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On the point spectrum ofH−2−singular perturbations
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We prove that for any self-adjoint operatorA in a separable Hilbert spaceH and a given countable setΛ =

{λi}i∈N of real numbers, there existH−2−singular perturbations̃A of A such thatΛ ⊂ σp(Ã). In particular,
if Λ = {λ1, ..., λn} is finite, then the operator̃A solving the eigenvalues problem,̃Aψk = λkψk, k = 1, ..., n,
is uniquely defined by a given set of orthonormal vectors{ψk}n

k=1 satisfying the conditionspan{ψk}n
k=1 ∩

dom(|A|1/2) = {0}.
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1 Introduction

Let A = A∗ be a self-adjoint unbounded operator defined onD(A) ≡ Dom(A) in a separable Hilbert spaceH
with the inner product(·, ·) and the norm‖ · ‖. A self-adjoint operator̃A 6= A in H is called [6, 17] a (pure)
singular perturbation ofA if the set

D := {f ∈ D(A) ∩ D(Ã)|Af = Ãf} (1)

is dense inH. We shall denote byPs(A) the family of all singular perturbations ofA. For eachÃ ∈ Ps(A) there
exists a densely defined symmetric operatorȦ := A|D = Ã|D, D(Ȧ) = D with non-trivial deficiency indices
n±(Ȧ) = dimKer(Ȧ ± i)∗ 6= 0. Thus, bothA andÃ are different self-adjoint extensions ofȦ. We use the
notationÃ ∈ Pn

s (A), wheren = n±(Ȧ) ≤ ∞.
Since each operator̃A ∈ Pn

s (A) is a self-adjoint extension of some symmetric operator, it is uniquely fixed
by Krein’s formula for resolvents (see [19, 4, 14, 20]),

(Ã− z)−1 = (A− z)−1 + B(z), Imz 6= 0,

whereB : C \R → B(H) is a certain analytic operator-valued function of rankn ≤ ∞ such that

(RanB(z))cl ∩ D(A) = {0}, cl = closure. (2)

HereB(H) is the space of bounded linear operators inH. Moreover the setD defined by (1) is dense inH if and
only if condition (2) holds (the proof follows from Theorem A.1 in [5] or Lemma 13.1 in [17]).

Let

H−2 ⊃ H−1 ⊃ H0 ≡ H ⊃ H1 ⊃ H2,
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denote a part of theA-scale of Hilbert spaces, whereHk = D(|A|k/2), k = 1, 2, in the norm‖ϕ‖k := ‖(|A| +
1)k/2ϕ‖, andH−k is the dual space toHk. ObviouslyD(A) = H2. For more technical details in scales of
Hilbert spaces see [10].

We say thatÃ ∈ Pn
s (A) is anH−2−singular perturbationof A of rankn if the setD defined in (1) is dense

in H1. In turn (see again [5, 17]), the setD is dense inH1 if and only if

(RanB(z))cl ∩H1 = {0}, Imz 6= 0. (3)

In this paper we study the problem of existence and construction of operatorsÃ which areH−2−singular
perturbations ofA and solve the eigenvalue problem

Ãψk = λkψk, k = 1, 2, ... (4)

for a given sequenceΛ = {λk}∞k=1 of real numbers.
The first detailed investigation of the point spectrum of self-adjoint extensions of symmetric operators in

the general case was carried out by M.Krein [19]. The detailed study of the spectral properties of self-adjoint
extensions of a symmetric operator with a gap was given in [14, 2, 1, 11, 12]. In particular in [12] (see, also [2]),
the existence of a self-adjoint extension with a given point spectrum inside the corresponding gap is proved. In
[1, 11, 14] spectral properties of appropriate self-adjoint extensions are characterized in terms of boundary value
spaces and corresponding Weyl functions. We refer also to the survey [21] where a general theory of rank-one
perturbations of self-adjoint operators is presented.

Here we consider the eigenvalue problem (4) for self-adjoint extensions of symmetric operators in the frame-
work of the singular perturbation theory (see, [6, 7, 8, 9, 13, 17, 3, 20, 22] and and references therein). We
note that for finite sequences{λk}n

k=1, {ψk}n
k=1 the corresponding problem was studied in [18, 15]. In [18] it

was additionally assumed thatA is positive operator andλk ≤ 0. We also remark that the case ofH−2−singular
perturbations was not specified in [18, 15]. The main result of the present work is given by the following theorem.

Theorem 1.1. LetA be a self-adjoint unbounded operator in a separable Hilbert spaceH. Given a sequence
of real numbersΛ = {λk : k ∈ N} (eachλk may be repeated with an arbitrary multiplicity) there exists an
H−2−singular perturbationÃ of A such that

Λ ⊂ σp(Ã).

If Λ = {λk}n
k=1 is finite,n < ∞, then theH−2−singular perturbationÃ of A of rankn solving the eigenvalue

problem

Ãψk = λkψk, k = 1, ..., n,

is uniquely defined by the given orthonormal system of vectorsψk satisfying the condition

span{ψk}n
k=1 ∩H1 = {0}.

The validity of this theorem follows from Theorems 2.1-5.1 presented below.

2 Preliminaries

Denote byR(z) := (A − z)−1 the resolvent of an operatorA. The following theorem gives a version of the
Krein’s formula for the resolvents. In particular the functionb below is the Weyl function in the sense of [14, 11].

Theorem 2.1. The operator function

R̃(z) := R(z) + B(z), Imz 6= 0 (5)

defines the resolvent of a self-adjoint operatorÃ ∈ P1
s (A) if and only if the operator functionB(z) admits the

representation

B(z) = b−1(z)(·, η(z̄))η(z), (6)
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where the vector valued functionη(z) ∈ H \ D(A) satisfies the equation

R(ξ)η(z) = R(z)η(ξ), Imz, Imξ 6= 0, (7)

and the scalar functionb(z) satisfies the equation

b(z)− b(ξ)
z − ξ

+ (η(z), η(ξ̄)) = 0, and b(z) = b(z̄). (8)

The operatorÃ is a rank oneH−2−singular perturbation ofA if

η(z) ∈ H \ H1 (9)

at least for one pointz (and therefore for all points) on the complex plane withImz 6= 0.

P r o o f. It is well known (see [16], Chapter VIII) that an operator functionR̃(z) is the resolvent of a closed
operator if and only ifR̃(z) is a pseudo-resolvent, i.e., it satisfies the Hilbert identity

R̃(z)− R̃(ξ) = (z − ξ)R̃(z)R̃(ξ), Imz, Imξ 6= 0, (10)

and

KerR̃(z) = {0}, Imz 6= 0. (11)

Let us show that both these conditions are fulfilled forR̃(z) defined by (5). By the Hilbert identity forR(z) and
(6) we find that (10) is equivalent to

b−1(z)(·, η(z̄))η(z)−b−1(ξ)(·, η(ξ̄))η(ξ)

=(z − ξ)b−1(ξ)(·, η(ξ̄))R(z)η(ξ) + (z − ξ)b−1(z)(·, R(ξ̄)η(z̄))η(z)

+(z − ξ)b−1(z)b−1(ξ)(·, η(ξ̄))(η(ξ), η(z̄))η(z), Imz, Imξ 6= 0.

(12)

In turn the relation (12) can be rewritten in the form

b−1(z)(·, η(z̄))η(z)−b−1(ξ)(·, η(ξ̄))η(ξ)

= b−1(ξ)(·, η(ξ̄))[η(z)− η(ξ)] + b−1(z)(·, [η(z̄)− η(ξ̄)])η(z)

+ (z − ξ)b−1(z)b−1(ξ)(·, η(ξ̄))(η(ξ), η(z̄))η(z),

(13)

where we have used the relation

η(z) = η(ξ) + (z − ξ)R(z)η(ξ)

which follows from (7). One can easily reduce (13) to the equality

b−1(z)(·, η(ξ̄))η(z)− b−1(ξ)(·, η(ξ̄))η(z) = (z − ξ)b−1(z)b−1(ξ)(η(ξ), η(z̄))(·, η(ξ̄))η(z)

which is implied by the first part of (8). This proves thatR̃(z) is a pseudo-resolvent. Let us check (11). By (5),
for f ∈ H \ {0}, we have

R̃(z)f = R(z)f + b−1(z)(f, η(z̄))η(z) 6= 0,

since0 6= R(z)f ∈ D(A) andη(z) 6∈ D(A) by (9). Thus (10) and (11) are true and therefore the operator
functionR̃(z) in (5) is the resolvent of a closed operatorÃ. To show thatÃ is self-adjoint we only need to check
that(R̃(z))∗ = R̃(z̄). Clearly this relation is equivalent to the second equality in (8):

(R̃(z))∗ = R(z̄) + b−1(z)(·, η(z))η(z̄) = R̃(z̄).
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Let us to show thatÃ ∈ P1
s (A). Denote byNz the one dimensional subspace inH spanned byη(z̄). Put

Mz = HªNz and define

D := R(z)Mz ≡ R̃(z)Mz.

By (5) the operatorA coincides withÃ onD. We assert thatD is dense inH. Assume for a moment that its
closureDcl satisfiesDcl 6= H. Then there exists a vectorϕ ∈ H, such that

0 = (D, ϕ) = (R(z)Mz, ϕ) = (Mz, R(z̄)ϕ),

i.e., we get thatR(z̄)ϕ ∈ Nz andR(z̄)ϕ ∈ D(A). This contradicts the definition ofNz and (9). Finally we
remark that due to conditions (6), (7), and (9),RanB(z) ∩ H1 = {0} for all z with Imz 6= 0. Thus,Ã is a rank
oneH−2−singular perturbation ofA.

Vice versa, ifÃ is a rank one perturbation ofA, then the resolvent of̃A has the form (5), (6), where the
functionb satisfies the second equality in (8). Repeating arguments based on Hilbert identity for the resolvents
R(z) andR̃(z) it is easy to check the validity of (7) and the first part of (8). As above, condition (9) means that
Ã isH−2−singular perturbation ofA.

3 Rank one singular perturbations with an additional eigenvalue

Theorem 3.1. For any self-adjoint unbounded operatorA in H, a given vectorψ1 ∈ H \ H1, ‖ψ1‖ = 1, and
any real numberλ1 ∈ R, there exists a uniquely defined rank oneH−2−singular perturbationÃ ≡ A1 of A,
solving the eigenvalue problem

A1ψ1 = λ1ψ1. (14)

P r o o f. Givenψ1 ∈ H \ H1, ‖ψ1‖ = 1, andλ1 ∈ R, define

η1(z) := (A− λ1)R(z)ψ1, Imz 6= 0, (15)

and

b1(z) := (λ1 − z)(ψ1, η1(z̄)), (16)

whereR(z) = (A− z)−1. Rewriting (15) in the form

η1(z) = ψ1 + (z − λ1)R(z)ψ1 (17)

we see thatη1(z) ∈ H \ H1, sinceψ1 ∈ H \ H1 andR(z)ψ1 ∈ D(A). Let us show thatη1(z) andb1(z) satisfy
equations (7) and (8) resp. Indeed, by (17) we get

η1(z) =η1(ξ) + (A− λ1)R(z)ψ1 − (A− λ1)R0(ξ)ψ1

=η1(ξ) + (z − ξ)R(z)η1(ξ) = (A− ξ)R(z)η1(ξ)

which is equivalent to (7). Further we will prove (8). Using (16) and (17) we have

b1(z)− b1(ξ) = (ξ − z) + (ξ − λ1)2(R(ξ)ψ1, ψ1)− (z − λ1)2(R(z)ψ1, ψ1), (18)

where we took into account that‖ψ1‖ = 1. Similarly we get

(ξ − z)(η1(z), η1(ξ̄)) =(ξ − z)[(ψ1, ψ1) + (z − λ1)(R(z)ψ1, ψ1) + (ξ − λ1)(R(ξ)ψ1, ψ1)

+ (z − λ1)(ξ − λ1)(R(z)R(ξ)ψ1, ψ1)].

From the latter relation, using the Hilbert identity for the resolvent ofA, we obtain

(ξ − z)(η1(z), η1(ξ̄)) = (ξ − z)− (z − λ1)2(R(z)ψ1, ψ1) + (ξ − λ1)2(R(ξ)ψ1, ψ1). (19)
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Comparing (18) and (19) we get the first equality in (8). Therefore, by Theorem 2.1 the operator function

R1(z) = R(z) + B1(z) ≡ R(z) +
1

(λ1 − z)(ψ1, η1(z̄))
(·, η1(z̄))η1(z) (20)

is the resolvent of some operatorA1 ∈ P1
s (A). MoreoverA1 is a rank oneH−2−singular perturbation ofA,

sinceη1(z) ∈ H \ H1 due toψ1 ∈ H \ H1.
Now we will check thatA1 solves the eigenvalue problem (14). Indeed, due to (17), (20) we have

R1(z)ψ1 = R(z)ψ1 +
1

(λ1 − z)(ψ1, η1(z̄))
(ψ1, η1(z̄))(ψ1 + (z − λ1)R(z)ψ1) =

1
λ1 − z

ψ1.

Finally we have to prove the uniqueness of the operatorA1. Assume that there exists another operatorÂ1 ∈
P1

s (A) such thatÂ1ψ1 = λ1ψ1. By Theorem 2.1 its resolvent admits the representation

R̂1(z) = R(z) + B(z), Imz 6= 0,

whereB(z) is a rank one operator function of the formb−1(z)(·, η(z̄))η(z). Since

R̂1(z)ψ1 = R1(z)ψ1 =
1

λ1 − z
ψ1,

we see that

B(z)ψ1 = (λ1 − z)−1ψ1 −R(z)ψ1 = (λ1 − z)−1(A− λ1)R(z)ψ1. (21)

In particular,B(z)ψ1 6= 0 (recalling thatψ1 /∈ D(A)). On the other hand

B(z)ψ1 = b−1(z)(ψ1, η(z̄))η(z). (22)

Therefore for somec(z) 6= 0

η(z) = c(z)(A− λ1)R(z)ψ1 = c(z)η1(z), Imz 6= 0,

It easily follows from (7) thatc := c(z) does not depend onz and by (21), (22)b(z) = |c|2b1(z). This proves
thatB(z) = B1(z).

4 Finite rank perturbations solving the eigenvalue problem

Theorem 4.1. For any self-adjoint unbounded operatorA in H, a given finite sequenceΛ = {λi}n
i=1 of real

numbers, and a family of orthonormal vectors{ψi}n
i=1 such that

span{ψi}n
i=1 ∩H1 = {0}, (23)

there exists a uniqueH−2−singular perturbationÃ ≡ An ∈ Pn
s (A) solving the eigenvalue problem

Anψi = λiψi, i = 1, ..., n. (24)

P r o o f. The theorem is already proved in the casen = 1 (see Theorem 3.1). We will prove the general case
by induction. Letn = 2 and let the operatorA1 be defined by (20). We will show thatA2 is uniquely defined by
the similar formula

R2(z) = (A2 − z)−1 = (A1 − z)−1 + b−1
2 (z)(·, η2(z̄))η2(z), Imz 6= 0,

where

η2(z) := (A1 − λ2)R1(z)ψ2 = ψ2 + (z − λ2)R1(z)ψ2, (25)
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and

b2(z) := (λ2 − z)(ψ2, η2(z̄)). (26)

To this aim we use Theorem 3.1, whereA is replaced byA1. But at first we have to prove thatψ2 ∈ H \ H1,
whereH1 ≡ H1(A1) is now defined by the operatorA1. From (20) it follows that for each fixedz, Imz 6= 0,
the domain of the operatorA1 has the representation

D(A1) = {h ∈ H | h = f + b−1
1 (z)((A− z)f, η1(z̄))η1(z), f ∈ D(A)}.

By (17) we see that eachh ∈ D(A1) has the formh = cψ1 + ϕ with somec ∈ C, ϕ ∈ D(A). Therefore (see,
(23)) we have thatψ2 /∈ D(A1). In factψ2 6∈ D(| A1 |1/2) = H1(A1) by similar arguments. Thus, by Theorem
3.1 the operatorA2 is a rank oneH−2−singular perturbation ofA1 solving the problemA2ψ2 = λ2ψ2. By a
direct calculation we can check thatA2ψ1 = λ1ψ1. Indeed using (25), (26) we have

R2(z)ψ1 = R1(z)ψ1 + b−1
2 (z)(ψ1, η2(z̄))η2(z) = (λ1 − z)−1ψ1,

as(ψ1, η2(z̄)) = 0, due toη2(z) = ψ2 +(z−λ2)R1(z)ψ2, ψ1 ⊥ ψ2, andR1(z)ψ1 = (λ1−z)−1ψ1. In the class
of rank two singular perturbationsP2

s (A) the constructed operatorA2 is uniquely defined. This easily follows
from Krein’s formula for(A2−z)−1, the equalitiesA2ψi = λiψi, i = 1, 2, and the conditions:ψi 6∈ H1, ψ1⊥ψ2.

Thus, we proved the theorem in the casen = 2. One can easily repeat the above construction for the next
step with a pairλ3, ψ3 and continue the procedure up to any finiten. We omit the detailed description and limit
ourselves to presenting the main formulae. The resolvent ofAn is defined by induction and has the form

Rn(z) := R(z) + Bn(z) = Rn−1(z) + b−1
n (z)(·, ηn(z̄))ηn(z), Imz 6= 0, (27)

where we recall thatR(z) := (A− z)−1,

Bn(z) =
n∑

k=1

b−1
k (z)(·, ηk(z̄))ηk(z),

ηk(z) := (Ak−1 − λk)Rk−1(z)ψk = ψk + (z − λk)Rk−1(z)ψk,

and

bk(z) := (λk − z)(ψk, ηk(z̄)).

The uniqueness ofAn in the class of finite rank singular perturbationsPn
s (A) easily follows from Krein’s

formula (27) for(An − z)−1, (23), (24), and the conditions:ψk 6∈ H1, ψk⊥ψj , k 6= j.

5 Infinite rank perturbations with an arbitrary point spectrum

Theorem 5.1. Let Λ = {λk, k ∈ N} be a sequence of real numbers (eachλk may be repeated with an
arbitrary multiplicity). Then for any self-adjoint unbounded operatorA in a Hilbert spaceH there exists an
H−2−singular perturbationÃ such that

Λ ⊂ σp(Ã).

P r o o f. First we construct an appropriate sequence of vectorsψk, k ∈ N, which satisfies the equations
Ãψk = λkψk. Let g ∈ H \ H1 and therefore

+∞∫

−∞
|λ|d(Eλg, g) = ∞.
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HereEλ denotes the spectral measure ofA. Then we decompose the real line into an infinite family of bounded
Borel mutually disjoint setsδik such that

∫

δik

|λ|d(Eλg, g) = aik ≥ 1, i, k = 1, 2, ...

Obviously
∞∑

i=1

aik = ∞ for all k = 1, 2, .... Set∆k :=
⋃
i

δik and putψk := E(∆k)g. By this construction all

ψk belong toH\H1 andψk ⊥ ψl, k 6= l. Moreover, the subspaceΨ := (span{ψk}∞k=1)
cl has a zero intersection

with H1.
Let us introduce the orthogonal decompositions,

H = H(1) ⊕H(2) ⊕ · · · ⊕ H(k) ⊕ · · ·

and

A = A(1) ⊕A(2) ⊕ · · · ⊕A(k) ⊕ · · ·

whereH(k) := E(∆k)H andA(k) := A|H(k). By the construction

ψk ∈ H(k) \ H1,(k),

whereH1,(k) ≡ H1(A(k)) is theH1-space in theA(k)−scale of spaces constructed using the operatorA(k). So,
by Theorem 3 for each pairλk andψk there exists anH−2−singular perturbatioñA(k) ∈ P1

s (A(k)) such that
λk ∈ σp(Ã(k)). Now we define the operator̃A as the orthogonal sum of thẽA(k),

Ã := Ã(1) ⊕ Ã(2) ⊕ ...⊕ Ã(k) ⊕ ...

The resolvent of̃A has the representation,

R̃(z) = R0(z) +
∞∑

k=1

b−1
k (z)(·, ηk(z̄))ηk(z)

with

ηk(z) := (A− λk)R(z)ψk = ψk + (z − λk)R(z)ψk ∈ H(k) \ H1,(k)

andbk(z) := (λk − z)(ψk, ηk(z̄)). The domain ofÃ has the following description,

D(Ã) = {h ∈ H | h = f +
∞∑

k=1

b−1
k (z)((A− z)f, ηk(z̄))ηk(z), f ∈ D(A)}.

Both,A andÃ are different self-adjoint extensions of the symmetric operatorȦ := A|D = Ã|D, where (see (1))

D(Ȧ) = D := {f ∈ D(A) | ((A− z)f, ηk(z̄)) = 0, k = 1, 2, ...}.

By the above construction the range of the operatorB(z) = R̃(z)−R0(z) satisfies the condition (3). Therefore
the setD is dense inH1 and the operator̃A is theH−2−singular perturbation ofA solving the eigenvalue problem
Ãψk = λkψk, k = 1, 2, ....
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