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ON FINE STRUCTURE OF SINGULARLY CONTINUOUS

PROBABILITY MEASURES AND RANDOM VARIABLES WITH

INDEPENDENT Q̃-SYMBOLS

S. ALBEVERIO, V. KOSHMANENKO, M. PRATSIOVYTYI, AND G. TORBIN

Abstract. We introduce a new fine classification of singularly continuous probabi-

lity measures on R1 on the basis of spectral properties of such measures (topological
and metric properties of the spectrum of the measure as well as local behavior of

the measure on subsets of the spectrum). The theorem on the structural represen-

tation of any one-dimensional singularly continuous probability measure in the form
of a convex combination of three singularly continuous probability measures of pure

spectral type is proved.

We introduce into consideration and study a Q̃-representation of real numbers and

a family of probability measures with independent Q̃-symbols. Topological, metric
and fractal properties of the above mentioned probability distributions are studied in

details. We also show how the methods of P̃ − Q̃-measures can be effectively applied

to study properties of generalized infinite Bernoulli convolutions.

1. Introduction

As is well known there exist only three types of pure probability distributions: dis-
crete, absolutely continuous and singularly continuous (w.r.t. the Lebesgue measure).
During a long period mathematicians had a rather low interest in singular probability
distributions, which was mainly caused by the following two reasons: the absence of ef-
fective analytic tools and the widely spread point of view that such distributions do not
have any applications, in particular in physics, and are interesting only for theoretical
reasons. The interest in singularly continuous probability distributions increased however
in 1990’s due their deep connections with the theory of fractals. On the other hand, re-
cent investigations show that singularity is generic for many classes of random variables,
and absolutely continuous and discrete distributions arise only in exceptional cases (see,
e.g. [12, 19]). Possible applications in the spectral theory of self-adjoint operators [18] is
an additional reason in the intensive investigation of singularly continuous measures. It
was proved that Schrödinger type operators with singular continuous spectra are generic
for some classes of potentials [6]. Moreover, by using the fractal analysis of the corres-
ponding spectral singularly continuous measures, it is possible to analyze the dynamical
properties of the corresponding quantum systems [10].

This paper is devoted to the study and classification of one-dimensional singular mea-
sures. Unfortunately, usually singular probability distributions are associated only with
Cantor-like distributions. We show that even in the R1 case the family of singularly
continuous probability measures is rather rich and diverse. In this paper we introduce
into consideration three pure spectral types of singularly continuous probability measures
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and prove that any singularly continuous measure on the real line can be represented as
a convex combination of probability measures of the above spectral types.

To give a simple way to construct classes of singularly continuous probability mea-

sures we introduce into consideration and study the Q̃-representation of real numbers
(which is a convenient tool for the construction of a wide class of fractals) and a family

of probability measures with independent Q̃-symbols. Topological, metric and fractal
properties of the above mentioned probability distributions are studied in details. This
family contains all possible pure spectral types of singular continuous measures, and (as
a very particular case) the class of all self-similar measures on [0, 1] satisfying the open
set condition (see Section 3 for details).

We also show how the methods of P̃ − Q̃-measures can be effectively applied to study
properties of generalized infinite Bernoulli convolutions (see, e.g., [2, 11, 14] for the survey
on Bernoulli convolutions, related applications and problems).

An additional reason for the investigation of the distribution of the random variables

with independent Q̃-symbols is to extend the famous Jessen-Wintner theorem (see, e.g.,
[8]) to the case of sums of random variables which are not independent.

The paper is organized as follows. In Section 2 we study Q̃-representation of real
numbers and properties of related fractal sets. In Section 3 we study the structure

and properties of probability measures with independent Q̃-symbols and show how the
obtained results can be applied to study properties of generalized infinite Bernoulli con-
volutions. Section 4 is devoted to a classification of singularly continuous measures and
fine structure of such measures.

2. Q̃-representation of real numbers and related fractals

Let us consider an Nk × N−matrix Q̃ = ‖qik‖ , i ∈ Nk, k ∈ N, where Nk =
{0, 1, . . . , Nk}, with 0 < Nk ≤ ∞. We suppose that

∑
i∈Nk

qik = 1, ; qik > 0 , ∀i ∈
Nk, k ∈ N; and

(1)

∞∏
k=1

max
i∈Nk

{qik} = 0.

Given a Q̃−matrix we consecutively perform decompositions of the segment [0, 1] as
follows.

Step 1. We decompose [0, 1] (from the left to the right) into the union of closed

intervals ∆Q̃
i1

, i1 ∈ N1 (without common interior points) of the length
∣∣∣∆Q̃

i1

∣∣∣ = qi11,

[0, 1] =
⋃

i1∈N1

∆Q̃
i1
.

Each interval ∆Q̃
i1

is called a 1-rank interval.
Step k ≥ 2. We decompose (from the left to the right) each closed (k−1)-rank interval

∆Q̃
i1i2...ik−1

into the union of closed k−rank intervals ∆Q̃
i1i2...ik

,

∆Q̃
i1i2...ik−1

=
⋃

ik∈Nk

∆Q̃
i1i2...ik

,

where their lengths

(2)
∣∣∣∆Q̃

i1i2...ik

∣∣∣ = qi11 · qi22 · · · qikk =

k∏
s=1

qiss
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are related as follows∣∣∣∆Q̃
i1i2...ik−10

∣∣∣ :
∣∣∣∆Q̃

i1i2...ik−11

∣∣∣ : · · · :
∣∣∣∆Q̃

i1i2...ik−1ik

∣∣∣ : · · · = q0k : q1k : · · · : qikk : · · ·

For any sequence of indices {ik}, ik ∈ Nk, there corresponds the sequence of embedded
closed intervals

∆Q̃
i1
⊃ ∆Q̃

i1i2
⊃ · · · ⊃ ∆Q̃

i1i2...ik
⊃ · · ·

such that |∆Q̃
i1...ik

| → 0, k → ∞, due to (1) and (2). Therefore, there exists a unique

point x ∈ [0, 1] belonging to all intervals ∆Q̃
i1
, ∆Q̃

i1i2
, . . . , ∆Q̃

i1i2...ik
, . . . Conversely, for

any point x ∈ [0, 1) there exists a sequence of embedded intervals ∆Q̃
i1
⊃ ∆Q̃

i1i2
⊃ · · · ⊃

∆Q̃
i1i2...ik

⊃ · · · containing x, i.e.,

(3) x =

∞⋂
k=1

∆Q̃
i1i2...ik

=

∞⋂
k=1

∆Q̃
i1(x)i2(x)...ik(x) =: ∆Q̃

i1(x)i2(x)...ik(x)...

Notation (3) is called the Q̃−representation of the point x ∈ [0, 1] .

Remark 1. The correspondence [0, 1] ∈ x ⇔ {(i1(x), i2(x), . . . , ik(x), . . .)} in (3) is one-

to-one, i.e., the Q̃−representation is unique for every point x ∈ [0, 1], provided that the

Q̃-matrix contains an infinite number of columns with an infinite number of elements.
However in the case, where Nk < ∞, ∀k > k0 for some k0, there exists a countable set

of points x ∈ [0, 1] having two different Q̃−representations. Precisely, this is the set of

all end-points of intervals ∆Q̃
i1i2...ik

with k > k0.

Remark 2. If qik = qi , k ∈ N, then the Q̃−representation coincides with the Q−represen-

tation (see [15]); moreover, if qik = 1
s for some natural number s > 1, then the Q̃−represen-

tation coincides with the classical s−adic expansion.

The Q̃-representation allows to construct in a convenient way a wide class of fractals on
R1 and other mathematical objects with fractal properties. Firstly we consider compact
fractals from R1. Let V := {Vk}∞k=1, Vk ⊆ Nk, and let us consider the set

(4) ΓQ̃(V) ≡ Γ :=
{
x ∈ [0, 1] : x = ∆Q̃

i1i2...ik...
, ik ∈ Vk

}
,

i.e., Γ consists of points, which can be Q̃−represented by using only symbols ik from the

set Vk on each k-th position of their Q̃−representation.
If Vk 6= Nk at least for one k < k0, and Vk = Nk for all k ≥ k0 with some fixed

k0 > 1, then Γ is a union of closed intervals. In this case one can get Γ removing from

[0, 1] all open intervals ∆̇Q̃
i1...ik

, k < k0 with ik /∈ Vk (where a point over ∆ means that
an interval is open). If the condition Vk 6= Nk holds for infinitely many values of k, then
obviously Γ is a nowhere dense set.

We shall study the metric properties of the sets ΓQ̃(V). Let Sk(V) denote the sum of all

elements qik such that ik ∈ Vk, i.e., Sk(V) :=
∑
i∈Vk

qik. We note that 0 < Sk(V) ≤ 1.

Lemma 1. The Lebesgue measure λ(Γ) of the set Γ is equal to

(5) λ(Γ) =

∞∏
k=1

Sk(V).



100 S. ALBEVERIO, V. KOSHMANENKO, M. PRATSIOVYTYI, AND G. TORBIN

Proof. Let Γn :=
⋃
ik∈Vk

∆i1...in . It is easy to see that Γn ⊆ Γn−1 and Γ =
⋂∞
n=1 Γn.

From the definition of the sets Γn and from (2), it follows that λ(Γn) =
∏n
k=1 Sk(V),

and, therefore, λ(Γ) = limn−→∞ λ(Γn) =
∏∞
k=1 Sk(V). �

Corollary. Let Wk(V) = 1− Sk(V) ≥ 0. The set Γ is of zero Lebesgue measure if and
only if

(6)

∞∑
k=1

Wk(V) =∞ .

The above mentioned procedure allows to construct nowhere dense compact fractal sets
E with a desirable Hausdorff-Besicovitch dimension (including the anomalously fractal
case (α0(E) = 0) and the superfractal case (α0(E) = 1)) in a very easy formal way.

Theorem 1. Let Nk = N0
s−1 := {0, 1, . . . , s − 1} k ∈ N , let V0 = {v1, v2, . . . , vm} ⊂

N0
s−1 and let the matrix Q̃ have the following asymptotic property:

lim
k→∞

qik = qi, i ∈ N0
s−1.

Then
1) the Hausdorff-Besicovitch dimension of the set ΓQ̃(V0) coincides with the root of

the following equation:

(7)
∑
i∈V0

qxi = 1;

2) if

M [Q̃, (ν0, . . . , νs−1)] =

{
x : ∆Q̃

α1(x)...αk(x)..., lim
k→∞

Ni(x, k)

k
= νi, i ∈ N0

s−1

}
,

where Ni(x, k) is the number of symbols ”i” among the first k symbols of the Q̃-representation
of x, then

(8) α0(M [Q̃, (ν0, . . . , νs−1)]) =

∑s−1
i=0 νi ln νi∑s−1
i=0 νi ln qi

.

Proof. Firstly we consider the particular case where the matrix Q̃ has exactly s rows and

all its columns are the same: qik = qi. In such a simple case the Q̃-representation reduces
to the Q-representation studied in [12]. One can prove (see, e.g., [15]), that to calculate
the Hausdorff-Besicovitch dimension of any subset E ⊂ [0, 1] it is sufficient to consider
a class of cylinder sets of different ranks generated by Q-partitions of the unit interval.
The Billingsley theorem (see, e.g., [4], p. 141) admits a generalization to the class of Q-
cylinders, and, from this theorem it follows that in the case of usual Q-representation, the
Hausdorff-Besicovitch dimension of the set M [Q, (ν0, . . . , νs−1)] is equal to the right-side
expression in (8).

In the Q-case the set ΓQ(V0) is a self-similar set satisfying the open set condition.
Therefore, the Hausdorff-Besicovitch dimension of this set is the root of equation (7).

Now let us consider a general case of theorem 1. To this end we introduce into
consideration the following transformation f of [0, 1] :

f(x) = f(∆Q
α1(x)...αk(x)...) = ∆Q̃

α1(x)...αk(x)....
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This transformation belongs to the DP-class (see, e.g., [1, 17]), i.e., f preserves the
Hausdorff-Besicovitch dimension of any subset of [0, 1]. Since f(ΓQ(V0)) = ΓQ̃(V0) and

f(M [Q, (ν0, . . . , νs−1)]) = M [Q̃, (ν0, . . . , νs−1)], we get the desired formulas under general
assumptions of theorem 1. �

Example 1. If Nk = {0, 1, 2},Vk = {0, 2}, q1k → 0, but
∑∞
k=1 q1k = ∞ with q0k =

q2k = 1−q1k
2 , then Γ is a nowhere dense set of zero Lebesgue measure. From Theorem 1

it follows that the Hausdorff dimension of this set is equal 1. In the terminology of [12]
a set of this kind is called a superfractal set.

Example 2. If Nk = {0, 1, 2},Vk = {0, 2}, q1k → 1 (but
∏∞
k=1 q1k = 0), and q0k =

q2k = 1−q1k
2 , then Γ is a nowhere dense set of zero Lebesgue measure and of zero Hausdorff

dimension, i.e., Γ is an anomalously fractal set (see [12]).

3. Random variables with independent Q̃−symbols

Let {ξk} be a sequence of independent random variables with the following distribu-
tions:

P (ξk = i) := pik ≥ 0 with
∑
i∈Nk

pik = 1, k ∈ N.

By using ξk and the Q̃-representation we construct a random variable ξ as follows:

(9) ξ := ∆Q̃
ξ1ξ2...ξk...

.

The distribution of ξ is completely determined by two matrices: Q̃ and P̃ = ||pik||,
where some elements of the matrix P̃ possibly are equal to zero. Of course, all sets

Nk are the same as those in the Q̃-matrix. Let µξ be the measure corresponding the

distribution of the random variable ξ with independent Q̃-symbols.
If qik = qi and pik = pi ∀j ∈ N , i ∈ N0

s−1 (i.e., ξ is a random variable with inde-
pendent identically distributed Q-digits), then the measure µξ is the self-similar measure
associated with the list (S0, . . . , Ss−1, p0, . . . , ps−1), where Si is the similarity with the

ratio qi (
∑s−1
i=0 qi = 1), and the list (S0, . . . , Ss−1) satisfies the open set condition. More

precisely, µξ is the unique Borel probability measure on [0, 1] such that

µξ =

s−1∑
i=0

pi · µξ ◦ S−1
i

(see, e.g., [7] for details). In the so-called ”Q∗− case” we construct the measure µξ in a
similar way but with the possibility of changing of the ratios and probabilities from the

list (S0, . . . , Ss−1, p0, . . . , ps−1) at each stage of the construction. In our general ”Q̃−
case” we may additionally choose the number of contracting similarities (including a
countable number) at each stage of the construction.

The random variable ξ can be represented as a sum of an a.s. convergent series
of discretely distributed random variables which are not independent. Nevertheless the
distribution of ξ is of pure type.

Theorem 2. The measure µξ is of pure type, i.e., it is either purely absolutely continu-
ous, resp., purely point, resp., purely singular continuous. Precisely,

1) µξ is purely absolutely continuous if and only if

(10) ρ :=

∞∏
k=1

{ ∑
i∈Nk

√
pik · qik

}
> 0;
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2) µξ is purely point if and only if

(11) Pmax :=

∞∏
k=1

max
i∈Nk

{pik} > 0;

3) µξ is purely singularly continuous in all other cases, i.e., if and only if

(12) ρ = 0 = Pmax.

Proof. Let Ωk = Nk, Ak = 2Ωk . We define measures µk and νk in the following way:

µk(i) = pik; νk(i) = qik, i ∈ Ωk.

Let

(Ω,A, µ) =

∞∏
k=1

(Ωk,Ak, µk), (Ω,A, ν) =

∞∏
k=1

(Ωk,Ak, νk)

be the infinite products of probability spaces, and let us consider the measurable mapping
f : Ω→ [0; 1] defined as follows:

∀ω = (ω1, ω2, . . . , ωk, . . .) ∈ Ω, f(ω) = x = ∆i1(x)i2(x)...ik(x)...

with ωk = ik(x), k ∈ N .
We define the measures µ∗ and ν∗ as the image measure of µ resp. ν under f :

µ∗(B) := µ(f−1(B)), ν∗(B) = ν(f−1(B)), B ∈ B.
It is easy to see that ν∗ coincides with Lebesgue measure λ on [0, 1], and µ∗ ≡ µξ.

In general, the mapping f is not bijective, but there exists a countable set Ω0 such that
ν(Ω0) = 0, µ(Ω0) = 0 and the mapping f : Ω \ Ω0 → [0, 1] is bijective.

Therefore, the measure µξ is absolutely continuous (singular) with respect to the
Lebesgue measure if and only if the measure µ is absolutely continuous (singular) with
respect to the measure ν. Since, qik > 0, we conclude that µk � νk, ∀k ∈ N . By using
Kakutani’s theorem [9], we have

(13) µξ � λ ⇔
∞∏
k=1

∫
Ωk

√
dµk
dνk

dνk > 0 ⇔
∞∏
k=1

( ∑
i∈Nk

√
pikqik

)
> 0,

(14) µξ ⊥ λ ⇔
∞∏
k=1

∫
Ωk

√
dµk
dνk

dνk = 0 ⇔
∞∏
k=1

( ∑
i∈Nk

√
pikqik

)
= 0.

Of course, a singularly distributed random variable ξ can also be distributed discretely.
For any point x ∈ [0, 1] the set f−1(x) consists of at most two points from Ω. Therefore,
the measure µξ is an atomic measure if and only if the measure µ is atomic.

If
∞∏
k=1

max
i
pik = 0, then

µ(ω) =

∞∏
k=1

pωkk ≤
∞∏
k=1

max
i
pik = 0 for any ω ∈ Ω,

and µ is continuous.

If
∞∏
k=1

max
i
pik > 0, then we consider the subset A+ = {ω : µ(ω) > 0}. The set A+

contains the point ω∗ = (ω∗1 , ω
∗
2 , ..., ω

∗
k, ...) such that pω∗kk = max

i
pik. It is easy to see

that for all ω ∈ A+ the condition pωkk 6= max
i
pik holds only for a finite amount of values
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k. This means that A+ is a countable set and the event ”ω ∈ A+” does not depend on
any finite coordinates of ω. Therefore, by using Kolmogorov’s ”0 and 1” theorem, we
conclude that µ(A+) = 0 or µ(A+) = 1. Since µ(A+) ≥ µ(ω∗) > 0, we have µ(A+) = 1,
which proves the discreteness of the measure µ. �

Remark 3. If there exists a positive number q+ such that qik ≥ q+,∀k ∈ N, ∀i ∈ Nk,
then condition (13) is equivalent to the convergence of the following series:

(15)

∞∑
k=1

{ ∑
i∈Nk

(1− pik
qik

)2
}
<∞.

If limk→∞ qik = 0, then, generally speaking, conditions (13) and (15) are not equiva-

lent. For example, let us consider the matrices Q̃ and P̃ as follows: Nk = {0, 1, 2} , q1k =
1
2k , q0k = q2k = 1−q1k

2 , p1k = 0, p0k = p2k = 1
2 . In this case condition (13) holds,

but (15) does not hold.
Let us show how the obtained results can be applied to the study of generalized

infinite Bernoulli convolutions, i.e., probability distributions of the random variables of
the following form:

(16) η =
∑
k

ηkak,

where {ηk} is a sequence of independent random variables taking values 0 and 1 with

probabilities p
′

0k and p
′

1k respectively, and
∑∞
k=1 ak is a convergent positive series.

For the simplicity let us firstly consider the case where ak > rk := ak+1 + ak+2 + · · · ,
∀k ∈ N .

In such a case the probability measure µη is a measure with independent Q̃-symbols,

and the matrices Q̃ and P̃ are of the following form:

q0k =
rk
rk−1

, q1k =
ak − rk
rk−1

, q2k =
rk
rk−1

,

p0k = p
′

0k, p1k = 0, p2k = p
′

1k.

Applying the previous theorem, we obtain the following conclusions.

Proposition 1. If ak > rk,∀k ∈ N , then
the random variable η is purely discretely distributed if and only if

∞∏
k=1

max
i
p
′

ik > 0;

the random variable η is purely absolutely continuously distributed if and only if

∞∏
k=1

∑
i

√
p
′
ik

rk
rk−1

= lim
k→∞

√
rk

k∏
j=1

(
√
p
′
0j +

√
p
′
1j) > 0;

the random variable η is purely singularly continuously distributed in all other cases.

A relative simplicity of the latter class of Bernoulli convolutions (ak > rk,∀k ∈ N)
can be explained by the following observations: two cylindrical sets of rank k (i.e., sets
of the form [c1a1 + · · ·+ ckak, c1a1 + · · ·+ ckak + rk], ci ∈ {0, 1}) either coincide or they
have no common interior points. Sometimes such Bernoulli convolutions are said to be
Bernoulli convolutions without ”large intersections”.



104 S. ALBEVERIO, V. KOSHMANENKO, M. PRATSIOVYTYI, AND G. TORBIN

By using the P̃ − Q̃ approach it is also possible to analyze properties of Bernoulli
convolutions with ”large intersections”. As an example, let us consider the case where

(17)

 a3k−2 = a3k−1 + a3k,
r3k−1 < a3k−1,
r3k < a3k, k ∈ N.

In such a case the probability measure µη is also a measure with independent Q̃-symbols.

The matrix Q̃ is of the following form:

q0k = q2k = q4k = q6k = q8k = q10,k = q12,k =
r3k

r3k−3
,

q1k = q5k = q7k = q11,k =
a3k − r3k

r3k−3
,

q3k = q9k =
a3k−1 − r3k−1

r3k−3
;

and the matrix P̃ has the following structure:

p1k = p3k = p5k = p7k = p9k = p11,k = p13,k = 0,

p0k = p
′

0,3k−2p
′

0,3k−1p
′

0,3k, p2k = p
′

0,3k−2p
′

0,3k−1p
′

1,3k, p4k = p
′

0,3k−2p
′

1,3k−1p
′

0,3k,

p6k = p
′

0,3k−2p
′

1,3k−1p
′

1,3k + p
′

1,3k−2p
′

0,3k−1p
′

0,3k,

p8k = p
′

1,3k−2p
′

0,3k−1p
′

1,3k, p10,k = p
′

1,3k−2p
′

1,3k−1p
′

0,3k, p12,k = p
′

1,3k−2p
′

1,3k−1p
′

1,3k.

Applying the previous theorem, we get necessary and sufficient conditions for the
discreteness, absolute continuity and singular continuity. Taking into account that for

the above matrices Q̃ and P̃ the infinite product
∞∏
k=1

(
∑
i

√
pikqik) always diverges to zero,

we obtain the following conclusion.

Proposition 2. If condition (17) holds, then the random variable η is either purely dis-

cretely distributed (if
∞∏
k=1

maxi p
′

ik > 0) or it is purely singularly continuously distributed

(in all other cases).

4. On fine structure of singularly continuous probability measures

Let us remind that the set Sµ = {x : µ(x − ε, x + ε) > 0,∀ε > 0} is said to be the
spectrum (topological support) of a measure µ. It is the minimal closed support of µ.

Definition 1. A singularly continuous probability measure µ on R1 is said to be of the
pure GC-type (generalized Cantor type), if there exists a nowhere dense subset E such
that

E ⊂ Sµ,

µ(E) = 1,

∀x ∈ E ∃ε(x) > 0 : [x− ε(x), x+ ε(x)] ∩ Sµ is a subset of zero Lebesgue measure.

Example 1.
a) Let ξ =

∑∞
k=1

ξk
3k , where ξk are independent identically distributed random variables

taking values 0 and 2 with probabilities p and q respectively, p + q = 1, p ∈ (0, 1). For
any choice of p ∈ (0, 1) the probability measure µξ is singularly continuous measure of

GC-type. This measure can be represented as a measure with independent Q̃-symbols
(in this case q0k = q1k = q2k = 1

3 ; p0k = p, p1k = 0, p2k = q). Its spectrum coincides
with the ”classical” Cantor set C0 and the spectrum itself can be taken instead of the set
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E, which has been mentioned in the definition. If p = 1
2 we get the ”classical” Cantor

measure on the unit interval.
b) Let I = [0, 1], {(ai, bi)} be a sequence of intervals without common limit points

such that (ai, bi) ⊂ I,
∑∞
i=1(bi − ai) = a0 < 1, and the set P = I\

⋃
i(ai, bi) is perfect

nowhere dense of positive Lebesgue measure (for instance one can choose Q̃ with q0k =
q2k = 1

2 −
1

2k+1 , q1k = 1
2k ;Vk = {0, 2} and put P = ΓQ̃(V) ). Let di := bi − ai, and let us

construct the measure ν in the following way:

ν =

∞∑
i=1

νi
2i
,

where the measure νi coincides with the ”classical” probability Cantor measure on the
closed interval [ai + 1

4di, ai + 3
4di] (Sνi is geometrically similar to the Cantor set with

k = 1
2di, inf Sνi = ai + 1

4di, supSνi = ai + 3
4di). The measure ν is a probability one by

the construction, and its spectrum consists of the union of the spectra Sνi and points
which belongs to the closure of the above union, i.e.,

Sν =
(⋃

i

Sνi

)⋃
P.

The measure ν is of pure GC-type (the set
⋃
i Sνi can be taken instead of the set E,

which has been mentioned in the definition). In such a case the spectrum of the measure
ν is of positive Lebesgue measure (λ(Sν) = 1− a0 > 0).

Remark 4. The spectrum of singularly continuous probability measure of GC-type can
be of zero as well as of positive Lebesgue measure.

Definition 2. A singularly continuous probability measure µ is said to be of the pure
GP -type, if there exists a nowhere dense set E such that E ⊂ Sµ,

µ(E) = 1,
∀x ∈ E ∀ε > 0 : [x− ε, x+ ε] ∩ Sµ is a set of positive Lebesgue measure.

Example 2.
a) Let ψ =

∑∞
k=1 ψkak, where ak = 9

10 ( 1
2k + 1

10k ), and ψk are i.i.d. random variables
taking the values 0 and 1 with probabilities p and q, p + q = 1, p 6= q, p ∈ (0, 1). The

measure µψ can also be thought as a probability measure with independent Q̃−symbols.

In such a case q0k = q2k = 9·5k+1
18·5k+10

, q1k = 8
18·5k+10

; p0k = p, p1k = 0, p2k = q.

For any choice of p ∈ (0, 1
2 )
⋃

( 1
2 , 1) the probability measure µψ is singularly continu-

ous. Its spectrum is a nowhere dense set of positive Lebesgue measure. Moreover, the
intersection of the spectrum with any ε-vicinity of any point from the spectrum is also a
nowhere dense set of positive Lebesgue measure. Therefore, µψ is singularly continuous
of the pure GP -type (the spectrum itself can be taken instead of the set E, which has
been mentioned in the definition). This measure is called the ”classical” measure of the
GP -type on the unit interval.

b) Let I = [0, 1], and let {(fi, gi)} be a sequence of intervals without common limit
points such that (fi, gi) ⊂ I, and P1 = I\

⋃
i(fi, gi) is a nowhere dense perfect subset

(it can be of zero as well as of positive Lebesgue measure). Let hi := gi − fi, and let us
construct the measure µ in the following way:

µ =

∞∑
i=1

µi
2i
,

where the measure µi coincides with the ”classical” probability measure of the pure GP -
type on the closed interval [fi + 1

4hi, fi + 3
4hi] (the spectrum Sµi

is geometrically similar
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to the spectrum of the above constructed measure µψ with the coefficient of similarity
k = 1

2hi, inf Sµi
= fi + 1

4hi, supSµi
= fi + 3

4hi). It is clear that µ is a probability
measure which are singularly continuous, and its spectrum consists of the union of the
spectra Sµi and points, which are limit points of this union, i.e.,

Sµ =
(⋃

i

Sµi

)⋃
P1.

The measure µ is of the pure GP -type (the set
⋃
i Sνi can be taken instead of the set E,

which has been mentioned in the definition). In this case we have P1 ⊂ Sµ and µ(P1) = 0
independently of the Lebesgue measure of the set P1.

Definition 3. A singularly continuous probability measure µ is said to be of the pure
GS-type if there exists a sequence of closed intervals {[ai, bi]} such that{

[ai, bi] ⊂ Sµ,
µ (
⋃
i[ai, bi]) = 1.

Example 3.
a) Let η =

∑∞
k=1

ηk
2k , where ηk are i.i.d. random variables taking values 0 and 1

with probabilities p and q, p + q = 1, p 6= q, p ∈ (0, 1). The measure µη can be thought

as a probability measure with independent Q̃−symbols. In such a case q0k = q2k =
1
2 ; p0k = p, p1k = q. From theorem 2 it follows that for any choice of p ∈ (0, 1

2 )
⋃

( 1
2 , 1)

the probability measure µη is singularly continuous. Its spectrum coincides with the
whole unit interval [0, 1]. Therefore, µη is of the pure GS-type (the unit interval itself
can be chosen instead of the set E, which has been mentioned in the definition ). This
measure is called the ”classical” measure of the GS-type on the unit interval.

b) Let {(ai, bi)} be a sequence of subintervals, which are adjacent to the Cantor set
C0. Let di := bi − ai, and let us construct the measure m in the following way:

m =

∞∑
i=1

mi

2i
,

where the measure mi coincides with the ”classical” probability measure of the pure GS-
type on [ai + 1

4di, ai + 3
4di] (in such a case the spectrum Smi

coincides with the closed

interval [ai+
1
4di, ai+

3
4di]). The measure m is a probability one by the construction, and

its spectrum consists of the union of the spectra Sµi
and points, which are limit points

of this union, i.e.,

Sm =
(⋃

i

Smi

)⋃
C0.

The measure m is of the pure GS-type (the closed intervals Smi
can be chosen instead

of the intervals, which have been mentioned in the definition). In this case we have
C0 ⊂ Sm, C0

⋂
(
⋃
i Smi

) = ∅, λ(Sm) = λ(
⋃
i Smi

), and m(C0) = 0.
c) Let the set P2 coincides with the spectrum of the measure µψ mentioned in the

example 2a), and let {(ai, bi)} be the sequence of subintervals, which are adjacent to the
set P2. Let di := bi − ai let us construct the measure m∗ in the following way:

m∗ =

∞∑
i=1

m∗i
2i
,

where the measure m∗i coincides with the ”classical” probability measure of the pure
GS-type on [ai + 1

4di, ai + 3
4di] (in such a case the spectrum Smi

also coincides with

the whole closed interval [ai + 1
4di, ai + 3

4di]). The probability measure m∗ is singularly
continuous, and its spectrum is of the following form:

Sm∗ =
(⋃

i

Sm∗i

)⋃
P2.
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The measure m∗ is of the pure GS-type (as before, the closed intervals Smi
can be chosen

instead of the intervals, which have been mentioned in the definition). At the same time
we have λ(Sm∗) > λ(

⋃
i Sm∗i ), and m∗(P2) = 0.

There exist, of course, singularly continuous measures on R1, which do not belong to
any of the above mentioned types. Nevertheless, the following theorem establishes the
spectral structure of any one-dimensional singularly continuous probability measure.

Theorem 3. Any singularly continuous probability measure µ on R1 can be represented
in the following form

(18) µ = α1µ
GS + α2µ

GC + α3µ
GP ,

where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α1 + α2 + α3 = 1; µGS, µGC and µGP are singularly
continuous probability measures of the pure GS−, GC− resp. GP -type.

Proof. The proof of the theorem can be split naturally into the proofs of the following
two lemmas.

Lemma 2. Any singularly continuous probability measure µ on R1 can be represented
in the following form:

(19) µ = β1µ
GS + β2µ

T∗ ,

where β1 ≥ 0, β2 ≥ 0, β1 + β2 = 1, µGS is a singularly continuous probability measure of
the pure GS-type, and µT

∗
is a singularly continuous probability measure with a nowhere

dense spectrum.

Proof. 1. If µ is of GS-type, then β1 = 1, µGS = µ, β2 = 0 and the ”classical” Cantor
measure can be chosen instead of the measure µT

∗
.

2. If Sµ is a nowhere dense set, then β1 = 0, β2 = 1, µT
∗

= µ and one can choose any
measure of the pure GS-type instead of the measure µGS .

3. Now let µ be not of the pure GS-type and let its spectrum Sµ be not nowhere
dense. Then Sµ, being a closed set, contains at least one closed interval. A closed interval
[a, b] ⊂ Sµ is said to be ”full” if there is no any closed interval [c, d] with [a, b] ⊂ [c, d] ⊂ Sµ
(i.e., for any ε > 0 intervals (a− ε, a) and (b, b+ ε) contain points, which do not belong
to the spectrum Sµ).

Let {[ai, bi]} be a family of all ”full” closed intervals from Sµ, [ai, bi]
⋂

[aj , bj ] = ∅, i 6= j,
and let S =

⋃
i[ai, bi]. From the latter assumption it follows that:

µ(S) = µ
(⋃

i

[ai, bi]
)

= µ
(⋃

i

(ai, bi)
)
∈ (0, 1).

Let us denote β1 = µ(S) and

µGS(E) :=
1

µ(S)
· µ(E ∩ S), ∀E ∈ B(R1).

The measure µGS is a probability one and its property of being singularly continuous
follows from the singular continuity of µ. The measure µGS is of the pure GS-type by
definition, because the set S =

⋃
i[ai, bi] is a subset of the topological support of the

measure µGS and µGS(S) = 1.
Let T := Sµ \ S. Since the set Sµ is perfect, and S contains all interior points from

the spectrum Sµ, it is clear that T is a nowhere dense subset.
Set β2 = µ(T ) = 1− µ(S) ∈ (0, 1) and

µT
∗
(E) :=

1

µ(T )
· µ(E ∩ T ), ∀E ∈ B(R1).
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The measure µT
∗

is a probability one and its singular continuity follows from the singular
continuity of µ. It is clear that µT

∗
(T ) = 1. Therefore, the set SµT∗ , being a subset of

the closure of a nowhere dense set T , is nowhere dense. �

Lemma 3. Let µT
∗

be any singularly continuous probability measure on R1 with a
nowhere dense support. Then the measure µT

∗
can be represented in the following form:

(20) µT
∗

= γ1µ
GC + γ2µ

GP ,

where γ1 ≥ 0, γ2 ≥ 0, γ1 + γ2 = 1, µGC are singularly continuous probability measure
of the pure GC-type, and µGP is a singularly continuous probability measure of the pure
GP -type.

Proof. Let SµT∗ be the spectrum of the measure µT
∗
. Every point of the spectrum ST

∗

µ

belongs to one of the following sets:

TC = {x : x ∈ SµT∗ and (∃ε(x) > 0 : λ(SµT∗ ∩ (x− ε(x), x+ ε(x))) = 0)},

TP = {x : x ∈ SµT∗ and (∀ε > 0 : λ(SµT∗ ∩ (x− ε, x+ ε)) > 0)}.
It is obvious that TC ∩ TP = Ø and TC ∪ TP = SµT∗ .
Let us show that TC is a Borel subset of zero Lebesgue measure. For any point x ∈ TC

we define

ε1(x) = sup{ε : λ(SµT∗ ∩ (x− ε, x]) = 0},

ε2(x) = sup{ε : λ(SµT∗ ∩ [x, x+ ε)) = 0}.
Let Ax = (x − ε1(x), x + ε2(x)) ∩ SµT∗ . From the construction of the set Ax it follows
that it is a nonempty nowhere dense subset of zero Lebesgue measure for any x ∈ TC .

Let us consider the set C =
⋃
x∈TC

Ax. If x ∈ TC and y ∈ TC , then either Ax ≡ Ay (if

there are no points from the set TP between x and y) or Ax ∩ Ay = Ø (if there exists a
point from the set TP between x and y). So, the latter union contains at most countable
number of different subsets Ax, x ∈ TC . Since all subsets Ax are Borel ones (as an
intersection of two Borel subsets), we conclude that C is also a Borel subset. Moreover,
λ(C) = 0, because C is a union of an at most countable number of zero-sets.

If x ∈ TC , then x ∈ Ax. So TC ⊂ C.
If x ∈ C, then x ∈ Ay for some y ∈ TC . So, x ∈ (y − ε1(y), y + ε2(y)) and x ∈ SµT∗ .
Therefore, there exists ε > 0 such that (x − ε, x + ε) ⊂ (y − ε1(y), y + ε2(y)) and,

hence, λ((x− ε, x+ ε) ∩ SµT∗ ) = 0. Therefore, x ∈ TC , and C ⊂ TC . So, C = TC .
Since TC is a Borel subset with λ(TC) = 0, we conclude that TP = SµT∗ \ TC is

also a Borel subset. Let us remark that the set TP is closed. To show this, let us
assume that {xn} is a sequence of points from TP , which converges to some point x0.
x0 ∈ SµT∗ since the set SµT∗ is closed as the spectrum. Therefore, the point x0 belongs
either to TP or to TC . Suppose that x0 ∈ TC . Then there exists ε(x0) > 0 such
that λ((x0 − ε(x0), x0 + ε(x0))

⋂
SµT∗ ) = 0. On the other hand, there exists N0 ∈ N

such that xn ∈ (x0 − ε(x0), x0 + ε(x0)) for all n > N0. Let us choose n > N0 and
ε1 > 0 such that (xn − ε1, xn + ε1) ⊂ (x0 − ε(x0), x0 + ε(x0)). Since xn ∈ TP , we have
λ((x0−ε(x0), x0 +ε(x0))

⋂
SµT∗ ) ≥ λ((xn−ε1, xn+ε1)

⋂
SµT∗ ) > 0. This contradiction

shows that x0 ∈ TP and proves that the set TP is closed.
If µT

∗
(TC) = 1, then the measure µT

∗
is of the pure GC-type (by the definition). In

such a case we can set γ1 = 1, γ2 = 0; µGC = µT
∗

(any singularly continuous measure of
the pure GP -type can be chosen instead of the measure µGP .).

If µT
∗
(TP ) = 1, then the measure µT

∗
is of the pure GP -type (by the definition). In

such a case we set γ1 = 0, γ2 = 1; µGP = µT
∗

(the ”classical” Cantor measure on [0, 1]
can be chosen instead of the measure µGC).
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If 0 < µT
∗
(TC) < 1, then we define the measure

µGP (E) =
1

µT∗(TP )
· µT

∗
(E ∩ TP ),

µGC(E) =
1

µT∗(TC)
· µT

∗
(E ∩ TC), ∀E ∈ B(R1).

It is clear that µGP and µGC are probability measures. Their singular continuity follows
directly from the singular continuity of the measure µT

∗
.

Let T ∗P = TP
⋂
SµGP . It is clear that µGP (T ∗P ) = 1. The set TP is closed, and it is a

subset of SµGP . On the other hand the spectrum SµGP is the minimal closed support of

µGP . Therefore, T ∗P = SµGP (the set TP itself , generally speaking, can contain SµGP as

a proper subset). So, µGP is a measure of GP -type (one can choose the set T ∗P instead
of the set E, which was mentioned in the definition of a measure of the pure GP-type).

Let T ∗C = TC
⋂
SµGC . It is also clear that µGC(T ∗C) = 1, and T ∗C ⊂ SµGC . Therefore,

µGC is a measure of the pure GC-type (one can choose the set T ∗C instead of the set E,
which was mentioned in the definition of a measure of the pure GC-type).

Let γ1 := µT
∗
(TC) and γ2 := µT

∗
(TP ). Then ∀E ∈ B(R1):

µT
∗
(E) = µT

∗
(E ∩ (TC ∪ TP ))

= γ1 ·
1

µT∗(TC)
· µ(E ∩ TC) + γ2 ·

1

µT∗(TP )
· µ(E ∩ TP )

= γ1µ
GC(E) + γ2µ

GP (E),

which proves the Lemma. �

The theorem is a direct corollary of two latter Lemmas. �

Example 4. Let the measure ϕ coincides with the singularly continuous measure, which
was considered in Example 2a) and let P2 = I\

⋃
i(ai, bi) be its spectrum ([ai, bi]

⋂
[aj , bj ] =

∅, i 6= j). Let di := bi − ai, and let us construct the measure νi and µi in the following
way. The measure νi coincides with the ”classical” measure of the pure GC-type on
the closed interval Sνi = [ai + 1

7di, ai + 2
7di] (see, e.g., Example 1a)), and the measure

µi coincides with the ”classical” measure of the pure GS-type on the closed interval
Sµi

= [ai + 5
7di, ai + 6

7di] (see, e.g., Example 3a)).
Let us define ν =

∑∞
i=1

νi
2i , µ =

∑∞
i=1

µi

2i .
Then the measure

µ∗ =
1

3
(ϕ+ ν + µ)

is a singularly continuous measure, which is a mixture of measures from the above defined
pure spectral classes. The spectrum of µ∗ coincides with the union of spectra of the
measures ν and µ, because the spectrum of the measure ϕ coincides with the intersection
of the sets Sµ and Sν .

Remark 5. The latter theorem can be obviously generalized to the family of finite mea-
sures.

Remark 6. The latter theorem can be generalized to the multidimensional case, which
will be treated in a forthcoming paper.

Theorem 4. A singularly continuously distributed random variable ξ with independent

Q̃−symbols is of the pure spectral type.

1) It is of the pure GS-type if and only if the matrix P̃ contains only a finite number
of columns containing zero elements.
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2) It is of the pure GC-type if and only if the matrix P̃ contains infinitely many
columns having some elements pik = 0, and

(21)

∞∑
k=1

( ∑
i:pik=0

qik

)
=∞ .

3) It is of the pure GP-type if and only if the matrix P̃ contains infinitely many
columns having zero elements, and

(22)

∞∑
k=1

( ∑
i:pik=0

qik

)
<∞.

Proof. Let us consider the set Γ ≡ ΓQ̃(V) (see, e.g., Section 2) with V = {Vk}∞k=1 defined

by the P̃−matrix as follows: Vk = {i ∈ Nk : pik 6= 0}. It is easy to see that the spectrum
of the measure µξ coincides with the closure of set Γ (in such a case the difference (Γ)cl\Γ
is at most countable). Therefore, to examine the metric and topological structure of the

set Sξ we may apply the results of Section 2. So, if the matrix P̃ contains only finite
number of zero elements, then Vk = Nk, k > k0 for some k0 > 0. In such a case, Γ is
a union of an at most countable number of closed intervals and at most countable set of
points, which are limit ones for these intervals. Therefore, the measure µξ is of the pure
GS-type.

In the opposite case the matrix P̃ contains an infinite number of columns containing
zero elements, and, therefore, Γ is a nowhere dense set (see Sec. 2). The Lebesgue
measure of the set Γ by Lemma 1 is equal to

λ(Γ) =

∞∏
k=1

Sk(V) =

∞∏
k=1

( ∑
i∈Vk

qik

)
=

∞∏
k=1

(
1−

∑
i:pik=0

qik

)
.

Then, by the Corollary after Lemma 1, either λ(Γ) = 0, provided that condition (21)
fulfilled, or λ(Γ) > 0, if condition (22) holds. Thus the measure µξ either is of the pure
GC-type, or it is of the pure GP-type.

Since the conditions 1), 2) and 3) of this theorem are mutually exclusive and one
of them always holds, we conclude that the distribution of the random variable ξ with

independent Q̃-symbols is always of the pure spectral type. �

Remark 7. By using the latter theorem and theorem 2 one can easily construct singularly
continuous probability measures of any pure spectral type.

Acknowledgments. This work was partly supported by the Alexander von Humboldt
Foundation and by DFG 436 UKR 113/78,80 projects.

References

1. S. Albeverio, M. Pratsiovytyi, G. Torbin, Fractal probability distributions and transformations

preserving the Hausdorff-Besicovitch dimension, Ergodic Theory and Dynamical Systems 24
(2004), no. 1, 1–16.

2. S. Albeverio, G. Torbin, On fine fractal properties of generalized Bernoulli convolutions, Bull.
Sci. Math. 132 (2008), no. 8, 711–727.

3. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, G. Torbin, Spectral properties of image mea-

sures under the infinite conflict interactions, Positivity 10 (2006), no. 1, 39–49.

4. P. Billingsley, Ergodic Theory and Information, John Wiley & Sons, Inc., New York—London—
Sydney, 1965.

5. S. D. Chatterji, Certain induced measures on the unit interval, J. London Math. Soc. 38 (1963),
325–331.

6. R. Del Rio, S. Jitomirskaya, N. Makarov, B. Simon, Singular continuous spectrum is generic,

Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 208–212.



ON FINE STRUCTURE OF SINGULARLY CONTINUOUS PROBABILITY MEASURES . . . 111

7. K. J. Falconer, Fractal Geometry: Mathematical Foundation and Applications, John Wiley &

Sons, Chichester, 2003.
8. B. Jessen, A. Wintner, Distribution function and Riemann Zeta-function, Trans. Amer. Math.

Soc. 38 (1935), 48–88.

9. S. Kakutani, Equivalence of infinite product measures, Ann. of Math. 49 (1948), 214–224.
10. Y. Last, Quantum dynamics and decomposition of singular continuous spectra, J. Funct. Anal.

142 (1996), 406–445.
11. Y. Peres, W. Schlag, B. Solomyak, Sixty years of Bernoulli convolution, Fractal Geometry and

Stochastics II, Progress in Probab., vol. 46, Birkhäuser, 2000, pp. 39–65.
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