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Abstract. We introduce the conflict interaction with two positions between a
couple of image probability measures and consider the associated dynamical
system. We prove the existence of invariant limiting measures and find the
criteria for these measures to be a pure point, absolutely continuous, or sin-
gular cotinuous as well as to have any topological type and arbitary Hausdorff
dimension.
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1. Introduction

Let (Ω,F) be measurable space, let P be a class of probability measures on F , and
let * be a noncommutative binary algebraic operation defined for elements of P.
A measure µ ∈ P can be interpreted as a measure of ‘influence’ on ‘controversial
territory’ for some ‘subject of controversy’.

If two non-identical measures µ and ν are not mutually singular, then they
are called conflict measures and an operation ∗ represents the mathematical form
of the conflict interaction between µ and ν.

Given µ, ν ∈ P let us consider a sequence of paris µ(n), ν(n) ∈ P of measures
defined as follows:

µ(1) = µ ∗ ν, ν(1) = ν ∗ µ;
µ(2) = µ(1) ∗ ν(1), ν(2) = ν(1) ∗ µ(1); . . .
µ(n+1) = µ(n) ∗ ν(n), ν(n+1) = ν(n) ∗ µ(n); . . .

By this each operation ∗ defines an mapping g(∗) : P × P → P × P and generates
a certain dynamical system (P × P, g(∗)). The following problems are of interest:
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(1) existence of invariant points and invariant sets of (P × P, g(∗));
(2) descriptions of the limiting measures

µ∞ = lim
n→∞ µ(n); ν∞ = lim

n→∞ ν(n);

(3) topological, metric, and fractal properties of the limiting measures and depen-
dence of these properties on the conflict interaction.

In [6, 7] a variant of a conflict interaction ∗ for discrete measures on finite and
countable spaces was discussed. In this paper we involve in consideration the cases
of continuous measures. More precisely, here we handle with measures µ, ν which
are image measures of infinite products of discrete measures. We prove the exis-
tence of the limiting invariant measures µ∞, ν∞ and show that they are mutually
singular if µ �= ν. We find necessary and sufficient conditions for these measures to
be pure absolutely continuous, pure singular continuous or pure discrete resp. Met-
ric, topological and fractal properties of the supports of the limiting measures are
studied in details. We show that by using rather simple construction one can get
a singular continuous measure µ∞ with desirable fractal properties of its support,
in particular, with any Hausdorff dimension � dimH(suppµ∞) � 1.

2. Sub-class of Image Measures

Let M([0, 1]) denote the sub-class of probability Borel measures defined on the
segment [0,1] as follows (for more detials see [1, 2]).

Let Q ≡ {qk}∞
k=1 be a sequence of stochastic vectors in R2 with strictly

positive coordinates, qk = (q0k, q1k), q0k, q1k > 0, q0k + q1k = 1. We will refer to
Q as the infinite stochastic matrix

Q = {qk}∞
k=1 =

(
q01 q02 . . . q0k . . .
q11 q12 . . . q1k . . .

)
(1)

Given Q we consider a family of closed intervals

∆i1 ,∆i1i2 , . . . ,∆i1i2...ik
, . . . ⊂[0, 1], (i1, i2, . . . , ik, . . . are equal to 0 or 1)

with lengths

|∆i1 | = qi11, |∆i1i2 | = qi11 · qi22, |∆i1i2...ik
| = qi11 · qi22 . . . qikk, k � 1,

and such that

[0, 1] = ∆0

⋃
∆1,

∆i1 = ∆i10

⋃
∆i11,

and so on for any k,

∆i1i2...ik
= ∆i1i2...ik0

⋃
∆i1i2...ik1.
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Assume
∞∏

k=1

max
i

{qik} = 0. (2)

Then any x ∈ [0; 1] can be represented in the following form

x =
∞⋂

k=1

∆i1(x)···ik(x) =: ∆i1(x)···ik(x)···.

Moreover, (2) implies that the Borel σ-algebra B on [0; 1] coincides with the
σ-algebra generated by the family of subsets {∆i1···ik

}∞
k=1.

To a fixed Q, we associate a sub-class of measures M([0;1]) with a family of
all sequences of stochastic vectors

P = {pk}∞
k=1 =

(
p01 p02 . . . p0k . . .
p11 p12 . . . p1k . . .

)
,

where p0k, p1k � 0, p0k + p1k = 1. Namely, we associate to each such matrix P a
Borel measure µ ∈ M([0; 1]) defined as follows.

We consider a sequence of probability spaces (Ωk,Ak, µ∗
k), where Ωk = {0; 1},

Ak = 2Ωk , µ∗
k(i) = pik. Let (Ω,A, µ∗) be the infinite product of the above proba-

bility spaces. We define a measurable mapping f from Ω into [0; 1] in the following
way: for any ω = (ω1, ω2, . . . , ωk, . . .) ∈ Ω we set

f(ω) = ∆ω1ω2···ωk··· =
∞⋂

k=1

∆ω1...ωk
,

and, finally, we define the measure µ as the image measure of µ∗ under f , i.e.,: for
any Borel subset E we put µ(E) = µ∗(f−1(E)), Where f−1(E) = {ω : f(ω) ∈ E}.

The following results (see Theorem 1 below) on image measures are well
known (see e.g. [2, 4, 5]). In order to formulate them we need some notations.
We write, µ ∈ Mpp,Mac,Msc if the measure µ is pure point, pure absolutely
continuous, or pure singular continuous, resp. Further, for the above Q and P we
define

Pmax(µ) :=
∞∏

k=1

max
i

{pik}

and

ρ(µ, λ) :=
∞∏

k=1

(
√

p0k · q0k +
√

p1k · q1k).

Theorem 1. Each measure µ ≡ µp ∈ M([0, 1]) is of pure type:
(a) µ ∈ Mpp iff Pmax(µ) > 0,
(b) µ ∈ Mac iff ρ(µ, λ) > 0,
(c) µ ∈ Msc iff Pmax(µ) = 0 and ρ(µ, λ) = 0.
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In the continuous case the measure µ can also be defined in the follow-
ing simple way. We define a measure µ̂ on the semi-ring of subsets of the form
∆̂i1...ik

= [a; b), where, a = ∆i1...ik(0); b = ∆i1...ik(1): we put

µ̂
(
∆̂i1...ik

)
= pi11 · · · pikk.

The extension µ̃ of µ̂ on any Borel subset of [0; 1) is defined in the usual way. We
put, finally µ̄(E) = µ̃(E ∩ [0; 1)) for any Borel subset of [0; 1]. It is not hard to
prove that µ̄ ≡ µ.

3. Conflict Interaction Between Image Measures

We define the non-commutative conflict composition � with two positions for a
couple of stochastic vectors p, r ∈ R2 as follows:

p1 := p � r, r1 := r � p,

where the coordinates of the vectors p1, r1 are given by the formulae:

p
(1)
i :=

pi(1 − ri)
1 − (p, r)

, r
(1)
i :=

ri(1 − pi)
1 − (p, r)

, i = 0, 1, (3)

where (p, r) stands for the inner product in R2. Obviously we have to exclude the
case (p, r) = 1.

The iteration of the composition � generates a dynamical system in the space
R2 × R2 defined by the mapping:

g :
(

pN−1

rN−1

)
→
(

pN

rN

)
, N ≥ 1,p0 ≡ p, r0 ≡ p, (4)

where the coordinates of pN , rN are defined by induction,

p
(N)
i :=

pN−1
i (1 − r

(N−1)
i )

zN−1
, r

(N)
i :=

rN−1
i (1 − p

(N−1)
i )

zN−1
, i = 0, 1, (5)

with zN−1 = 1 − (pN−1, rN−1) > 0.

Lemma. ([6, 7]). For each pair of stochastic vectors p,r ∈ (R)2, (p, r) �=1, the
following limits exist and are invariant with respect to �:

p∞ = lim
N→∞

pN , r∞ = lim
N→∞

rN .

Moreover one has:

p∞ = (1, 0), r∞ = (0, 1) iff p0 > r0,

p∞ = (0.1), r∞ = (1, 0) iff p1 > r1,

p∞ = r∞ = (1/2, 1/2), iff p0 = r0, p1 = r1.
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We will introduce now a non-commutative conflict interaction (in the sense
of [6, 7]) between image measures from the sub-class M([0, 1]) and use the just
presented facts for these analysis of the spectral transformations of these measures.

Let µ and ν be a couple of image measures corresponding to a pair of
sequences of stochastic vectors P 0 = {p0

k}∞
k=1 and R0 = {r0

k}∞
k=1, resp., i.e.,

µ = µP 0 , ν = νR0 . The conflict interaction between µ and ν, denoted by �, is
by definition given by the couple µ1, ν1

µ1 := µ � ν, ν1 := ν � µ,

where � is defined by using the above defined conflict compositions for stochastic
vectors in R2. Namely, we associate a new couple of measures µ1, ν1 ∈ M([0, 1])
with sequences P 1 = {p1

k}∞
k=1 and R1 = {r1

k}∞
k=1, where the coordinates of vectors

p1
k, r1

k are defined according to formulae (3), i.e.,

p
(1)
ik :=

pik(1 − rik)
1 − (pk, rk)

, r
(1)
ik :=

rik(1 − pik)
1 − (pk, rk)

, i = 0, 1, k = 1, 2, . . . (6)

where pik ≡ p
(0)
ik , rik ≡ r

(0)
ik and rk ≡ r0

k, rk ≡ r0
k. Of course we assume that

(p0
k, r0

k) �= 1, k = 1, 2, . . . (7)

By induction we introduce the sequences PN = {p1
k}∞

k=1 and RN = {rN
k }∞

k=1 for

any N=1,2,. . . , where the stochastic vectors pN
k = pN−1

k �rN−1
k , rN

k = rN−1
k �pN−1

k

are defined as N -times iterations of the composition �; the coordinates of the vec-
tors pN

k , rN
k are calculated by formulae like (5).

Further, with each pair PN , RN we associate a couple of image measures
µN ≡ µP N and νN ≡ νRN from the class M([0,1]). Therefore the mapping g
generates the dynamical system in the space M([0, 1]) × M ([0,1]):

U(g) :
(

µN−1

νN−1

)
→
(

µN

νN

)

We are interesting in the existence and structure of the invariant points of the so
defined dynamical system.

Theorem 2. For each couple of image measures µ ≡ µP 0 , ν ≡ νR0 , under condition
(7), there exist two limiting invariant measures,

µ∞ = lim
N→∞

µN , ν∞ = lim
N→∞

νN .

The measures µ∞, ν∞ are mutually singular iff P 0 �= R0, and µ∞, ν∞ are identical
iff P 0 = R0.

Proof. This follows easily from Lemma. �

Our goal here is to investigate the properties of the limiting measures.
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4. Metric Properties

Let us introduce two sets for a couple of probability image measures µ, ν.N= :=
{k : pk = rk}, and N�= := N/N= ≡ {k : pk �= rk}, and put

Q= :=
∑

k∈N=

[(1 − 2q0k)2 + (1 − 2q1k)2],

W �=(µ) :=
∑

k∈N�=

q(i)k, where q(i)k =
{

q0k, if p0k < r0k

q1k, if p1k < r1k
,

W�=(ν) :=
∑

k∈N�=

(1 − q(i)k).

Theorem 3. (a) µ∞ ∈ Mpp, iff |N=| < ∞.
(b) µ∞ ∈ Mac, iff Q= < ∞and W�= < ∞.
(c) µ∞ ∈ Msc, iff |N=| = ∞ and at least one of the conditions, W�=(µ) = ∞, or

Q= = ∞, is fulfilled.

Proof. (a) By Theorem 1 the measure µ∞ belongs to Mpp iff

Pmax(µ∞) :=
∏
k∈N

max
i

{p∞
ik} > 0.

Since for each vector p∞
k ∈ R2 the coordinates p

(∞)
ik are equal to 0, 1/2, or 1, we

have

max
i

p
(∞)
ik =

{
1/2, if k ∈ N=

1, if k ∈ N�=.

Hence µ∞ ∈ Mpp if and only if pk �= rk∀k > k0 fo some k0 ∈ N. This means that
supp µ consists of at most 2|N=| points.

(b) Let |N=| = ∞ and, therefore, µ∞ ∈ Mac ∪ Msc. By Theorem 1, µ∞ ∈ Mac

iff

ρ(µ∞, λ) =
∞∏

k=1

(√
p
(∞)
0k q0k +

√
p
(∞)
1k q1k

)
> 0. (8)

Taking into account that p
(∞)
0k = p

(∞)
1k = 1

2 for all k ∈ N=, and p
(∞)
0k = 1 iff

p0k > r0k, p
(∞)
0k = 0, iff p0k < r0k, we have

√
p
(∞)
0k q0k +

√
p
(∞)
0k q1k =

{√
1
2q0k +

√
1
2q1k, iff k ∈ N=,√

1 − q(i)k, iff k ∈ N�=.
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Therefore, µ∞ ∈ Mac iff

∏
k∈N=

(√
1
2
q0k +

√
1
2
q1k

)
·
∏

k∈N�=

(√
1 − q(i)k

)
> 0

⇔




∏
k∈N=

(√
1
2q0k +

√
1
2q1k

)
> 0,

∏
k∈N�=

(√
1 − q(i)k

)
> 0.

By using simple arguments, we have∏
k∈N�=

(√
1 − q(i)k

)
> 0 ⇔

∏
k∈N�=

(
1 − q(i)k

)
> 0 ⇔

∑
k∈N�=

q(i)k < ∞,

and
∏

k∈N=

(√
1
2
q0k +

√
1
2
q1k

)
> 0 ⇔

∏
k∈N=

(
1
2

+
√

q0kq1k

)
> 0

⇔
∑

k∈N=

(
1
2

− √
q0kq1k

)
< ∞ ⇔

∑
k∈N=

(1 − 2
√

q0kq1k) < ∞

⇔
∏

k∈N=

4q0kq1k > 0 ⇔
∏

k∈N=

(
1 − (1 − 2q0k)2

)
> 0

⇔
∑

k∈N=

(1 − 2q0k)2 < ∞ ⇔
∑

k∈N=

(1 − 2q1k)2 < ∞

Therefore,

µ∞ ∈ Mac ⇔
{

W�=(µ) < ∞,
Q= < ∞.

(c) If |N=| = ∞, then from (a) the continunity of µ∞ follows easily. If Q=(µ) = ∞
or W�=(µ) = ∞, then from (b) it follows that µ ⊥ λ, and therefore µ∞ ∈ Msc.
Conversely, if µ∞ ∈ Mac, then µ∞ is a continuous measure and µ∞ ⊥ λ.

The continunity of µ∞ implies |N=| = ∞. Since µ∞ ⊥ λ, we have ρ (µ∞, λ) =
0 and, therefore Q= = ∞ or W�=(µ) = ∞. �

Remarks. (1) The Theorem holds for the measure ν∞ if W �=(µ) is replaced by
W�=(v).

(2) Both measure µ∞, ν∞ belong to Mac only in the case |N�=| < ∞ provided
that Q= < ∞, because, if |N�=| = ∞ then at least one of values W�=(µ) or
W�=(ν) is infinite.

(3) The condition Q= < ∞ is fulfilled iff

∑
k∈N=

(1 − 2q0k)2 < ∞.
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Example 1. Let q0k = q1k = 1/2 for all k∈N . Then Q= = 0 for any N= and
W�=(µ)<∞ iff |N�=|=∞. Thus both measures µ∞, v∞ belong to Mpp iff |N=|=∞.
Moreover µ∞, v∞ ∈ Mac iff |N�=| = ∞, and µ∞, v∞ ∈ Msc iff |N�=| = ∞ and
|N=| = ∞.

Example 2. Let q0k /∈ (
1
2 − ε; 1

2 + ε
)

for some ε > 0. Then Q= < ∞ only if
|N=| = ∞. Thus µ∞, v∞ ∈ Mpp iff, |N=| < ∞, and µ∞, v∞ ∈ Msc iff |N=| = ∞,
but one never has µ∞, ν∞ ∈ Mac.

5. Topological Properties

A Borel measure µ on R is of the S-type if its support, supp µ ≡ Sµ,is a regularly
closed set, i.e.,

Sµ = (intSµ)cl,

where int A denotes the interior part of the set A, and (E)cl denotes the closure of
the set E . A measure µ is of the C-type if its support Sµ is aset of zero Lebesgue
measure. A measure µ is of the P -type if its support Sµ is a nowhere dense set
and Sµ has a positive Lebesgue measure in any small neighbourhood of each point
x from Sµ, i.e.,

∀x ∈ Sµ,∀ε > 0 : λ
(
B (x, ε)

⋂
Sµ

)
> 0.

we shall write (cf.with[1, 9])µ ∈ MS , resp. MC , or resp. MP if µ is of the S−,
resp. C−or resp. P -type.

Theorem 4. The infinite conflict interaction between two image measures µ, v ∈
([0, 1]) produces limiting measures µ∞, v∞ of pure topological type. We have:

(a) µ∞ ∈ MS, iff |N�=| < ∞,
(b) µ∞ ∈ MC , iff W�=(µ) = ∞,
(c) µ∞ ∈ MP , iff |N�=| = ∞ and W�=(µ) < ∞.

Proof. (a) By Theorem 8 in[2] the measure µ∞ is of the S-type iff the matrix P∞

contains only a finite number of zero elements. This is possible iff |N�=| < ∞.
(b) The measure µ∞ is of the C-type (see Theorem 8 in [2]) iff the matrix

P∞ contains infinitely many columns having elements pik = 0, and besides,∑∞
k=1(

∑
i:pik=0 qik) = ∞, that is equivalent to |N�=| = ∞ and W�=(µ) = ∞.

Since
∏∞

k=1 maxqik = 0, we conclude that from W�= = ∞ it follows that
|N�=| = ∞.

(c) Finally the measure µ∞ is of the P-type (see again Theorem 8 in [2]) iff the
matrix P∞ contains infinitely many columns with zero elements pik, and
moreover,

∑∞
k=1(

∑
i:pik=0 qik) < ∞, i.e.,|N�=| = ∞ and W�=(µ) < ∞.

�
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Remarks. (1) The assertions of Theorems 4 are also true for the measure v∞ if
one replaces W�=(µ) by W�=(v).

(2) It is not possible for the measures µ∞,v∞ to be both of the P -type. So if one
of them is of the P -type, then the other is necessarily of the C-type.

The combinations of Theorems 3 and 4 leads to

Corollaries.

(a) The set Mpp

⋂Ms is empty.
µ∞ ∈ Mpp

⋂Mc iff |N=| < ∞.

The set Mpp

⋂MP is empty.
(b) µ∞ ∈ Mac

⋂Ms iff |N=| < ∞, and Q= < ∞.
The set Mac

⋂Mc is empty.

µ∞ ∈Mac

⋂MP iff |N=|=∞, |N�=|=∞, but Q= <∞ and W�=(µ) < ∞.
(c) µ∞ ∈ Msc

⋂MS iff |N�=| < ∞, and Q= = ∞.
µ∞ ∈ Msc

⋂MC iff W�=(µ) = ∞.

µ∞ ∈ Msc

⋂MP iff |N�=| = ∞,W�=(µ) < ∞ and Q= = ∞.

Proof. (a) Mpp

⋂MS = ∅ since |N�=| < ∞ and |N=| < ∞ are mutually exclusive
conditions. So, if |N=| < ∞, then|N�=| < ∞ and µ∞ ∈ MC . Mpp

⋂MP = ∅,
since W�=(µ) < ∞ with |N=| < ∞ mean that

∏∞
k=1 qik > 0, but this contra-

dicts our assumption (2).
(b) The first assertion is evident since |N�=| < ∞ implies W �=(µ) < ∞. Further

Mac

⋂MC = ∅ since the conditions W �=(µ) < ∞ and W�=(µ) = ∞ can not
be simultaneously fulfilled. Finally, in the case |N�=| = ∞, µ∞ ∈ Mac iff
µ∞ ∈ MP .

(c) In spite of that W�=(µ) < ∞ if |N�=| < ∞, it is still possible that Q=(µ) = ∞.
Thus, in general, we have Msc

⋂MS �= ∅.
Moreover, if |N�=| = ∞, then W �=(µ) = ∞ implies µ∞ ∈ Msc

⋂MC .
But if |N�=| < ∞ and W�=(µ) = ∞, then it still possible that Q=(µ) = ∞, or

equivalently, µ∞ ∈ Msc

⋂MP . �

Remarks. Of course, all corollaries are true for the measure ν∞ if one replaces
W�=(µ) by W�=(ν).

The measures µ∞, ν∞ in general have a rather complicated local structure
and their supports might posses arbitrary Hausdorff dimensions.

Let us denote by dimH(E) the Hausdorff dimension of a set E ⊂ R.
Suppose q0k = q1k = 1/2.
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Theorem 5. Given a number c0 ∈ [0, 1] let µ ∈ M([0, 1]) be any probability image
measure. Then there exists another probability image measusre ν such that

dimH(supp µ∞) = c0. (9)

Proof. Let |N�=,k| = |N�=
⋂{1, 2, . . . , k}| denote the cardinality of the set N�=,k :=

{s ∈ N�= : s � k}. Clearly |N�=,k| + |N=, k| = k, where N=,k := {s ∈ N= : s � k}.
By Theroem 2[8] the Hausdorff dimension of the set supp µ∞ may be calcu-

lated by the formula:

dimH(suppµ∞) = lim inf
k→∞

|N=,k|
k

.

Given the stochastic matrix P corresponding to the starting measure µ one
always can chose (in a non-unique way) another stochastic matrix R (uniquely
associated with a measure ν) such that the condition limk→∞

|N=,k|
k = c0 will be

satisfied. �
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