sum in the sense
of quadratic forms is a particular case of the generalized operator sum.

We remark that if for an operator T from the H−1−class, the generalized sum
Ã = A+̃T is a self-adjoint operator in H, then necessarily Ã ∈ Pws(A), since
obviously the set D defined by (46) is dense in H (see (50)–(53)), and D(Ã) ⊂ H1

due to (54). The inverse implication is true under natural conditions.
We have the following result.

Theorem 6. [26,27]. Each operator Ã ∈ Pws(A), Ã 6= A∞ , under the condition
that both pairs, A, A∞ and Ã, A∞ , are relatively prime (see [1]) with respect to
◦
A := A ¹ D = Ã ¹ D, admits a representation in the form of a generalized sum,
Ã = A+̃T with a uniquely defined (bounded) self-adjoint operator T : H1 → H−1

which belongs to the H−1−class.

We note that the above definition of a generalized operator sum could be ex-
tended to a case where A is replaced by another self-adjoint operator C in H such
that H1(C) differs from H1(A) ≡ H1. Indeed, assume that the domain D(C) ⊆
H1 and that C is closable as a map from H1 to H−1. Let C := Ccl : H1 →
H−1 denote this closure. Then similarly to the above case we define C̃ = C+̃T
as the ”restriction” of the operator sum C + T : H1 → H−1 onto H. Thus
D(C̃) = {ϕ ∈ D(C) ∩ D(T ) : Cϕ + Tϕ ∈ H}, C̃ϕ = Cϕ + Tϕ.

In our constructions we use the additive property of generalized sums,

(55) A+̃(T1 + T2) = (A+̃T1)+̃T2 = (A+̃T2)+̃T1,



22 V. KOSHMANENKO

which is valued for bounded operators T1, T2, acting from H1 to H−1 and such that
both domains D(A+̃T1), D(A+̃T2) are dense in H1. Indeed, (55) is true since in
this a case the closure of A+̃T1 ( A+̃T2), as an operator from H1 to H−1, coincides
with A + T1 (resp., with A + T2), and therefore using the extended definition (54)
one can construct the generalized sum (A+̃T1)+̃T2 (resp., (A+̃T2)+̃T1) in the case
where A is replaced by C equals to A+̃T1 (resp., A+̃T2).

The next problem which can be posed is to find conditions on a symmetric
operator T such that A+̃T is essentially self-adjoint. In [4,6,18,21,26], sufficient
conditions of self-adjointness for A+̃T have been obtained. In this paper we use
the following result.

Theorem 7. [4,21]. Let T ∈ H−1 − class and one of the conditions is fulfilled:
(a) the operator T = (A + I)−1T in H1 has a pure point spectrum, (b) the domain
D(A) ⊂ R(T +I). Then the generalized sum Ã = A+̃T is essentially self-adjoint.

In particular, Ã = A+̃T is self-adjoint under the condition that T = (A+I)−1T
is compact in H1.

Finally we will discuss the question about the additive representation for opera-
tors Ã which is bounded from below but does not necessarily belong to the family
Pws(A).

Let A ≥ 0 be as above and Ã = Ã∗ be a self-adjoint operator bounded from
below. We say that Ã belongs to the class of additive perturbations of A, and write

(56) Ã ∈ Pad(A),

if Ã admits a representation as a generalized operator sum, Ã = A+̃T, with some
bounded symmetric operator T : H1 → H−1, which does not necessarily belong to
the H−1-class. We want to answer the following question. Under what conditions
Ã is an additive perturbation of A, i.e., when Ã ∈ Pad(A)?

Let
{
H̃k

}
k∈R1

be an Ã−scale of Hilbert spaces, where H̃k ≡ Hk(Ã) is the

completion of D(Ã) in the norm ‖f‖H̃k
:= ‖(Ã+ m̃)k/2f‖1/2, with m̃ ≥ 1 such that

(57) ‖f‖2H̃1
≡ (Ãf, f) + m̃ ‖f‖2 ≥ ‖f‖2 .

Thus we have the rigged Hilbert space for each fixed s > 0,

H̃−s ⊃ H0 ≡ H ⊃ H̃s,

where the space H̃−s ≡ H−s(Ã) coincides with the dual space to H̃s. Let D̃ :
H̃1→H̃−1 denote the canonical unitary isomorphism [10], [13]. By the construction,
D̃ ¹ H̃2 coincides with Ã + m̃I (for details see [10]),

(58) Ãf = (D̃ − m̃I)f, D(Ã) =
{

f ∈ H̃1 : D̃f ∈ H
}

.

So the operator Ã is uniquely associated with the rigged Hilbert space H̃−1 ⊃
H ⊃ H̃1.

We have a criterion for Ã ∈ Pad(A).
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Theorem 8. Let Ã be a self-adjoint operator in H bounded from below, Ã ≥ m̃ ≥ 1.
Assume

(59) H1(Ã) ⊇ H1(A)

in the sense of the dense continuous embedding. Then there exists a bounded self-
adjoint operator T : H1 → H−1 which satisfies the inequality

(60) −〈Tf, f〉 ≤ 〈Af, f〉+ λ ‖f‖2 , λ = m̃− 1 ≥ 0, f ∈ H1,

and such that Ã admits an additive representation in the form of a generalized sum,
Ã = A+̃T, i.e., Ã ∈ Pad(A). Conversely, if Ã ∈ Pad(A), Ã = A+̃T, where T : H1

→ H−1, is a bounded self-adjoint operator which satisfies the inequality (60), then
(59) is fulfilled.

Proof. Let qÃ[f ] denote the closure of the quadratic form
〈
Ãf, f

〉
, f ∈ D(Ã) in

H. Clearly the domain D(qÃ) coincides with H1(Ã) ≡ H̃1. Therefore due to (59)
the form qÃ is defined on H1. Moreover qÃ is continuous on H1. Indeed if fn → 0
in H1, then by (59) fn → 0 in H1(Ã), and in H too. Thus due to (57), qÃ[fn] → 0.
By this reason the difference

q[f ] = qÃ[f ]− qA[f ]

is continuous on H1(A), where we denote qA[f ] = 〈Af, f〉.
Let us prove now the representation = A+̃T. Consider the operator D̃ : H̃1 →

H̃−1.Obviously it coincides with Ã − m̃I where Ã denotes the closure of Ã as a
map from H̃1 to H̃−1. Further due to

(61) qÃ[f ] = qA[f ] + q[f ] =
〈
Ãf, f

〉
= 〈Af, f〉+ 〈Tf, f〉 , f ∈ H1(A),

the restriction of the operator D̃− m̃I onto H1(A) coincides with A+T . Therefore
the operator, self-adjoint in H, associated with the rigged Hilbert space H̃1 ⊂ H ⊂
H̃−1 and constructed by the standard procedure,

Ã = (D̃− m̃I) ¹ D(Ã), D(Ã) = {f ∈ H̃1 : (D̃− m̃I)f ∈ H},
coincides with A+̃T. Thus Ã ∈ Pad(A).

Moreover, by (57),

‖f‖2H̃1
− ‖f‖2 = qÃ[f ] + (m̃− 1)‖f‖2 ≥ 0,

and hence due to (61),

qÃ[f ]− q[f ] + λ ‖f‖2 = qA[f ] + λ ‖f‖2 ≥ −q[f ]

with λ = m̃− 1. So we get the inequality (60).
Conversely, let Ã = A+̃T be a self-adjoint operator in H, where T : H1 →

H−1, satisfies (60) with some λ ≥ 0. Then Ã is bounded from below, Ã ≥ m̃ ≥ 1,
m̃ = λ + 1. It follows from the fact that due to (61), qÃ[f ]+ m̃ ‖f‖2 ≥ ‖f‖2,
where qÃ[f ] := 〈Af, f〉 + 〈Tf, f〉. Therefore H̃1 is the completion of H1 in the
norm ‖f‖2H̃1

= q̃[f ] + m̃ ‖f‖2 and thus the space H1 is densely and continuously

embedded into H̃1. ¤
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Corollary 1. Let A ≥ 0 and Ã ≥ m̃ denote self-adjoint operators associated with
the triplets H−1 ⊃ H ⊃ H1 and H̃−1 ⊃ H ⊃H̃1 resp. Then Ã ∈ Pad(A), i.e.,
Ã = A+̃T, with a bounded self-adjoint operator T : H1 → H−1, which satisfies the
inequality (60) if and only if the condition

H−1 ⊇ H̃−1 ⊃ H ⊃ H̃1 ⊇ H1,

is fulfilled in the sense of the dense continuous embedding.
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