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Abstract

We develop mathematical tools suitable for the construction of
conflict models with non-annihilating adversaries.

In a set of probability measures we introduce a non-commutative
conflict composition and consider the associated dynamical system.
We prove that for each couple of non-identical mutually nonsingular
measures, the corresponding trajectory of the dynamical system con-
verges to an invariant point represented by a pair of mutually singular
measures. The disjoint supports of the limiting measures determine
the final re-distribution of the starting area of conflict as a result of
an ”infinite war” for existence space (the pure repelling effect).
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1 Introduction

This paper is aimed to develop mathematical tools for constructing of conflict
models in a situation where none of the opponents have any strategic priority.
The conflicting interaction among the opponents only produces a certain re-
distribution of the common area of interests. In other words we assume that
each adversary is a priori non-annihilating.
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In fact we develop an alternative approach to the well-known mathemat-
ical theory of population dynamics (see e.g. [3]-[6]) based on a modified
Lotka-Volterra equation and aimed to describe the quantitative changes of
conflicting species.

We assign to each opponent a probability measure on the same metric
space, which is interpreted as the existence space or area of common interests.
The competition interaction between opponents we express in a form of a
conflict composition between probability measures. The iteration of this
composition generates a certain dynamical system in the space of measures.
We investigate its trajectories and prove the existence of the limiting states.

Here is a more detailed explanation of our ideas.
Let us assign to adversaries, here we consider only a pair of them, say A

and B, a couple of probability measures µ0 and ν0 on some metric space X.
Independently, A and B occupy a subset E ⊂ X with probabilities µ0(E)
and ν0(E), respectively. We assume that µ0, ν0 are non-identical and are
mutually nonsingular. Hence suppµ0∩ suppν0 6= ∅. Incompatibility of A
and B generates a conflicting interaction. We write this fact mathematically
in a form of a non-commutative conflict composition, notation >, between
measures µ0 and ν0. In other words, we construct a new pair of probability
measures, µ1 = µ0>ν0 and ν1 = ν0>µ0 in terms of the conditional probability
to occupy a subset E by A (or B) when B (A) is absent in E. So a value
µ1(E) is proportional to the product of µ0(E) and ν0(X \ E), the starting
probability for A to occupy E and the probability for B to be absent in the set
E. Similarly for the side B. Thus, measures µ1, ν1 describe the re-distribution
of the conflicting area between A and B after the first step of interaction.
However the conflict is not solved provided that measures µ1, ν1 are mutually
nonsingular. So one can repeat the above described procedure for infinite
times and get two sequences of probability measures µN , νN , N = 1, 2, ...
which generates a trajectory of a certain dynamical system.

In the present paper we consider mainly the case of discrete measures. We
prove the existence of the limiting pair µ∞ = limN→∞ µN , ν∞ = limN→∞ νN

and show that µ∞, ν∞ are mutually singular and invariant with respect to
the action of >. The disjoint supports of the limiting measures establish the
final re-distribution of the starting conflict area, i.e., we observe the pure
repelling effect for non-identical adversaries.

In [1, 2] we extend our results for a class of so-called image measures and
investigate the fractal structure of the limiting supports.
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2 The conflict composition for stochastic vec-

tors

We start with a simplest case.
Let X ≡ Ω be a finite set, Ω = {ω1, ω2, ..., ωn} , n > 1, and µ0, ν0 be a

pair of probability discrete measures,

µ0(ωi) = pi ≥ 0, ν0(ωi) = qi ≥ 0, i = 1, 2, ..., n,

µ0(Ω) = p1 + · · ·+ pn = q1 + · · ·+ qn = ν0(Ω) = 1.

So measures µ0, ν0 are associated with a couple of stochastic vectors, say
p,q ∈ Rn

+. We recall that a vector p = (p1, p2, ..., pn) with coordinates
pi ≥ 0 is called stochastic if ‖p‖1 := p1 + · · ·+ pn = 1.

Given a pair of stochastic vectors p,q, we introduce the non-linear non-
commutative conflict composition, notation >, by

p>,1 = p>q, q>,1 = q>p,

where the coordinates of the vectors p>,1,q>,1 ∈ Rn
+ are defined as follows:

p>,1
i :=

pi(1− qi)

z
, q>,1

i :=
qi(1− pi)

z
, i = 1, 2, ..., n. (1)

The normalizing coefficient z is determined by the condition ‖p>,1‖1 =
‖q>,1‖1 = 1, and it follows that

z = 1− (p,q), 0 ≤ z ≤ 1, (2)

where (·, ·) stands for the inner Euclidean product in Rn.

Remark. The conflict composition is well defined only if (p,q) 6= 1, and
it acts as the identical transformation if (p,q) = 0. So we will suppose that
0 < (p,q) < 1.

The N -fold iteration of the conflict composition > produces a couple of
stochastic vectors p>,N , q>,N ∈ Rn

+ with coordinates

p>,N
i :=

1

zN−1

p>,N−1
i (1−q>,N−1

i ), q>,N
i :=

1

zN−1

q>,N−1
i (1−p>,N−1

i ), N = 1, 2, ...,

(3)
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where p
(0)
i ≡ pi, q

(0)
i ≡ qi, z0 = z, and

0 < zN−1 = 1− (p>,N−1,q>,N−1) < 1. (4)

We are interested in the existence of the limits p>,∞ = limN→∞ p>,N , q>,∞ =
limN→∞ q>,N .

Example. Let n = 2. Consider a couple of vectors p = (p1, p2), q =
(q1, q2) ∈ R2

+, with coordinates 0 < p1, p2, q1, q2 < 1, p1 + p2 = q1 + q2 = 1.

We observe that already on the first step, p>,1
1 = q>,1

2 , p>,1
2 = q>,1

1 . So one
can start at once with the case:

p = (a, b), q = (b, a), 0 < a, b < 1, a + b = 1.

Then by (1) and (2) we get, p>,1 = (a1, b1), q>,1 = (b1, a1), a1 + b1 = 1,
where

a1 =
1

z
a(1− b) =

a2

z
, b1 =

1

z
b(1− a) =

b2

z
, z = 1− 2ab = a2 + b2.

Thus a1 = a2(a2 + b2)−1, b1 = b2(a2 + b2)−1. If we assume that a < b, i.e.,
a < 1/2 < b, then we get a1 = ak1 < a since k1 := a(a2 + b2)−1 < 1.
For p>,2 = (a2, b2) we find a2 = a1k2 with k2 := a1(a

2
1 + b2

1)
−1 < 1. Thus

a2 = ak1k2, with k1, k2 < 1. By induction, for p>,N = (aN , bN) we get
aN = ak1 · · · kN with kN := aN−1(a

2
N−1 + b2

N−1) < 1. We see that aN → 0
since in the opposite case, kN → 1, 2a2

N−3aN +1 → 0, and aN → 1/2, which
is contradictory to aN < a < 1/2. So the limiting vectors are p>,∞ = (0, 1)
and q>,∞ = (1, 0) provided that a < b.

In the case p = q we get p>,N = q>,N = (1/2, 1/2) for any N ≥ 1. Thus
for p,q ∈ R2

+ only three limiting cases are possible,

(
p>,∞

q>,∞

)
=

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1/2 1/2
1/2 1/2

)
.

Theorem 1. (Theorem of conflicts for stochastic vectors) For each pair
of stochastic vectors p,q ∈ Rn

+, n > 1, 0 < (p,q) < 1, there exist limits

p>,∞ = lim
N→∞

p>,N , q>,∞ = lim
N→∞

q>,N ,
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where p>,N , q>,N are given by (3) and (4). The limiting vectors p>,∞, q>,∞

are invariant with respect to the action of the conflict composition:

p>,∞ = p>,∞>q>,∞, q>,∞ = q>,∞>p>,∞. (5)

If p 6= q, then the limiting vectors are orthogonal,

p>,∞ ⊥ q>,∞. (6)

If p = q, then p>,∞ = q>,∞ and p>,∞
i = q>,∞

i = 1/m for all i such that
pi = qi 6= 0, where m (m ≤ n) denotes the number of non-zero coordinates.

For the proof of this theorem we use the following lemmas and proposi-
tions.

Lemma 1. Let p 6= q and 0 ≤ qi < pi ≤ 1 for some i. Then

lim
N→∞

q>,N
i = 0 (7)

and
lim

N→∞
p>,N

i = p>,∞
i > 0. (8)

Proof . If qi = 0 or pi = 1, then obviously q>,N
i = 0 and p>,N

i = 1 for all
N ≥ 1. So we have to prove only the case 0 < qi < pi < 1. Denote

R
(0)
i :=

pi

qi

and R
(N)
i :=

p>,N
i

q>,N
i

for N ≥ 1.

Clearly,
1 < R

(0)
i < R

(1)
i ,

since due to (1) and (2), R
(1)
i = R

(0)
i k

(0)
i with k

(0)
i := 1−qi

1−pi
> 1. Therefore

0 < q>,1
i < p>,1

i < 1 . By induction we get 1 < R
(N)
i < ∞ for all N , which is

equivalent to 0 < q>,N
i < p>,N

i < 1. We note that

R
(N)
i =

p>,N−1
i

q>,N−1
i

· 1− q>,N−1
i

1− p
>,N−1)
i

= R
(N−1)
i k

(N−1)
i = R

(0)
i · k(0)

i · · · k(N−1)
i , (9)

where

k
(N)
i :=

1− q>,N
i

1− p>,N
i

.
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Let us now show that

1 < k
(0)
i < k

(1)
i < · · · < k

(N)
i < · · · (10)

Indeed, using z = 1− (p,q) > 0 we have

k
(1)
i =

1− q>,1
i

1− p>,1
i

=
1− 1

z
qi(1− pi)

1− 1
z
pi(1− qi)

=
z − qi(1− pi)

z − pi(1− qi)

=
1− qi − (p,q) + qipi

1− pi − (p,q) + qipi

=
1− qi − Ii

1− pi − Ii

,

where Ii := (p,q) − qipi. Obviously 0 < Ii < 1 − pi < 1 − qi due to qi < pi

and
Ii = (p,q)− qipi =

∑

k 6=i

pkqk <
∑

k 6=i

pk = 1− pi.

This implies that k
(0)
i = 1−qi

1−pi
< k

(1)
i . By induction we get (10), since 1 −

p>,N
i < 1− q>,N

i for all N . In turn, (9) and (10) imply

R
(N)
i =

p>,N
i

q>,N
i

→∞, N →∞. (11)

This yields q>,N
i → 0 since p>,N

i < 1, which proves (7). Let us show (8).
Define

D
(0)
i := pi − qi, D

(N)
i := p>,N

i − q>,N
i , N = 1, 2, ...

Obviously D
(0)
i > 0 and by (1)

D
(1)
i = p>,1

i − q>,1
i =

1

z
[pi(1− qi)− qi(1− pi)] =

1

z
D

(0)
i .

Hence D
(0)
i < D

(1)
i since 0 < z < 1. By induction, D

(N)
i < D

(N+1)
i for

all N . Therefore, there exists the limit D
(∞)
i = limN→∞ D

(N)
i ≤ 1, since

D
(N)
i = p>,N

i − q>,N
i < 1, and q>,N

i → 0 by (7). Moreover, we see that due to
q>,N
i → 0,

lim
N→∞

p>,N
i = p>,∞

i = D
(∞)
i = sup

N
D

(N)
i > 0. ¤

In the case 0 ≤ pk < qk ≤ 1, similarly to (7) we get

lim
N→∞

p>,N
k = 0, (12)
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and hence
lim

N→∞
q>,N
k = q>,∞

k = D
(∞)
k = sup

N
D

(N)
k > 0,

where D
(N)
k = q>,N

k − p>,N
k .

Proposition 1. Let 1 > pi = qi > 0 for some i, then

1 > p>,N
i = q>,N

i > 0 for all N = 1, 2, ...

Proof. By (3) we have p>,N
i = q>,N

i if and only if

p>,N−1
i (1− q>,N−1

i ) = q>,N−1
i (1− p>,N−1

i ),

i.e., if and only if p>,N−1
i = q>,N−1

i . ¤

Lemma 2. Let p 6= q, but pj = qj for some j. Then

pj = qj =⇒ p>,N
j = q>,N

j → 0, N →∞. (13)

Proof. If 1 > pj = qj > 0 for some j, then 1 > p>,N
j = q>,N

j > 0 for all

N due to Proposition 1. Assume for a moment that p>,N
j does not converge

to zero. Then one can choose a subsequence N ′ such that p>,N ′
j −→ c > 0.

This yields a contradiction. Indeed, since p 6= q, there exists i such that
0 ≤ qi < pi ≤ 1, and then due to (7) and (8) the right- and the left-hand
sides of the relation

p>,N ′+1
i =

p>,N ′
i (1− q>,N ′

i )

zN ′

have different limiting behaviour. Indeed, q>,N ′
i → 0, but zN ′ = 1−(p>,N ′

,q>,N ′
) =

1 − (p>,N ′
j )2 −∑

k 6=j p>,N ′
k q>,N ′

k ≤ 1 − (p>,N ′
j )2 → 1 − c2 < 1 by assumption.

¤

Proposition 2. If pi ≥ qi for some i, then

p>,N
i ≥ q>,N

i for all N ≥ 1. (14)
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Proof. By (1), (2) we get p>,1
i ≥ q>,1

i . By induction we have

p>,N+1
i =

1

zN

p>,N
i (1− q>,N

i ) ≥ q>,N+1
i =

1

zN

q>,N
i (1− p>,N

i ) ≥ q>,N+1
i ,

since p>,N
i ≥ q>,N

i implies (1− q>,N
i ) ≥ (1− p>,N

i ). ¤

Proposition 3. If p ⊥ q, then

p = p> q, q = q> p,

i.e., vectors p, q are invariant with respect to the action of the conflict
composition.

Proof. The condition p ⊥ q means that either pi or qi is equal to zero for
each i. This yields that all coordinates p>,1

i = pi and q>,1
i = qi. Indeed, if

pi 6= 0, then qi = 0, and p>,1
i = 1

z
pi(1 − qi) = pi since z = 1 due to p ⊥ q.

And if pi = 0, then p>,1
i = 0 too. ¤

Assume now that vectors p,q ∈ Rn
+, n > 2, coincide and

pi = qi 6= 0, for all i = 1, 2, ..., n. (15)

Then without loss of generality one can assume that

0 < p1 ≤ p2 ≤ ... ≤ pn−1 ≤ pn < 1, p1 ≤ 1/n ≤ pn. (16)

Setting qc
i := 1− qi = 1− pi = pc

i we have

1 > qc
1 ≥ qc

2 ≥ ... ≥ qc
n−1 ≥ qc

n > 0. (17)

Proposition 4. Under assumption (15) with n > 2 the normalizing
coefficient z satisfies the inequalities

qc
1 ≥ z ≥ qc

n. (18)

Proof. If p = q = (1/n, 1/n, ..., 1/n), then z = n−1
n

= qc
1 = qc

n, and (18) is
true. In a general case we note that

z = (p,qc) = p1q
c
1 + p2q

c
2 + ... + pnq

c
n,
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where qc := (qc
1, q

c
2, ..., q

c
n). If each term qc

i is replaced by the maximal term
qc
1 (see (17)), then obviously

z =
n∑

i=1

piq
c
i ≤ qc

1

n∑
i=1

pi = qc
1.

Similarly, if all qc
i are replaced by the minimal term qc

n, then

z =
n∑

i=1

piq
c
i ≥ qc

n

n∑
i=1

pi = qc
n.

This proves (18). ¤

Proposition 5 Under assumption (15) with n > 2 the following inequal-
ities hold:

p1 ≤ p>,1
1 , p>,1

n ≤ pn, (19)

p>,1
1 ≤ p>,1

i ≤ p>,1
n , i = 1, ..., n, (20)

p1 ≤ p>,1
1 ≤ p>,N

1 ≤ p>,N
i ≤ p>,N

n ≤ p>,1
n ≤ pn, N ≥ 1. (21)

Proof. For p>,1
1 = p1q

c
1/z0 we have p1 ≤ p>,1

1 due to (18). Similarly, for
p>,1

n = pnq
c
n/z0 we have p>,1

n ≤ pn again due to (18). Thus (19) is proved.
Further, each coordinate p>,1

i = pi(1 − qi)/z0 satisfies inequalities (20)
because qi = pi and p1(1−p1) ≤ pi(1−pi) ≤ pn(1−pn) due to p1 =min{pi} ≤
1/n, and pn =max{pi} ≥ 1/n. For more details one can consider a function
y = x(1 − x), x ∈ (0, 1). It has the maximum in the point x0 = 1/2. From
the graphic of this function we see that for any point x = pi ≤ pn, the value
y(pi) ≤ y(pn) since pi ≤min{pn, 1 − pn}, n ≥ 3. By the similar arguments
y(p1) ≤ y(pi). By induction (19), (20) hold for all N = 1, 2, ... This yields
(21). ¤

Proposition 6 Under assumption (15) with n > 2 there exist the limiting
vectors,

p>,∞ = lim
N→∞

p>,N = lim
N→∞

q>,N = q>,∞,

which have the form,

p>,∞ = q>,∞ = (1/n, 1/n, ..., 1/n). (22)
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Proof. It is easy to see that (21) and (18) imply

q>,N,c
1 ≥ zN ≥ q>,N,c

n , N = 1, 2, ... (23)

where q>,N,c
i = 1 − q>,N

i . In turn, (21), (23) imply that sequences p>,N
i

with i = 1 and i = n are monotonic on N and therefore there exist the
limits p>,∞

1 = limN→∞ p>,N
1 , p>,∞

n = limN→∞ p>,N
n . Further, since p>,∞

1 =
p>,∞

1 (1 − p>,∞
1 )/z∞ and p>,∞

n = p>,∞
n (1 − p>,∞

n )/z∞, we conclude that z∞ =
1− p>,∞

1 = 1− p>,∞
n . By (16) and (21) this is only possible if

p>,∞
1 = p>,∞

n = 1/n.

Hence p>,∞
i = limN→∞ p>,N,

i exist for all i and due to (21) p>,∞
i = 1/n. This

proves (22). ¤

Proof of Theorem 1. For the case p,q ∈ R2
+ see Example 1. Let p,q ∈

Rn
+, n ≥ 3. If p 6= q, then the existence of the limiting vectors p>,∞,q>,∞ is

proved by Lemma 1 and Lemma 2. Moreover due to (7), (12), and (13) we
have (p>,N ,q>,N) → 0 as N →∞. Thus, the limiting vectors are orthogonal,
i.e., (6) is proved. Hence zN → 1, i.e.,

z∞ = 1. (24)

In turn (24) imply (5).
If p = q, then by Proposition 1, p>,N = q>,N for all N and therefore

p>,∞ = q>,∞. Under condition (15) all coordinates of vectors p>,∞,q>,∞

are equal to 1/n (see Proposition 6). Clearly that if pi = qi 6= 0 only for
i = 1, ..., m < n, then p∞i = q∞i = 1/m. In any case (5) and (6) are true too.
¤

3 The conflict composition for discrete mea-

sures on a countable space

Let X = Ω be a countable set of points, Ω = {ω1, ω2, ...}, endowed by the
discrete topology. Let µ0, ν0 be a pair of the discrete probability measures
on Ω,

µ0(ωi) = p
(0)
i ≥ 0, ν0(ωi) = q

(0)
i ≥ 0, i = 1, 2, ...
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µ0(Ω) =
∞∑
i=1

p
(0)
i = ν0(Ω) =

∞∑
i=1

q
(0)
i = 1.

We assume that the measures µ0, ν0 are mutually nonsingular and exclude
the situation with µ0(ωi) = ν0(ωi) = 1 for some ωi.

Given measures µ0, ν0 we introduce a new pair of discrete probability
measures µ1, ν1 on Ω by the conflict composition > defined as follows:

µ1 = µ0>ν0, ν1 = ν0>µ0,

where

µ1(ωi) := p
(1)
i :=

1

z0

p
(0)
i (1− q

(0)
i ) ≡ 1

z0

p
(0)
i ·

∞∑

k=1,k 6=i

q
(0)
k ,

ν1(ωi) := q
(1)
i :=

1

z0

q
(0)
i (1− p

(0)
i ) ≡ 1

z0

q
(0)
i ·

∞∑

k=1,k 6=i

p
(0)
k ,

and where the coefficient z0 is calculated using the normalizing condition:

µ0(Ω) =
∞∑
i=1

p
(1)
i = ν0(Ω) =

∞∑
i=1

q
(1)
i = 1.

Thus

z0 =
∞∑
i=1

(
p

(0)
i ·

∞∑

k=1,k 6=i

q
(0)
k

)
= 1−

∞∑
i=1

p
(0)
i q

(0)
i < 1 = 1− (p0,q0),

where (·, ·) stands for the inner product in the Hilbert space l2 between

vectors p0 := (p
(0)
1 , p

(0)
2 , ...), q0 := (q

(0)
1 , q

(0)
2 , ...) which in fact belong to l1.

Similarly we can define the pair of probability measures µ2 and ν2 as a
result of the second step of the conflict interaction:

µ2 = µ1>ν1, ν2 = ν1>µ1,

where

µ2(ωi) = p
(2)
i :=

1

z1

p
(1)
i (1− q

(1)
i ), ν1(ωi) = q

(2)
i :=

1

z1

q
(1)
i (1− p

(1)
i ),
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with the normalizing coefficient z1 = 1 − ∑∞
i=1 p

(1)
i q

(1)
i < 1. And so on, for

any N = 1, 2, ..., up to infinity,

µN(ωi) = p
(N)
i :=

1

zN−1

p
(N−1)
i (1−q

(N−1)
i ), νN(ωi) = q

(N)
i :=

1

zN−1

q
(N−1)
i (1−p

(N−1)
i ),

(25)
where

zN−1 = 1− (pN−1,qN−1) (26)

with pN−1 = (p
(N−1)
1 , p

(N−1)
2 , ...), qN−1 := (q

(N−1)
1 , q

(N−1)
2 , ...).

The problem is to prove the existence of the limiting measures µ∞, ν∞ :

µ∞(ωi) = p
(∞)
i = lim

N→∞
p

(N)
i , ν∞(ωi) = q

(∞)
i = lim

N→∞
q
(N)
i , (27)

and investigate their distributions on Ω.

Theorem 2. (Theorem of conflicts for discrete measures) Let µ0 6= ν0

be a pair of mutually nonsingular discrete probability measures on a space
Ω = {ωi}∞i=1. The case µ0(ωi) = ν0(ωi) = 1 for some ωi is excluded. Then
all limits in (27) exist and thus determine two probability measures

µ∞ = lim
N→∞

µN , ν∞ = lim
N→∞

νN ,

which are mutually singular,
µ∞ ⊥ ν∞,

and are both invariant with respect to the action of the conflict composition:

µ∞ = µ∞>ν∞, ν∞ = ν∞>µ∞. (28)

Proof. If 0 ≤ µ0(ωi) < ν0(ωi) ≤ 1 for some i, then by the same arguments

as in Lemma 1 we get µN(ωi) → 0, and νN(ωi) → ν∞(ωi) = supN(q
(N)
i −

p
(N)
i ) ≤ 1 in notations of (25). Similarly, if 0 ≤ ν0(ωk) < µ0(ωk) ≤ 1 for

some k, then νN(ωk) → 0, and µN(ωk) → µ∞(ωk) = supN(p
(N)
k − q

(N)
k ) ≤ 1.

Moreover, if µ0(ωj) = ν0(ωj) for some j, then both sequences µN(ωj) and
νN(ωj) converge to zero, as N →∞. Indeed, µ0 6= ν0 implies the existence at
least a point ωk such that µ0(ωk) 6= ν0(ωk). Suppose ν0(ωk) < µ0(ωk). Then

in notations of (25) we get µ∞(ωk) = p
(∞)
k = p

(∞)
k (1 − q

(∞)
k )/z∞, where by

Lemma 1, p
(∞)
k > 0 and ν∞(ωk) ≡ q

(∞)
k = 0. This yields z∞ = 1. Therefore,
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(see (26)) (pN ,qN) → 0. In particular, µN(ωj) = νN(ωj) → 0 for all indices j
such that µ0(ωj) = ν0(ωj). Thus there exist two non-trivial discrete measures
µ∞, ν∞ on Ω, which are mutually singular due to (p∞,q∞) = 0, where

p∞ = (p
(∞)
1 , p

(∞)
2 , ...), q∞ = (q

(∞)
1 , q

(∞)
2 , ...). These measures are probability

measures since µN(Ω) = νN(Ω) = 1 for each N . Finally, (28) directly follows
from (p∞,q∞) = 0. ¤

4 Discussion

The above results admit natural extensions to a general case where X is a
metric space with a σ-algebra B of Borel subsets. Here we present a brief
sketch. So let µ0, ν0 be a pair of Borel mutually nonsingular probability
measures on X. Assume there exists a countable ε-covering, ε > 0, of X,

X = ∪iBi, Bi ∈ B, diam(Bi) ≤ ε,

such that
µ0(Bi ∩Bk) = ν0(Bi ∩Bk) = 0, i 6= k. (29)

Then we introduce a new pair of probability measures µ1 ≡ µ1,ε, ν1 ≡ ν1,ε as
follows, µ1 = µ0>ν0, ν1 = ν0>µ0, where for any A ∈ B, A = ∪iAi, Ai =
A ∩Bi,

µ1(A) =
∞∑
i=1

µ1(Ai), ν1(A) =
∞∑
i=1

ν1(Ai),

and where

µ1(Ai) :=
1

z0

µ0(Ai)ν0(B
c
i ), ν1(Ai) :=

1

z0

ν0(Ai)µ0(B
c
i ),

with Bc
i = X \Bi. The normalizing coefficient z0 ≡ z0,ε is determined by the

probability condition: 1 = µ1(X) = ν1(X). It is easy to check using (29) that
µ1 and ν1 are Borel measures on X. Of course we have to exclude a blow-up
situation when µ0(Bi) = ν0(Bi) = 1 for some i. Clearly we can repeat the
above construction N ≥ 1 times and obtain two sequences of probability
measures: µN,ε ≡ µN = µN−1>νN−1, νN,ε ≡ νN = νN−1>µN−1. By Theorem
2 there exist two limiting probability measures

µ∞,ε = lim
N→0

µN,ε, ν∞,ε = lim
N→0

νN,ε,

13



which are invariant with respect to the action of the conflict composition and
which are mutually singular provided that µ0(Bi) 6= ν0(Bi) for some Bi.

Thus under condition (29) we are able to describe the conflict interaction
between a couple of measures µ0, ν0 on a metric space X with any ε−accuracy.

The open problem is to prove the existence of the limiting measures µ∞ =
limε→0 µ∞,ε and ν∞ = limε→0 ν∞,ε.

We note that the above version of the conflict composition> is not unique.
The existence of the limiting invariant measures µ∞, ν∞ may be ensured by
various modifications of >. A specific choice of > is determined by applica-
tions.

For example, assume that the conflicting sides do not want to leave posi-
tions with a starting non-zero parity, pj = qj 6= 0. We recall that according
to Lemma 2 these coordinates converge to zero under the infinite time action
of the conflict composition. However one can improve the construction of
the composition > in such a way that p>,N

j = q>,N
j will not converge to zero,

which means preservation of the non-zero parity with respect to j position.
For instance, in order to reach this one can decompose each measure into
two parts: µ0 = µ0,p + µ0,c, ν0 = ν0,p + ν0,c, where

µ0,p := µ0 ¹ Ω= = ν0,p := ν0 ¹ Ω=, µ0,c := µ0 ¹ Ωc
= 6= ν0,c := ν0 ¹ Ωc

=,

with Ω= := {ωk ∈ Ω : p
(0)
k = q

(0)
k 6= 0} and Ωc

= = Ω \ Ω=. Then we leave
measures µ0,p, ν0,p without any change and apply the previous version of the
composition >, with obvious modifications, only to measures µ0,c, ν0,c, which
in general are not probabilistic. We note that in [2], a version of the conflict
composition suitable to arbitrary normalized measures was developed. In fact
on this way one obtains a new conflict composition which preserves nontrivial
parity positions.

Further, one can construct a more complex conflict composition in the
following way:

µ0 ~ ν0 := α(µ0,c > ν0,c) + β(µ0,p ! ν0,p), α, β ∈ [0, 1],

where > is defined as above and the new term involves interaction, possibly
in some power, which explicitly depends on the starting distributions on all
positions. Computer simulations of such conflict composition exhibit some
new effects including the blow-up, a chaotic behaviour, and infinite oscilla-
tions of values p>,N

i = q>,N
i as N → ∞. The latter may be interpreted as

an ”infinite war” without a winner.
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