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1. Introduction

Since the beginning of 20th century the Lotka-Volterra model of prey-
predator interaction is one of the main models for simulation of many
processes in population theory and economics. As a rule, continuous
models where Lotka-Volterra equations have ratio-depended parameters
are studied (see, for example [3, 5, 6, 11, 12, 13, 16, 18, 20]). Logistical and
Ricker’s models are also studied in some works, for example [5]. In the
majority of works the prey-predator interaction is treated only inside of
single region, and no migration from one region to another is considered.

In some works [6, 5] models with migration are studied, with a
process of migration.

There are also only few works (see [5] and references wherein), in
which discrete models are considered, though in reality such processes
are more natural, since they take better into account seasonal phenomena
(reproduction, migration, etc.).

The main aim of the majority of works is determination of stable
points, bifurcation points, asymptotic behavior, and analysis of model’s
depending on the coefficients of the equations.

In [3] synchronization of population dynamics with natural phe-
nomena (like change of seasons and floods) is studied. In the work [20]
dependence of population dynamics on population density and migration
is studied. In the work [6] migration is not assumed to be random, but
aims at maximization of some function of the population. At last, in [3]
the influence of stochastic terms in a Lotka-Volterra model is described,
and interesting figures are presented.

In recent works [17, 19] Salam and Takahashi study conflict models,
similar to ours. They introduce important and more complex multi-
opponent systems. In [17] not only conflict, but cooperation between
opponents is studied. The figures, obtained by them, are very similar to
Figure 3 of the present work.

In this work we construct a model that joins two most rarely studied
variants of Lotka-Volterra model, i.e., a discrete model with migration.
Here individuals migrate not randomly, but according to strategies, dis-
cussed in section 5.

We construct the model of the conflict interaction between a pair of
complex systems A and B. The system is a finite set of positive numbers:
P = (P1, . . . , PN) for A and R = (R1, . . . , RN) for B, where N means the
quantity of parameters that characterize the system. We study dynamics
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in the discrete time. So, the evolution of every system is described by the
sequence of vectors with non-negative coordinates Pn = (P(n)

1 , . . . , P(n)
N )

for A, and Rn = (R(n)
1 , . . . , R(n)

N ) for B, n = 1, 2, . . . . The vectors P and R
correspond to the moment n = 0. Naturally, each system tries to reach the
optimal values of its coordinates. In reality, due to the conflict interaction,
every coordinate changes in a complicated way. The evolution of all
changes is determined by double dependence: by the conflict interaction
between systems (which we shortly describe in section 3), and by the
mutual “fight” of coordinates (of the prey-predator type interaction) inside
every system. We suppose that every system is complex in the sense that
its elements may be treated as one of the types: dominant (predators,
employers) or dependent (preys, workers). So, every coordinate P(n)

i , R(n)
i

may be regarded as the quantity (population) of dominant, respectively
dependent species at the position i at time n.

The law of evolution inside of each (independent) system is described
in section 2. We suppose this law is identical in every system and is based
on the well-known discrete Lotka-Volterra equation.

In section 3 we shortly call the main results on conflict interaction
between non-annihilating opponents.

In section 4, that includes the main results of the work, we construct
a dynamical system describing simultaneous conflict interaction both
inside every system and between the systems. The outer interaction is an
alternative conflict between non-annihilating systems, whereas the inner
one is a prey-predator model of Lotka-Volterra type.

We may join these two types of interactions in a discrete time.
Thus, our dynamical system consists of a discrete sequence of states.
Two operations happen at any fixed moment of time: redistribution of
probabilities to occupy some controversial positions by opponent systems,
and quantitative changes (namely population) of all species inside both
systems.

The computer modelling of such a complex interaction shows some
very interesting phenomena. In this work we limit however ourselves to
present only one observation. Namely, under an appropriate choice of
parameters and initial data the complex system oscillates. We find a rather
wide range for initial data for which the population trajectory in phase-
space becomes cyclic. Moreover, we observe the stability of the limit cycle,
so it is an attractor.
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2. Traditional models of population dynamics

Malthus proposed in 1798 the population equation

dP
dt

= (b− d)P , (2.1)

where P is the cumulative number of individuals (species), and b, d are the
natural birth and death rates. In reality, one expects exponential solution

P(t) = P(0)e(b−d)t

describes the ideal population of biological species. The exponential rise,
if b− d > 0, or decrease, if b− d < 0 at most in a local period of time.

Verhulst introduced in 1838 a more realistic equation with saturation
terms:

dP
dt

= (b− d)P− cP2 , (2.2)

where the coefficient c > 0 represents the competition activity of individ-
uals for living resources. The square power corresponds a conception of
an alternative law of access to the living resource.

Figure 1
A typical shape of the logistical curve dP

dt = (b − d)P − cP2

The solution of (2.2) describes the 5-shaped logistical curve (see Fig-
ure 1) and corresponds better to the actual behavior of many population
processes.
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The curve starts with a small value P(0), exponentially increases, and
then saturate at the capacity P(s) = b−d

c , b− d > 0.
In the economic context, equation (2.2) can be written as follows

dM
dt

= (g− l)M− f M2 , (2.3)

where M is the capital (money), g and l are the average gain and loss
percentages on the capital, and f stands for the coefficient of confrontation
between individuals. If g− l < 0, the capital decays to 0 exponentially; if
g− l > 0, at the beginning the capital increases exponentially quick, but
then the growth slows down, so that it never reaches asymptotic value of
saturation M(s) = g−l

f .
Lotka (1907) and Volterra (1901) extended the Verhulst logistical

equation to the Lotka-Volterra equations intended for the description
of amount changes in populations of two species in interaction. These
equations are also known under the name of predator-prey model. We
will refer on Lotka-Volterra equations in the following form:

dP
dt

= aP− bPR− cP2 ,

dR
dt

= −dR + ePR− f R2 , (2.4)

where all coefficients are nonnegative.
The population of prey is described by the first equation. Without

presence of any predators it grows exponentially at the beginning and then
comes to the fixed capacity P(s) = a/c. The predators, without any prey
to feed on, die out. When both species are present, the growth of the prey
is limited by the predators, due to the term−bPR, and the predators grow
if the amount of prey available, i.e. if ePR is large enough.

There are many publications devoted to the analysis of Lotka-Volterra
equations (2.4) (see for example [16] and references wherein).

The models with discrete time are also studied. In this case, equations
(2.4) have the following view:

P(n)
1 = P(n−1)

1 + P(n−1)
1 (a− bP(n−1)

2 − cP(n−1)
1 ) ,

P(n)
2 = P(n−1)

2 + P(n−1)
2 (−d + eP(n−1)

1 − f P(n−1)
2 ) . (2.5)

Typical behaviour of discrete Lotka-Volterra model is shown in Figure 2.
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3. Conflict interaction between non-annihilating opponents

In this section we shortly remind an alternative approach to describe
the redistribution of conflicting positions between two opponents, say A
and B, concerning an area of common interests.

We consider the simplest case where the existence space of common
interests is a finite set of positions Ω = {ω1, . . . , ωN}, N ≥ 2. Each of
the opponents A and B tries to occupy a position ωi, i = 1, . . . , N with a
probability PA(ωi) = pi ≥ 0 or PB(ωi) = ri ≥ 0. The starting distributions
of A and B along Ω are arbitrary and normed: ∑N

i=1 pi = 1 = ∑N
i=1 ri.

A and B can not be present simultaneously in a same position ωi. The
interaction between A and B is considered in discrete time t ∈ N0. We
introduce the noncommutative conflict composition between stochastic
vectors p0 = (p1, . . . , pN), r0 = (r1, . . . rN) ∈ RN

+ :

p1 := p0 ∗ r0, r1 = r0 ∗ p0, p0 ≡ p, r0 ≡ r,

where the coordinates of p1, r1 are defined as follows

p(1)
i =

p(0)
i (1−αr(0)

i )

1−α ∑N
i=1 p(0)

i r(0)
i

, r(1)
i =

r(0)
i (1−αp(0)

i )

1−α ∑N
i=1 p(0)

i r(0)
i

, (3.1)

where the coefficient−1 ≤ α ≤ 1, α 6= 0 stands for the activity interaction.
At the nth step of the conflict dynamics we get two vectors

pn = pn−1 ∗ rn−1 ≡ p0 ∗n r0, rn = rn−1 ∗ pn−1 ≡ r0 ∗n p0

with coordinates

p(n)
i =

p(n−1)
i (1−αr(n−1)

i )
zn

, r(n)
i =

r(n−1)
i (1−αp(n−1)

i )
zn

with zn a normalization coefficient given by

zn = 1−α(pn−1, rn−1),

with (·, ·) the inner product in RN .
The behavior of the state {pn, rn} at time t = n for n → ∞ has been

investigated in [1, 4, 7, 8, 9, 10]. We shortly describe the results.

Theorem 1. For any pair of non-orthogonal stochastic vectors p, r ∈ RN
+ ,

(p, r) > 0, and fixed interaction intensivity parameter α 6= 0, −1 ≤ α ≤ 1,
with condition α 6= 1

(p,r) , sequence of states {pn, rn} tends to the limit state
{p∞, r∞}
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Figure 2
Lotka-Volterra model with discrete time
P(n)

1 = P(n−1)
1 (a − bP(n−1)

1 − cP(n−1)
1 ),

P(n)
2 = P(n−1)

2 (−d + eP(n−1)
2 − cP(n−1)

2 ),
a = 0.2, b = 0.006, c = 0.002, d = 0.008, e = 0.002, f = 0,
P(0)

1 = 3, P(0)
2 = 5

p∞ = lim
n→∞ pn, r∞ = lim

n→∞ rn.

This limit state is invariant with respect to the conflict interaction:

p∞ = p∞ > r∞, r∞ = r∞ > p∞.

Moreover,
{

p∞⊥ r∞, if p 6= r and 0 < α ≤ 1

p∞ = r∞, in all other cases.

We emphasize that in the case of a purely repulsive interaction,
0 < α ≤ 1, if the starting distributions are different, then the limiting
vectors are orthogonal.

Therefore each of the vectors p∞, r∞ contains by necessity some
amount of zero coordinates on different positions ωi. For example the
typical limiting picture for pn, rn ∈ R3

+ is presented in Figure 3 (comp.
with [17, 19]).
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Figure 3
α=1, p0 =(0.5; 0.3; 0.2), p0 =(0.48; 0.34; 0.18),
p∞ =(0.33; 0; 0.67), r∞ =(0; 1; 0)
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If we start with a pair of identical vectors, p = r, then p∞ = r∞ too.
That is, all non-zero coordinates of the limiting vectors are equal.

In the general case, p, r ∈ RN
+ , the coordinates p(n)

i , r(n)
i have at most

several oscillations and then reach monotonically their positive or zero
limits. The limiting values p∞

i , r∞
i may be described in terms of starting

states.
Given a couple of stochastic vectors p, r ∈ RN

+ , p 6= r, (p, r) > 0,
define

D+ := ∑
i∈N+

di , D− := ∑
i∈N−

di ,

where

di = pi − ri , N+ := {i : di > 0}, N− := {i : di < 0}.

Obviously

0 < D+ = −D− < 1,

since p 6= r, and ∑i pi − ∑i ri = 0 = D+ + D−.

Theorem 2. Let p 6= r, (p, r) > 0. In the purely repulsive case, α = 1,
the coordinates of the limiting vectors p∞, r∞ have the following explicit distri-
butions:

p∞
i =

{
di/D, i ∈ N+

0, otherwise,
r∞

i =

{
−di/D, i ∈ N−
0, otherwise,

(3.2)

where D := D+ = −D− .

Remark. From (3.2) it follows that any transformation p, r → p′, r′, which
does not change the values di and D, preserves the same limiting distribution as
for the vectors p∞, r∞. A class of such transformations may be presented by a
shift transformation of coordinates, pi → p′i = pi + ai, ri → r′i = ri + ai with
appropriated a′is.

In the case −1 ≤ α < 0 of the pure attractive interaction we have
another limiting distribution.

Define the set S0 := {k | p∞
k = r∞

k = 0} and set

S∞ := {1, . . . , N} \ S0 .
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Theorem 3. In the purely attractive case, α = −1, the limiting vectors p∞, r∞

are equal and their coordinates have the following distributions:

p∞
i = r∞

i =

{
1/m, i ∈ S∞

0 otherwise,
(3.3)

where m = |S∞| denotes the cardinality of the set S∞.

In general, it is an open question to give a complete characterization
of S0.

Below we present several sufficient conditions for k to belong to the
set S0. Simultaneously these conditions give some characterization for the
points to be in S∞.

We will use the following notations:

σi := pi + ri , ρi := piri , σ1
i := p1

i + r1
i ρ

1
i := p1

i r1
i . (3.4)

Proposition 1. If

σi ≥ σk , ρi > ρk , or σi > σk , ρi ≥ ρk , (3.5)

then

p∞
k = r∞

k = 0,

and therefore k ∈ S0.

Proof. By (3.4) we have

σ1
k = p1

k + r1
k − 1/z(pk + rk + 2pkrk) = 1/z(σk + 2ρk)

where we recall that z = 1 + (p, r). Therefore each of the conditions (3.5)
implies that σ1

i > σ1
k . Further, since

ρ1
k = 1/z2(ρk + (ρk)2 + ρkσk), (3.6)

again from (3.5) it also follows that p1
i > p1

k . Thus, by induction, σN
i > σN

k
and ρN

i > ρN
k for all N ≥ 1. Or, in other words,

1 <
pi
pk

<
p1

i
p1

k
< . . . <

pN
i

pN
k

. . . ,

1 <
pi
pk

<
r1

i
r1

k
< . . . <

rN
i

rN
k

. . . , N = 1, 2, . . . (3.7)
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Thus, sequences of the ratios

pN
i

pN
k

,
rN

i
rN

k

are monotone increasing as N → ∞. Assume for a moment that there
exists a finite limit,

1 < lim
N→∞

pN
i

pN
k

=
p∞

i
p∞

k
≡ p∞

i
p∞

k
· 1 + r∞

i
1 + r∞

k
= M < ∞.

This is only possible if r∞
i = r∞

k , which contradicts (3.7). Thus, M = ∞
and therefore p∞

k = 0, as well as r∞
k = 0. ¤

Let us consider now the critical situation, when for a fixed pair of
indices, say i and k, the values σk − σi, ρk − ρi have opposite signs, for
example, σk − σi > 0, ρk − ρi < 0. In such a case it is not clear what
behavior the coordinates pN

i , rN
i and pN

k , rN
k will have when N → ∞. We

will show that the limits depend on which of the two values, 2ρi +σi or
2ρk + σk, is larger. Moreover we will show that even if pk is the largest
coordinate, it may happen that p∞

k = 0. Let for example, pk = max j{p j, r j}
and σk = pk + rk > pi + ri = σi, however the value of rk is such that
ρk = pkrk < piri = ρi. Then under some additional condition it is possible
to have p∞

k = 0. In fact we have:

Proposition 2. Let for the coordinates pi , ri , pk , rk, i 6= k, the, following
conditions be fulfilled:

σk > σi (3.8)

but

ρk < ρi . (3.9)

Assume

2ρk +σk ≤ 2ρi +σi . (3.10)

Then

p∞
k = r∞

k = 0, (3.11)

i.e., k ∈ S0

Proof. We will show that (3.8), (3.9), and (3.10) imply

p1
k + r1

k = σ1
k ≤ σ1

i = p1
i + r1

i (3.12)
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and

p1
kr1

k = ρ1
k < ρ1

i = p1
i r1

i . (3.13)

Then (3.11) follows from Proposition 1. In reality (3.12) follows from (3.10)
directly, without condition (3.9). So, we have only to prove (3.13).

With this aim we find the representation for ρ1
i in terms σi and σ1

i .
Since σ1

i = 1/z(σi + 2ρi) we have

pi = 1/2(zσ1
i −σi). (3.14)

By (3.6) and (3.14) we get

ρ1
i = 1/z2(ρi + ρ2

i + ρiσi)

=
1

2z2 (zσ1
i −σi)[1 + 1/2(zσ1

i −σi) +σi]

=
1

4z2 (zσ1
i −σi)(2 + zσ1

i +σi)

=
1

4z2 [2zσ1
i + z2(σ1

i )2 + zσ1
i σi − 2σi − zσ1

i σi −σ1
i ]

=
1

4z2 [2zσ1
i + z2(σ1

i )2 −σ2
i − 2σi].

Therefore

ρ1
k − ρ1

i = 1/z2[ρk(1 + ρk +σk)− ρi(1 + ρi +σi)].

Thus, we have

ρ1
k − ρ1

i = 1/4z2[2z(σ1
k −σ1

i ) + z2((σ1
k )2 − (σ1

i )2)

+ ((σi)2 − (σk)2) + 2(σi −σk)] < 0

due to starting condition (3.9), and (3.12). Thus ρ1
k < ρ1

i , i.e., (3.13) is
true. ¤

We stress that (3.11) is true in spite of σk > σi. Of course, if σk < σi
and ρk < ρi, then (3.11) holds without any additional condition of the form
(3.10).

4. Model of conflict interaction between complex systems

In this section we construct a dynamical model of conflict interaction
between a pair of complex systems. Each of the systems is subjected to
the inner conflict between their elements. For simplicity, we assume both
systems to be similar and described by discrete prey-predator models of
type (2.5). We introduce the conflict interaction between these systems
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using an approach developed in [1, 2, 4, 7, 8, 9, 10]. With such a rather
complex situation we may obtain a wide spectrum of evolutions. In this
work we study qualitative characteristics of the behavior of corresponding
dynamical systems for some choice of parameters a, b, c, d, e, f ,α (see (2.5),
(3.1)) and values of initial populations of species Pi , Ri.

The coefficient α, that shows intensity of the interaction between
systems, has an important effect. The increasing α from zero to unit causes
the appearance of a series of bifurcations. For α = 0 we have two copies
of independent Lotka-Volterra models. For small values of α both systems
behave like pure Lotka-Volterra systems, coming them to a stable state.

Under fixed parameters and the starting coordinates a = 0.2, b =
0.006, c = 0.002, d = 0.008, e = 0.002, f = 0, P(0)

1 = 3, P(0)
2 = 10,

R(0)
1 = 5, R(0)

2 = 20 we have first bifurcation point at α ≈ 0.0056781739.

The coordinates P(n)
i (R(n)

i ) oscillate and a cycle of a small period appears.
The following increase of a shows the appearance of new bifurcation

points that are characterized by an increasing value of the cyclic period.
For the value a α = 0.4815545975 a cycle of infinite period appears. This
means that all coordinates rapidly reach the stable state. In this case some
species may disappear, even if they had some stable positive values in a
pure (α = 0) Lotka-Volterra model.

The role of the coefficients a, b, c, d, e, f and initial quantity of the
species Pi , Ri in a pure Lotka-Volterra model is well-known and described
(see, e.g., [16, 12]). Partially, coefficients a, d govern the increase of the pray
population when predators are absent and the predator population de-
creasing when prays are absent. In turn, the coefficients b, e are responsible
respectively for the pray quantity decreasing with an increasing number
of predators, and increase of the predator population with an increase
of the number of prays. The last coefficients in each of the equations
give the limitation of increasing of both populations. In other words,
each population “makes pressure” on itself, it does not permit an infinite
reproducibility.

Questions about stable points, orbits, asymptotic behavior of orbits
are well described for the classical Lotka-Volterra model. We shall recall
that usually there are at least three equilibrium points. They are refereed
in literature as follows (see, e.g. [16]):

(1) trivial (0, 0);

(2) axial (a/b, 0);
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(3) inner positive
(

a
b
− b

c
ae− cd
be + c f

,
ae− cd
be + c f

)
. (4.1)

An equilibrium point is called stable point if after a sudden change
of population it comes back to an equilibrium point some time later. This
may happen monotonically, or with some oscillations.

We should note that under the existence of stable points the behavior
of the system is well defined by coefficients a, b, c, d, e, f . But under the
absence of stable points, the behavior of the system is defined by the initial
data Pi, Ri. Depending on how close the initial data are situated with
respect to the equilibrium point, the system may evaluate in a different
way.

The role of all these coefficients is preserved in the case of our model.
But now their influence is much more complex. We present here only first
steps in this direction. We shall discuss not only stability zones, as it was
pointed above, but also the values of the coefficients for which the system
oscillates along some closed cycles.

The state of our dynamical system is fixed by a pair of vectors Pn =
(P(n)

1 , . . . , P(n)
N ), Rn = (R(n)

1 , . . . , R(n)
N ) with non-negative coefficients,

where n = 0, 1, . . . denotes the discrete time, N ≥ 2 stands for the number
of conflict positions. Here we study the most simple situation, when every
system consists of only two agents: pray and predator, i.e. N = 2. The
complex conflict transformation is denoted by the mapping

(
Pn

Rn

)
F→

(
Pn+1

Rn+1

)
,

where F is the composition of four operations, the specific mathematical
transformations: F = [N−1 ∗ N ]U.

Let us describe them in an explicit form for the first step.
The first operation U describes the interaction between elements

inside every system separately according to the pray-predator model.
Corresponding mathematical transformation of vectors (the interaction

composition) {P0, R0} U→ {P̃0, R̃0} is described by the system of equa-
tions of the form (2.5):

P̃(0)
1 = P(0)

1 + P(0)
1 (a− bP(0)

2 − cP(0)
1 ),

P̃(0)
2 = P(0)

2 + P(0)
2 (−d + eP(0)

1 − cP(0)
2 ),
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and

R̃(0)
1 = R(0)

1 + R(0)
1 (a− bR(0)

2 − cR(0)
1 ),

R̃(0)
2 = R(0)

2 + R(0)
2 (−d + eR(0)

1 − f R(0)
2 ),

where the passage to new values of coordinates is pointed by tilde, but not
by changing of upper index, likely to (2.5).

The following operation involves the interaction ∗ (see (3.1)) between
previous systems according to the theory of the alternative conflict for
non-annihilating opponents (see, e.g. [1, 2, 4, 7, 8, 9, 10]). To describe this
operation we at first have to normalize the vectors P̃0 = (P̃(0)

1 , P̃(0)
2 ),

R̃0 = (R̃(0)
1 , R̃(0)

2 ), i.e., to work with stochastic vectors.
We use the following notation for normalization: N{P̃0, R̃0} =

{p0, r0}, where the coordinates of the stochastic vectors p0, r0 are deter-
mined by formulae

p(0)
1 =

P̃(0)
1

z̃(0)
P

, p(0)
2 =

P̃(0)
2

z̃(0)
P

, r(0)
1 =

R̃(0)
1

z̃(0)
R

, r(0)
2 =

R̃(0)
2

z̃(0)
R

,

where z̃(0)
P = P̃(0)

1 + P̃(0)
2 , z̃(0)

R = R̃(0)
1 + R̃(0)

2 .
The next step exactly corresponds to the conflict interaction between

systems. We introduce new stochastic vectors {p1, r1} with coordinates:

p(1)
j =

p(0)
j (1−αr(0)

j )

1−α ∑2
i=1 p(0)

i r(0)
1

, r(1)
j =

r(0)
j (1−αp(0)

j )

1−α ∑2
i=1 p(0)

i r(0)
1

, j = 1, 2.

Finally, we have to come back to the non-normalized vectors, which
characterize quantitatively populations in both regions after inner and
outer conflicts operations. So, at time n = 1 we have the following vectors
N−1{p1, r1} = {P1, R1}, where

P1 = (P(1)
1 , P(1)

2 ), R1 = (R(1)
1 , R(1)

2 ),

and where

P(1)
j = p(1)

j z̃(0)
p , R(1)

j = r(1)
j z̃(0)

R , j = 1, 2.

We can repeat this procedure starting from {P1, R1}. So we get {P2, R2}.
And so on for any nth step.

To find the equilibrium points in the case of the complex conflict
interaction described above, we have to solve the following system of
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equations for P1, P2, R1, R2:




(a + 1− bR1 − cP1)(Z2 −αR2(−d + 1 + eP2 − f R2))Z1 = Z,

(−d + 1 + eP1 − f R1)(Z2 −αP2(a + 1− bR2 − cP2))Z1 = Z,

(a + 1− bR2 − cP2)(Z1 −αR1(−d + 1 + eP1 − f R1))Z2 = Z,

(−d + 1 + eP2 − f R2)(Z1 −αP1(a + 1− bR1 − cP1))Z2 = Z,

where

Z1 = P1(a + 1− bR1 − cP1) + R1(−d + 1 + eP1 − f R1),

Z2 = P2(a + 1− bR2 − cP2) + R2(−d + 1 + eP2 − f R2),

Z = Z1Z2 −α[P1P2(a + 1− bR2 − cP2)(a + 1− bR1 − cP1)

+ R1R2(−d + 1 + eP1 − f R1)(−d + 1 + eP2 − f R2)].

We note that in the case α = 0 we have two copies of pure Lotka-
Volterra models and the corresponding system of equations has at least
three equilibrium points (trivial, axial, inner positive).

For the caseα 6= 0 it is difficult to obtain exact solutions. Let us obtain
some insights by numerical approximation.

Partially, we found that there exist equilibrium points and the limit
cycles for a wide set of parameter values and initial data (see Figure 4-7).

Moreover, we established the shift effect for the equilibrium point.
Namely, we observe that the inner positive equilibrium point (it exist
in any system and may be found by formula (4.1)) is shifted after the
application of the conflict interaction between systems. We see by (4.1) that
stabilization of discrete Lotka-Volterra model with parameters a = 0.2,
b = 0.006, c = 0.002, d = 0.008, e = 0.002, f = 0, α = 0.007, P(0)

1 = 3,

P(0)
2 = 10, R(0)

1 = 5, R(0)
2 = 20 occurs when P1 = 4, P2 = 32. This may be

easily verified by putting these initial data into corresponding equations.
In this case we have trivial dynamics.

Let us consider the case of discrete Lotka-Volterra model with the
conflict interaction between systems. We take the values of the coefficients
a = 0.2, b = 0.006, c = 0.002, d = 0.008, e = 0.002, f = 0, α = 0.005. Now
the equilibrium point has the coordinates P1 = 4.043507, P2 = 32.100629.
The dynamics is constant with these initial data.

In case of larger α, when oscillations appear, the equilibrium point
may also be easily found if we put the initial data in both systems to be
equal. In this case the behavior is like in the case of a pure Lotka-Volterra
model, and stabilization occurs. However, the stable point is shifted, for
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Figure 4
The existence of the strong bifurcation produces oscillations of
the large amplitude, a = 0.2, b = 0.006, c = 0.002, d = 0.008,
e = 0.002, f = 0, the conflict interaction coefficient a = 0.01,
P(0)

1 = 3, P(0)
2 = 5, R(0)

1 = 7, R(0)
2 = 10

Figure 5
The corresponding phase-space (P(0)

1 , P(0)
2 )
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Figure 6
The existence of the stable oscillations of the conflict interaction
between Lotka-Volterra systems after 70000 steps of iteration

Figure 7
The limiting cycle in the corresponding phase-space (P(0)

1 , P(0)
2 )

after 70000 steps of iteration. The unstable equilibrium point is
shown
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example, when α = 0.01 (see Figure 4-7) the equilibrium point is P1 =
R1 = 4.087615, P2 = R2 = 32.200863.

Thus, if we have some pray-predator system and want to change
the population inside this system, we may create an analogous “artificial”
system, introduce the conflict interaction and obtain the desired shift of the
equilibrium point. Apparently a stronger shift of the stable equilibrium
point in the case of an “ensemble” of larger amount of Lotka-Volterra
systems. So, we observed the interesting phenomenon: the equilibrium
point of an isolated system is shifted if we come to the case when identical
systems are united as an “ensemble”.

However, this equilibrium point is unstable, any perturbation of
initial data causes the receding of the system from the equilibrium point.

One of more interesting observations concerns the limit cycles. It
is known that no such kind of orbits in discrete Lotka-Volterra model is
possible. But under the effect of the outer conflict, as we see at the pictures,
the dynamical system reaches the limit cycle starting both from an inside
or outside point with respect to the orbit. Partially, in Figure 10,11 we
present the model, that starts at P(0)

1 = 4, P(0)
2 = 32. As it was pointed

above, in case of a pure Lotka-Volterra model, with these initial data there
is no dynamics. However, in the case of the model with the outer conflict
the process tends to a limit cycle.

Figure 8
Conflict interaction between Lotka-Volterra systems. The starting
parameters are the same as in Figure 4. Initial data are inside
the limit cycle (Figure 7)
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Figure 9
The corresponding phase-space (P(0)

1 , P(0)
2 ). Trajectory tends to

the limit cycle, which is an attractor. Initial data are inside the limit
cycle (Figure 7)

5. Interpretation

In many works on mathematical biology and economics [3, 5, 6, 11,
12, 13, 16, 18, 20] the modelling of population dynamics or economical
processes is based on Lotka-Volterra equations. As a rule, continuous,
not discrete, models are studied. In some works the migration process
is considered. It takes place between different regions, inside which an
interaction of the Lotka-Volterra type is present. For example, in [5] the
migration rate between regions has some fixed probability.

We study discrete Lotka-Volterra models with an additional interac-
tion between them. That may be interpreted as a some kind of correlation
between the habitants of different regions. We suppose that discrete
models are more natural, partially it is clear that birth and death of
individuals happen at some fixed moments of time.

It is well known that in the classical discrete pray-predator model a
stable point exist. The amount of prays and predators tends to this point
in the phase-space. In this case we observe the following dynamics, after
several period of oscillations the populations stabilize (see Figure 2). Thus,
we have an attracting point in phase-space. Such a dynamics exists inside
every region when “migration” is absent.
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When we introduce an additional interaction between the habitants
of different regions a redistribution process appears which we interpret
as a migration. In some of our complex models there is no stable point,
the amount of prays and predators in both regions oscillates along fixed
orbits.Appearently these orbits in a phase-space are attractors.

We note that explicit formulas of conflict interaction between non-
annihilating opponents which describe the redistribution of populations
are given by (3.1). The individuals of a certain kind migrate to the region,
where their amount more numerous.

Is the “migration strategy” which is described in our model a natural
one? We suppose that in many cases individuals may be right behaving
in such a way. If we consider a pray-predator model, it is clear that every
separated individual is unable to estimate all factors that have an influence
on the population dynamics like vital resources inside region, real amount
of own and alternative population, current population dynamics. In
other words, the individual “does not know” the parameters of the
Lotka-Volterra equations and their current influence on the population
dynamics.

However the individual has the group reflex and will migrate to the
region, where, as he supposes, the vital conditions are best (his population
should be concentrated there). He suggests, right there are the resources,
possibilities for reproduction, better conditions to organize large groups.
Formula (3.1) just describes this tendency.

Similar motivations may be proposed in case of the work migration.
Here the unemployed may be regarded as playing the role of “prays”,
employees as playing the role of “predators”. People, who seek for work
and migrate to another country, do not know, as a rule, the real situation
in the opposite region. They prefer to migrate to the country where the
majority of their friends migrated (group reflex).

Similar, but opposite picture happens with employees who inverts
their capital to the region with a higher profit.

So, at the cost of migration accelerates the increasing of one of species’
population in one of the regions. But at the same time there is an
effect of the inner pray-predator “fight” inside every system. Partially, the
population influences itself at the cost of the last term in Lotka-Volterra
equation. As a result, some time later the backward migration starts.

In the Figure 6 we may see the effect of delay, when the amount of
prays inside the region decreases, but the predators continue migration to
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this region, until their amount starts decreasing by following the Lotka-
Volterra model.

We emphasize, that in our model, in comparison with discrete
Lotka-Volterra model, a cyclic oscillations of populations are observed.
Moreover, a cyclic attractor exists in the phase-space, and the pray-
predator trajectory tends to this orbit both from inside or outside point
with respect to this cycle (Figure 8, 9).

We remark that in our model the normalization was fulfilled by the
amount of habitants of the region, so the component of the corresponding
vector may be large both at the cost of large population of fixed individuals
and at the cost of small whole population of the region. So, a migration to
the region with a lot of “free space” is also possible.

We also studied model with the attracting interaction (α < 0). In
this case we obtained formally a similar dynamics, but now individuals
migrate to the region where they are less numerous. Such a migration
strategy might be also natural for some species, e.g. for individuals
who hunt separately, control large territory and have confrontation with
relatives.
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