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Abstract

This is a preliminary version of expanded lecture notes of a mini course to be given by the author
at the XV Latin American School of Mathematics. The aim is to give an introduction to the finite-
dimensional representation theory of affine Kac-Moody algebras and their quantum groups covering
topics such as the classification of the simple modules and the notions of Weyl modules, `-weight
modules, and qcharacters. We also present a few results regarding tensor products and extensions
which will be further expanded in a revised version.



 



Introduction
These notes are intended as supporting material for the mini-course I was invited to give at the XV
Latin American School of Mathematics (ELAM) to take place in Cordoba, Argentina, from May
16 to May 27, 2011. The courses at the ELAM are intended to survey specific areas or problems
thus providing motivation for potential directions towards which graduate students may incline their
careers. I know two styles of providing motivation: the “fancy” one and the “down-to-earth” one.

Let me begin with the fancy one which, in the case of finite-dimensional representation theory of
affine Kac-Moody algebras and their quantum groups, is two-fold. From one side we have its con-
nection to areas closer to the “real world”. Namely, it is by now well-known that affine Kac-Moody
algebras are intimately related with areas of mathematical physics, especially conformal field the-
ory and related areas. Also, the introduction of the concept of quantum groups was motivated by
the study of the Yang-Baxter equation in statistical mechanics. Therefore, the connection of quantum
affine algebras with mathematical physics comes from both classical and quantum perspectives. Their
finite-dimensional representations play a role in the study of integrability of certain lattice models. As
I do not work on the mathematical physics side of the story, I will not give further insights in this di-
rection. The interested reader will have no difficulty finding papers and books with very insightful
introductions giving a very broad overview of this side of the story in a manner accessible to a non-
expert reader. The other side of the fancy motivation comes from a purely representation theoretical
point of view. Namely, the finite-dimensional representations of these algebras form a Jordan-Hölder
tensor category which is not semi-simple (by a Jordan-Hölder category we mean an abelian category
such that all objects have finite-length and the Jordan-Hölder theorem holds). Given a category with
such properties, there is a plethora of natural questions such as understanding composition series and
extensions as well as the tensor structure. Moreover, these representations breakup as a direct sum of
generalized eigenspaces for the action of a commutative subalgebra called the `-weight spaces. This
decomposition gives rise to a character theory which is especially interesting in the quantum setting
(and has a high level of combinatorial flavor). Although several important and profound results re-
garding these characters have been proved, the theory (which is also very relevant in mathematical
physics) is far from being settled. The systematic study of extensions is still in its infancy and the
first Ext groups have been described, in the classical context only, two years ago. In the quantum
setting, the only result so far is the description of the block decomposition of the category. The tensor
structure of the category in the classical setting is somewhat simple: tensor products are “symmetric”
(the category has trivial braiding) and tensor products of simple modules are completely reducible.
The story is very different in the quantum setting (the category is not braided!). Very recent results
show that the understanding of the tensor structure of this category interacts with the study of one of
the most fashionable topics of the moment – the theory of cluster algebras. In a nutshell, the finite-
dimensional representation theory of quantum and classical affine algebras is very rich with many
open interesting questions which are relevant in mathematical physics.

The remainder of the text and the course are intended to provide the “down-to-earth” motivation.
When one is trying to decide what to do for a living, one should rather be as sure as possible that
doing that thing on a daily basis will be enjoyable than if it is sounding “fancy”. In mathematics, each
area or subarea has its own flavor essentially determined by the style of computations one ends up
doing on a daily basis. The selected topics covered in these notes should give the students a glimpse
of a few possible flavors of the theory. In other words, the text brings computations which should give
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an idea of the typical computations they would be “forced to enjoy” every day should they choose
to work on the area. Hopefully, several of the students will agree that the computations are indeed
enjoyable and will feel motivated to join the team of mathematicians trying to unravel the structure of
these representations.

As this is one of the “advanced” courses of the XV ELAM, the text is written assuming that the
students are familiar with the basics of ring and module theory (including the concept of composition
series and the Jordan-Hölder Theorem) as well as with the finite-dimensional representation theory of
finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero
(the material of Humphreys’ book [52], for instance). The knowledge of what a Kac-Moody algebra
is should be helpful but not necessary. Section 1 gives a review of the basic aspects of Kac-Moody
algebras and the class of representations that resembles that of finite-dimensional representations of
simple Lie algebras – the class of integrable representations in the famous BGG category O . Since
there are several good books on this matter, we only present the basic constructions and state the main
results which are needed so that the readers will be able to understand the main part of the course
even if this is the first time they are exposed to Kac-Moody algebras. In fact, the students who never
studied the finite-dimensional simple Lie algebras should also be able to follow the main part of the
course after reading the review in Section 1. We also review the definition of the Drinfeld-Jimbo
quantum groups associated to Kac-Moody algebras in Section 1. We follow the same approach we
had used for Kac-Moody algebras since there are several good books on quantum groups as well. A
list of books covering this material is given in the introduction to Section 1.

The material of the course properly starts in Section 2. The main goal of the section is to answer
the most basic question in representation theory: given an algebra, classify its simple modules. We
shall see that, already in such a basic level, there are some differences among the quantum and the
classical contexts. We also introduce the concepts of global and local Weyl modules and the notions
of `-weight modules and their qcharacters. The main goal of Section 3 is to present results about
tensor products of simple modules and prepare ground for the study of some combinatorial aspects of
the theory of qcharacters to be done in Section 4. In particular, in Section 3 we also study results on
duality and present the description of the block decomposition of our category of modules. However,
in this section we prove the result on the block decomposition only in the case that the underlying
simple Lie algebra is sl2 (which is what we will need for Section 4). Section 4 is then entirely
dedicated to the study of algorithms designed to compute the qcharacter of certain classes of simple
modules. All sections, except for Section 1, end with a subsection named “bibliographical notes”
where the due credit for the original proofs are given as well as a few comments regarding the present
and future perspectives. This is the reason no citation is made in this introduction nor in the main
body of each section.

The material contained in this preliminary version is already larger than what can be covered dur-
ing the mini-course. However, there are certain additional topics which will most likely appear in
the revised version such as a new section on extensions where, in particular, we will finish the proof
of the block decomposition theorem. An extra subsection may be added to Section 3 concerning
simple tensor products and prime representations and another one to Section 4 containing a descrip-
tion of Nakajima’s algorithm for qcharatacters. There are several other interesting topics which may
eventually be included in future versions such as: the proof of the Kirillov-Reshetikhin conjecture and
fermionic formulas (passing through the theory of T -systems), minimal affinizations, fusion products,
Demazure modules, crystal bases, and monomial categorification of cluster algebras. Since there will
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certainly be a revised version, corrections and suggestions about the already included material are
more than well come.
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Basic Notation
Z and Q denote the sets of integer and rational numbers, respectively. The notation Z≥m will be
used for the set of integers bigger or equal to m and similarly for Z>m and son on. Given a ring
R, the underlying multiplicative group of units is denoted by R× and Rop denotes the ring whose
underlying additive group is R but equipped with the opposite multiplication. The identity element
of a multiplicative group will be denoted generically by 1. The cardinality of a set S will be denoted
by |S |. The symmetric group of a set with cardinality m is denoted by S m. The symbol � means
“isomorphic to”.

Throughout the text, F denotes an algebraically closed field of characteristic zero and, unless
otherwise stated, all vector spaces and algebras considered are F-vector spaces. The dual of a vector
space V is denoted by V∗. Given a subset α of a vector space, we denote by [α] the span of α. If α
and β are bases of finite-dimensional vector spaces V and W, respectively, and T : V → W is a linear
transformation, the matrix of T with respect to α and β is denoted by [T ]αβ . The transpose of a matrix
A is denoted by At. Tensor products without a subscript are assumed to be over F. The r-th graded
piece of a graded vector space V will be denoted by V[r].
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1. Kac-Moody Algebras and Quantum
Groups

This is a review section so all the proofs are omitted. Unless otherwise noted, the proofs concerning
the classical context can be found in the books [6, 8, 39, 52, 53, 54, 61, 77, 82] while the ones
concerning the quantum setting can be found in [25, 29, 43, 59, 64, 67].

1.1. Basic concepts on Kac-Moody algebras

Definition 1.1.1. Let I be a finite set and C = (ci j), i, j ∈ I, be a matrix. The matrix C is said to be
indecomposable if for any choice of nonempty disjoint subsets I1 and I2 of I such that I = I1 ∪ I2,
there exist i ∈ I1 and j ∈ I2 satisfying ci j , 0. Otherwise, C is said to be decomposable. The matrix C
is said to be a generalized Cartan matrix if:

(a) ci j ∈ Z and cii = 2 for all i, j ∈ I,

(b) ci j ≤ 0 for all i , j,

(c) ci j = 0⇔ c ji = 0 for all i, j ∈ I.

A generalized Cartan matrix is said to be symmetrizable if it satisfies:

(d) there exist si ∈ Z>0, i ∈ I, such that S C is symmetric where S = diag(si : i ∈ I). ♦

Notice that, if C is symmetrizable, we can choose the numbers si ∈ Z, i ∈ I, to be relatively prime.
We shall always assume that C is an indecomposable symmetrizable generalized Cartan matrix and
that si are chosen in this way.

Proposition 1.1.2. One, and only one, of the following options holds for C.

(a) S C is positive definite.

(b) S C is semi positive definite of corank one.

(c) S C is indefinite.

Definition 1.1.3. A generalized Cartan matrix C is said to be of finite, affine, or indefinite type if C
satisfies condition (i), (ii), or (iii) of the above proposition, respectively. ♦

The entries of a generalized Cartan matrix C can be encoded in a picture called the Dynkin dia-
gram of C. We will describe how to construct the diagram for finite and affine types only since this
is all we will need. In this case we have ci jc ji ≤ 4 for all i, j ∈ I. If n = |I|, the Dynkin diagram is
a graph with n vertices and ci jc ji edges joining the distinct vertices i and j. If ci j < −1, we adorn the
set of edges joining i and j with a > pointing towards i. One easily checks that this picture indeed
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1.1 Basic concepts on Kac-Moody algebras 3

determines completely the matrix C. The following tables is a summary of are the theorem classi-
fying generalized Cartan matrices of finite and affine type. In Table 1.1.1, the number of vertices in
the diagram of type Xn is n while in Tables 1.1.2 and 1.1.3, the number of vertices of the diagram of
type X(k)

f (n) is n + 1. The diagrams on the right-side column of Table 1.1.1 are known as diagrams of
exceptional type. We did not label the vertices in Table 1.1.3 since we will not work with them here.

Table 1.1.1: Dynkin Diagrams of Finite Type

An
c c c c

1 2 n-1 n

Bn
c c c c>

1 2 n-1 n

Cn
c c c c<

1 2 n-1 n

Dn
c c c c

c@@

��

1 2
n-2

n-1

n

E6
c c c c cc

1 2 3 4 5

6

E7
c c c c c cc

1 2 3 4 5 6

7

E8
c c c c c c cc

1 2 3 4 5 6 7

8

F4
c c c c<

1 2 3 4

G2
c c
1 2
<

Table 1.1.2: Dynkin Diagrams of Non Twisted Affine Type

A(1)
1

c c
0 1
<>

A(1)
n

c c c cc
!!

!!
! aaaaa

1 2 n-1 n

0

B(1)
n

c c c c cc
>

1 2 3 n-1 n

0

C(1)
n

c c c c c> <
0 1 2 n-1 n

D(1)
n

c c c cc c
1 2 n-2 n-1

0 n

E(1)
6

c c c c ccc

1 2 3 4 5

6

0

E(1)
7

c c c c c c cc
1 2 3 4 5 6 0

7

E(1)
8

c c c c c c c cc
0 1 2 3 4 5 6 7

8

F(1)
4

c c c c c<
1 2 3 4 0

G(1)
2

c c c
1 2 0
<
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Table 1.1.3: Dynkin Diagrams of Twisted Affine Type

A(2)
2

c c<

A(2)
2n

c c c c c< <

A(2)
2n−1

c c c c cc
<

D(2)
n+1

c c c c c< >

E(2)
6

c c c c c<

D(3)
4

c c c<

Definition 1.1.4. Let r be the rank of C and choose I′ ⊆ I such that |I′| = r and (ci j), i, j ∈ I′, is
invertible. The Kac-Moody algebra g = g(C) is the Lie algebra given by generators x±i , hi, d j, i, j ∈
I, j < I′, satisfying the defining relations:

[hi, h j] = 0, [x+
i , x

−
j ] = δi jhi, [hi, x±j ] = ±ci jx±j for all i, j ∈ I,

ad(x±i )1−ci j(x±j ) = 0 for all i, j ∈ I, i , j,

[d j, dk] = 0, [hi, d j] = 0, [d j, x±i ] = ±δi jx±i for all i, j, k ∈ I, j, k < I′.

The generators x±i , hi, i ∈ I, are called Chevalley or Chevalley-Kac generators, and the relations in
the second line are called Serre’s relations. Denote by d the subalgebra of g generated by d j, j ∈ I \ I′,
by h′ the subalgebra generated by hi, i ∈ I, and by n± the ones generated by x±i , i ∈ I, respectively. Set
also h = h′ ⊕ d. ♦

In the remainder of the section, unless stated otherwise, g denotes a given Kac-Moody algebra.
The universal enveloping algebra U(g) of g can be similarly presented by generators and relations and
the Serre’s relations can then be rewritten as

1−ci j∑
k=0

(−1)k
(

1−ci j
k

)
(x±i )1−ci j−kx±j (x±i )k = 0.

Notice that the derived algebra g′ of g is the subalgebra of g generated by x±i , i ∈ I, and that
g/g′ = d. In particular, if C is invertible, g = g′.

Proposition 1.1.5. The Serre’s relations are defining relations for the subalgebras n±. In particular,
g = n− ⊕ h ⊕ n+ as a vector space.

Given i ∈ I, the subalgebra of g generated by x±i is isomorphic to the Lie algebra sl2 of traceless
2-by-2 matrices. We shall denote this subalgebra by gi. In general, given any subset J of I, we denote
by gJ the subalgebra of g generated by x±j , j ∈ J. The subalgebras hJ, n

±
J are defined in the obvious

way. Then gJ is isomorphic to the derived algebra of the Kac-Moody algebra associated to the matrix
CJ = (ci j), i, j ∈ J.

Proposition 1.1.6. Let C be a generalized Cartan matrix and g = g(C).
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(i) C is of finite type if and only if g is finite-dimensional. Moreover, in that case, g is simple.

(ii) C is of affine type if and only gJ is finite-dimensional for all proper subsets J of I.

(iii) C is of indefinite type if and only if C has a negative principal minor.

Remark 1.1.7. It follows that C is of finite-type if and only if C is a Cartan matrix in the usual sense
and, hence, all principal minors of C are positive. Thus, C is of affine type if and only if C is singular
and all proper principal minors of C are positive. The algebras associated with the diagrams of type
An, Bn,Cn, and Dn are the classical matrix algebras sln+1, so2n+1, sp2n, and so2n, respectively. ♦

Proposition 1.1.8. There exists a unique symmetric invariant bilinear form (·, ·) on g satisfying:

(hi, h j) =
ci j

s j
, (x+

i , x
−
j ) =

δi j

s j
, (x±i , x

±
j ) = 0, (hi, x±j ) = 0, for all i, j ∈ I,

(d j, dk) = 0, (d j, x±i ) = 0, (hi, d j) =
δi j

s j
, for all i, j, k ∈ I, j, k < I′.

Moreover, (·, ·) is nondegenerate and its restriction to h is also nondegenerate.

Remark 1.1.9. If I′ , I, the restriction of (·, ·) to g′ is degenerate. In fact, notice that the matrix of
the restriction of (·, ·) to h′ with respect to the basis {hi, i ∈ I} is CS −1. In particular, the restriction of
(·, ·) to h′ is nondegenerate if and only if C is invertible. In the case that g is finite-dimensional, (·, ·)
is a scalar multiple of the Killing form (several authors call it Cartan-Killing form). Thus, by abuse
of terminology, we shall refer to (·, ·) as the Killing form of g in general. ♦

Proposition 1.1.10. Given i ∈ I, there exists unique αi ∈ h∗ such that αi(h j) = c ji an αi(d j) = δi j.
Moreover, {αi : i ∈ I} is linearly independent and [h, x±i ] = ±αi(h)x±i for all i ∈ I, h ∈ h.

Remark 1.1.11. By abuse of notation, we shall denote the restriction of αi to h′ by αi as well. If C is
singular, the set {αi : i ∈ I} is linearly dependent when regarded as a subset of h′∗. ♦

Definition 1.1.12. The root lattice Q of g is the subgroup of h∗ generated by {αi : i ∈ I}. Let also
Q+ be the corresponding submonoid. Given, η =

∑
i∈I aiαi ∈ Q, the number |η| =

∑
i∈I ai is called the

height of η. Define a partial order on h∗ by setting λ ≥ µ if λ−µ ∈ Q+. Given i ∈ I, the unique element
ωi ∈ h

∗ satisfying ωi(h j) = δi j and ωi(dk) = 0 for all j, j ∈ I \ I′ is called the i-th fundamental weight
of g. The weight lattice of g is the subgroup of h∗ generated by the fundamental weights. Let also P+

denote the corresponding submonoid of h∗. The elements of P are called integral weights while the
elements of P+ are called dominant integral weights. ♦

Remark 1.1.13. Notice that Q ⊆ P. Also,
∑
i∈I

Zωi ⊆ P and equality holds if and only if C is invertible.

We shall refer to elements of P simply by the weights of g. ♦

Given α ∈ h∗, set
gα = {x ∈ g : [h, x] = α(h)x for all h ∈ h}.

One quickly checks that

(1.1.1) [gα, gβ] ⊆ gα+β for all α, β ∈ h∗

and that g±αi
is spanned by xi

+ for all i ∈ I.



1.1 Basic concepts on Kac-Moody algebras 6

Definition 1.1.14. An nonzero element α ∈ h∗ such that gα , 0 is said to be a root of g while gα is the
associated root space. A nonzero vector in a root space is called a root vector. The set R of all roots
of g is called the root system of g. The elements of R+ = R ∩ Q+ are called positive roots while the
ones in −R+ are called negative roots. The elements αi, i ∈ I, are called simple roots. ♦

Proposition 1.1.15. In any Kac-Moody algebra we have R ⊆ Q and R = R+∪−R+. Moreover, g0 = h,
n± =

⊕
α ∈ R+

g±α, and gα is finite-dimensional for all α ∈ R.

Given η ∈ Q, set

U(g)η = {x ∈ U(g) : [h, x] = η(h)x for all h ∈ h}

and U(n±)η = U(n±) ∩ U(g)η. One quickly checks that

(1.1.2) U(g) =
⊕
η ∈ Q

U(g)η

is a Q-gradation on U(g), U(h) ⊆ U(g)0, and U(n±)η , 0 only if η ∈ ±Q+.

Since the restriction of (·, ·) to h is nondegenerate, there exists a unique linear isomorphism h∗ →
h, λ 7→ tλ, where tλ is the unique element of h satisfying (tλ, h) = λ(h) for all h ∈ h. Define a symmetric
bilinear form (·, ·) on h∗ by requiring that this isomorphism be orthogonal, i.e., (λ, µ) = (tλ, tµ) for all
λ, µ ∈ h∗. Notice that

(λ, µ) = λ(tµ) = µ(tλ) for all λ, µ ∈ h∗

and that (λ, λ) , 0 for all λ ∈ h∗ \ {0}. Moreover, the matrix of the restriction of (·, ·) to the subspace
generated by Q with respect to the basis {αi : i ∈ I} is S C, i.e.,

(αi, α j) = sici j for all i, j ∈ I.

For i ∈ I, let ri ∈ EndF(h∗) be given by

ri(λ) = λ − λ(hi)αi = λ − 2
(λ, αi)
(αi, αi)

αi.

Observe that ri
2 = 1, ri(λ) = λ if (λ, αi) = 0, and ri(αi) = −αi. Because of this, ri is called a simple

reflection. Notice that

(1.1.3) αi = ωi − ri(ωi).

Definition 1.1.16. The Weyl group W of g is the subgroup of AutF(h∗) generated by the simple
reflections. Given w ∈ W , an expression w = ri1ri2 · · · ril is a said to be a reduced expression for w if
l is minimal. In that case, l is called the length of w. The length of w ∈ W will be denoted by `(w).
Two elements µ, ν ∈ h∗ in the same W -orbit are said to be W -conjugate. A root α of g is said to be a
real root if it is W -conjugate to a simple root. Otherwise, α is said to be an imaginary root. ♦

Proposition 1.1.17. For all α ∈ R and w ∈ W we have dim(gα) = dim(gwα). In particular, if α is a
real root, then dim gα = 1. In that case, the subalgebra of g generated by g±α is isomorphic to sl2.

Proposition 1.1.18. The following conditions are equivalent:
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(a) W is finite.

(b) R is finite.

(c) g is finite-dimensional.

(d) Every root is real.

We will also make use the of braid group associated to C.

Definition 1.1.19. The braid group B associate to g is the group generated by elements Ti, i ∈ I,
subject to the following defining relations:

TiT j = T jTi, if ci j = 0,
TiT jTi = T jTiT j, if ci jc ji = 1,

(TiT j)2 = (T jTi)2, if ci jc ji = 2,

(TiT j)3 = (T jTi)3, if ci jc ji = 3.

♦

Proposition 1.1.20.

(i) The Weyl group W of g is the quotient of B by the normal subgroup generated by Ti
2 − 1.

(ii) If w = ri1 · · · ril and w = ri′1
· · · ril are two reduced expressions for w ∈ W , then Ti1 · · · Til =

Ti′1
· · · Ti′l

.

The second statement of the above proposition can be rephrased by saying that we have a function
B → W given by

(1.1.4) w 7→ Tw := Ti1 · · · Til

where w = ri1 · · · ril is any reduce expression for w (this is not a group homomorphism).

We end this subsection recalling some extra facts that hold in case g is finite-dimensional as well
as some extra terminology. In that case, there exists a unique root which is maximal in R with respect
to the partial order on h∗. This is also the highest root of g and it will be denoted by θ. Similarly, there
exists a unique element of maximum length in W which will be denoted by w0. The order of w0 is
two and, if w0 = ri1 · · · ril is a reduced expression for w0, then

R+ = {αi1 , ri1αi2 , ri1ri2αi3 , · · · , ri1 · · · ril−1αil}.

The number r∨ := max{s j : i ∈ I} = max{ci jc ji : i , j} is called the lacing number of g. The set
{(α, α) : α ∈ R} has at most two elements and the cardinality is one if and only if g is simply laced,
i.e., if r∨ = 1. If r∨ > 1, a positive root α is said to be a short root if (α, α) < (θ, θ). Otherwise, α is
said to be a long root (in the simply laced case we shall use the convention that all roots are short and
long). We have (α, α) = 2 if α is a short root and (α, α) = 2r∨ if α is a long root. The Coxeter number
of g is h = 1 + |θ| while the dual Coxeter number is h∨ = 1 + |ϑ| where ϑ is the highest short root.
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Given a nonzero λ ∈ h∗, define

λ∨ =
2tλ

(λ, λ)
.

We have α∨i = hi and, if λ =
∑

i∈I miαi , 0, then λ∨ =
∑

i∈I
si
r∨mihi. Moreover, if λ ∈ R, then si

r∨mi ∈ Z
for all i ∈ I and R∨ := {α∨ : α ∈ R} is isomorphic to the root system associated to the matrix Ct. Every
element of P is W -conjugate to a unique element of P+. We also have:

Proposition 1.1.21. Let λ ∈ P+ and set wt(λ) = {w(µ) : w ∈ W , µ ∈ P+, µ ≤ λ}.

(i) w(λ) ≤ λ for all w ∈ W . In particular, ν ≤ λ for all ν ∈ wt(λ).

(ii) For all λ ∈ P+, wt(λ) is a finite set, w0(λ) ≤ µ for all µ ∈ wt(λ), and w0(λ) ∈ −P+.

(iii) If i ∈ I and w ∈ W are such that `(riw) = `(w) + 1, then w−1(αi) ∈ R+. In particular, w(λ) + αi <
wt(λ).

Remark 1.1.22. For each i ∈ I, −w0(ωi) = ω j for some j ∈ I. Thus, w0 defines an involution on
I, i 7→ w0(i) = j. ♦

An element λ ∈ P+ is said to be minuscule wt(λ) ∩ P+ = {λ}, i.e., if wt(λ) is the W -orbit of
λ. It turns out that a nonzero minuscule weight is necessarily a fundamental weight (but not all
fundamental weights are minuscule). Given λ ∈ P+, let supp(λ) = {i ∈ I : λ(hi) , 0} and let W λ be
the subgroup of W generated by {ri : i ∈ I \ supp(λ)}.

Lemma 1.1.23. Let λ ∈ P+.

(i) W λ = {w ∈ W : w(λ) = λ}.

(ii) Each left coset of W λ in W contains a unique element of minimal length.

(iii) Let Wλ the set of all left coset representatives of minimal length. If w ∈ Wλ and i ∈ I are such
that `(riw) = `(w) − 1, then riw ∈ Wλ.

In the next lemma we record some special properties of the fundamental weights in the case that g
is not of exceptional type. For this lemma, we identify I with the finite set {1, . . . , n} as in Table 1.1.1.

Lemma 1.1.24. Suppose g is not of exceptional type and let i ∈ I.

(i) If λ ∈ P+ is such that λ < ωi, then either λ = 0 or λ = ω j for some j < i.

(ii) If j ∈ I is such that i > j, then ωi − (ω j + α j) < Q+.

(iii) If λ ∈ P+ is such that λ < ωi, then ωi − (λ + 2α j) < wt(ωi) for all j ∈ I.
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1.2. Quantum groups

In this subsection we overview (one version of) the definition of Drinfeld-Jimbo’s quantized universal
enveloping algebra Uq(g) most commonly known as the quantum group over g.

Given q ∈ F and m ∈ Z, define

[m]q = qm−1 + qm−3 + · · · + q3−m + q1−m.

Notice that [m]1 = m and that, if q2 , 1, then [m]q =
qm−q−m

q−q−1 . The numbers [m]p are often referred to
as quantum numbers. One can then define quantum factorial numbers in the obvious way:

[0]q! = 1 and [m]q! = [m]q[m − 1]q . . . [1]q for m > 0.

Also, given m, n ∈ Z, m ≥ 0 such that q2m , 1, define the quantum binomial[
n
m

]
q

=
[n]q[n − 1]q · · · [n − m + 1]q

[m]q!
.

Notice that, if n ≥ m, then [ n
m ]q =

[n]q!
[n−m]q![m]q! . One easily checks that there exists f ∈ Z[u, u−1]

(depending only on m and n but not on q) such that [ n
m ]q = f (q) and, therefore, one can remove the

hypothesis q2m , 1. Moreover, if n ≥ m, we have f (1) =
(

n
m

)
.

Henceforth we fix a nonzero q ∈ F which is not a root of unity and set qi := qsi .

Definition 1.2.1. The quantized universal enveloping algebra Uq(g) is the associative algebra (with
1) with generators x±i , k

±1
i , g±1

j , i ∈ I, j ∈ I \ I′, satisfying the following defining relations:

kik−1
i = 1, kik j = k jki, kix±j k−1

i = q±ci j

i x±j , [x+
i , x

−
j ] = δi j

ki − k−1
i

qi − q−1
i

, for all i, j ∈ I,

1−ci j∑
m=0

(−1)m
[

1−ci j
m

]
qi

(x±i )1−ci j−mx±j (x±i )m = 0 for all i, j ∈ I, i , j,

g jg−1
j = 1, g jgk = gkg j, kig j = g jki, g jx±i g−1

j = q±δi j x±i , for all i, j, k ∈ I, j, k < I′.

The relations in the second line are called quantum Serre’s relations. Denote by Uq(d) the subalgebra
of Uq(g) generated by g±1

j , j ∈ I \ I′, by Uq(h′) the subalgebra generated by k±1
i , i ∈ I, by Uq(h) the

one generated by Uq(h′) and Uq(d), by Uq(n±) the ones generated by x±i , i ∈ I, respectively, and by
Uq(g′) the one generated by Uq(n±) and Uq(h′). ♦

In the case that g is of affine type, the quantum group Uq(g) is frequently called a quantum affine
algebra.

Remark 1.2.2. Notice that the above definition makes sense as long as qsi , ±1. We will see below
that one can make sense of quantum groups even when qsi , ±1 and, also, for q = 1 in which case the
resulting algebra is essentially U(g). The elements ki and g j are, roughly speaking, “q-exponentials”
of the elements hi and d j, respectively. This is made more precise if one works with a larger version
of Uq(g) which, in some instances, is more convenient than the above. Namely, one replaces the
generators ki and g j by generators qh with h running in the Z-span of hi and d j. One then imposes the
relations q0 = 1, qh+h′ = qhqh′ , and qhx±j q−h = qα j(h)x±j . The element ki then corresponds to qsihi while
g j corresponds to qd j . ♦
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The next proposition establishes a quantum analogue of the triangular decomposition.

Proposition 1.2.3. The multiplication of Uq(g) induces isomorphism of vector spaces:

Uq(n−) ⊗ Uq(h) ⊗ Uq(n+)→ Uq(g) and Uq(h′) ⊗ Uq(d)→ Uq(h).

Given J ⊆ I, we denote by Uq(gJ) the subalgebra of Uq(g) generated by k j, x±j , j ∈ J, and set
Uq(hJ) = Uq(h)∩Uq(gJ) and so on. If J = {i} for some i ∈ I we simplify notation and write Uq(gi). It
is not difficult to see that Uq(gi) is isomorphic to Uqi(sl2) and similarly for general J.

There exists a unique Q-gradation on Uq(g) such that the degree of x±i is ±αi, respectively, and
Uq(h) is contained in the graded piece of degree 0. For η ∈ Q we let Uq(g)η denote the graded piece
of degree η. Notice that if x has degree η, then kixk−1

i = q(αi,η)x for all i ∈ I. As before, we set
Uq(n±)η = Uq(n±) ∩ Uq(g)η.

Proposition 1.2.4. There exist unique algebra homomorphisms

ε : Uq(g) −→ F, ∆ : Uq(g) −→ Uq(g) ⊗F Uq(g), and S : Uq(g) −→ Uq(g)op

such that

ε(ki) = ε(g j) = 1, ε(x±i ) = 0,

∆(ki) = ki ⊗ ki, ∆(g j) = g j ⊗ g j, ∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−i ) = x−i ⊗ k−1

i + 1 ⊗ x−i ,

S (ki) = k−1
i , S (g j) = g−1

j , S (x+
i ) = −k−1

i x+
i , S (x−i ) = −x−i ki

for all i, j ∈ I, j < I′.

It follows from the above proposition that Uq(g) has a structure of a non cocomutative Hopf
algebra with counit ε, comultiplication ∆, and (invertible) antipode S . Notice that Uq(g′),Uq(n±), and
Uq(h) are Hopf subalgebras of Uq(g). We shall denote by H0 the augmentation ideal of a Hopf algebra
H, i.e., the kernel of ε.

We end this subsection with an overview of the constructions and results establishing the relation
between Uq(g) and U(g). For that purpose, assume that q is transcendental over Q so that the field
Q(q) is a subfield of F. Let also A = Q[q, q−1] and notice that [m]qi , [m]qi!, [

m
n ]qi
∈ A, for all m, n ∈

Z, n ≥ 0 (in fact, they lie in Z[q, q−1] as remarked above).

Definition 1.2.5. If V is an F-vector space, an A-lattice of V is the A-span of an F-basis of V . An
A-form of Uq(g) is an A-subalgebra of Uq(g) which is also an A-lattice of Uq(g). ♦

Given ξ ∈ F, consider the ring homomorphism

evξ : A→ F, f (q) 7→ f (ξ).

Denote by Fξ the A-module induced by evξ, i.e., Fξ is the Q-vector space F where q acts as multipli-
cation by ξ. Then, for an A-form U of Uq(g), set

Uξ = Fξ ⊗A U
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which is naturally an F-algebra. Moreover, if U is an A-Hopf subalgebra of Uq(g), then Uξ has a
natural Hopf algebra structure. The algebra Uξ is called the specialization of Uq(g) at q = ξ via U.
The elements of the form λ ⊗ x of Uξ, with x ∈ U and λ ∈ F, will be denoted simply by λx. Notice
that if ξ = q, then Uξ is naturally isomorphic to Uq(g).

There are two A-forms of Uq(g) used in the literature. One was first studied by Kac and De Concini
and is often referred to as the nonrestricted integral form of Uq(g). The other was first considered by
Lusztig in connection with the theory of algebraic groups and is often referred to as the restricted
integral form of Uq(g) as it is also related to restricted Lie algebras in positive characteristic. It turns
out that if ξ is not a root of unity, then the specialized algebras obtained from them are isomorphic to
the algebra given by generators and relations as above with ξ in place of q. However, the situation is
very different if ξ is a nontrivial root of unity. We will focus only in the case ξ = 1 here in which case
both specializations are again isomorphic. Thus, for simplicity, we introduce the nonrestricted form

only. Namely, we consider the A-subalgebra U of Uq(g) generated by x±i , ki, g j,
g j−g−1

j

q−q−1 , i, j ∈ I, j < I′.

Theorem 1.2.6. U is an A-form of U(g) and U(g) is isomorphic to the quotient of U1 by the ideal
generated by ki − 1, g j − 1, i, j ∈ I, j < I′.

Remark 1.2.7. Notice that, under the isomorphism of the above theorem, hi is the image of the
element ki−k−1

i
qi−q−1

i
which is an A-basis element of U (similar remark is valid for the elements d j). It turns

out that the restricted integral form is an A-Hopf subalgebra of Uq(g) and the induced Hopf algebra
structure on U(g) coincides with the usual one: ε(x) = 0,∆(x) = x ⊗ 1 + 1 ⊗ x, S (x) = −x, for all
x ∈ g. ♦

1.3. Integrable representations in category O

We now give a review on a certain category of representations of Kac-Moody algebras (and their quan-
tum groups) which runs parallel to that of finite-dimensional representations of finite-dimensional
simple Lie algebras. This is the category O int of integrable modules in Bernstein-Gelfand-Gelfand’s
category O . The classical and quantum are developed essentially in the same way. For simplicity we
will consider the classical case and then point out the small modifications needed to treat the quantum
case.

Let V be a g-module. Given µ ∈ h∗ define

(1.3.1) Vµ = {v ∈ V : hv = µ(h)v for all h ∈ h} .

The space Vµ is said to be the weight space of V of weight µ and the nonzero vectors of Vµ are called
weight vectors of weight µ. Let wt(V) = {µ ∈ P : Vµ , 0} be the set of weights of V . The module V
is said to be a weight-module if

V =
⊕
µ ∈ h∗

Vµ.

Notice that the relations [h, x±i ] = ±αi(h)x±i , i ∈ I, h ∈ h, imply

(1.3.2) x±i Vµ ⊆ Vµ±αi for all i ∈ I.
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In particular, the sum of the weight spaces of a given representations is a subrepresentation. A weight
vector v is said to be a highest-weight vector if x+

i v = 0 for all i ∈ I (equivalently, if n+v = {0}).
Equation (1.3.2) implies that the weights of a subrepresentation generated by a highest-weight vector
are smaller than the weight of its generating vector. This explains the term “highest-weight vector”.
A representation which is generated by a highest-weight vector is said to be a highest-weight module.
Using (1.3.2) once more one easily sees that highest-weight modules are weight-modules. Notice
that the sum of the proper submodules of a highest-weight module is again a proper submodule. This
proves the following proposition.

Proposition 1.3.1. Let V be a highest-weight module. Then, V has a unique maximal proper sub-
module and, hence, a unique irreducible quotient. In particular, V is indecomposable.

Given λ ∈ h∗, let M(λ) be the g-module generated by a vector satisfying the defining relation of
being a highest-weight vector of weight λ. In other words, M(λ) is the quotient of U(g) by the left
ideal generated by h − λ(h), x+

i for all h ∈ h and i ∈ I. One easily sees that, as an n−-module, M(λ) is
isomorphic to U(n−). By definition, any other highest-weight module of highest weight λ is a quotient
of M(λ), i.e., M(λ) is the universal highest-weight module of highest weight λ. It is also called the
Verma module of highest-weight λ. We shall denote by V(λ) the unique irreducible quotient of M(λ).
Evidently that M(λ) is isomorphic to M(µ) if and only if λ = µ and similarly for their irreducible
quotients.

A g′-module V is said to be integrable if the elements x±i , i ∈ I, act locally nilpotently, i.e., if for
every v ∈ V and i ∈ I, there exists m ∈ Z≥0 such that (x±i )mv = 0. A g-module is said to be integrable
if it is integrable when regarded as a g′-module.

Lemma 1.3.2. Let V be a g′-module generated by a vector v which is an eigenvector for the action of
h′. Suppose there exist mi ∈ Z>0, i ∈ I, such that (x±i )miv = 0. Then, V is integrable.

Proposition 1.3.3. If V is an integrable g′-module, then h′ act semisimply on V and the eigenvalues
of hi are in Z for all i ∈ I. In particular, if V is a g-module, then it is a weight-module and Vµ , 0 only
if µ ∈ P. Also, U(gi)v is a finite-dimensional gi-submodule of V for all i ∈ I, v ∈ V .

Theorem 1.3.4. Let λ ∈ h∗ and v be a highest-weight vector of M(λ). The module V(λ) is integrable
if and only if λ ∈ P+. In that case, it is the quotient of M(λ) by the submodule generated by (x−i )λ(hi)+1v
for all i ∈ I.

Remark 1.3.5. The image of the vectors (x−i )λ(hi)v, i ∈ I, in V(λ) are all nonzero as a consequence
of the study of the sl2 case. In particular, V(0) is the one-dimensional trivial representation. The
notions of lowest-weight vector and module is defined by interchanging the role of the generators
x±i . Evidently, all results proved for highest-weight modules are true for lowest-weight ones mutatis-
mutandis. ♦

Given λ ∈ h∗, set
D(λ) = λ − Q+ = {µ ∈ h∗ : λ − µ ∈ Q+}.

Let O be the category of weight-modules with finite dimensional weight spaces whose weights lie in
the union of finitely many sets of the form D(λ), λ ∈ P+. Let also O int be the full subcategory of O
consisting of integrable modules. Notice that the Verma modules M(λ), λ ∈ P+, are in O and, hence,
so are their irreducible quotients.
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Theorem 1.3.6. If V is a simple module in category O int it is isomorphic to V(λ) for some λ ∈ P+.
Moreover, every object in O int is completely reducible.

If V is a weight-module with finite-dimensional weight spaces, the character of V is the function
ch(V) : P→ Z given by

ch(V)(µ) = dim(Vµ).

The action of W on P can be naturally extended to an action of W on ZP by

(w f )(µ) = f (w(µ)) for all w ∈ W , f ∈ ZP, µ ∈ P.

Proposition 1.3.7. Let V be an integrable weight-module. Then, Vµ � Vw(µ) as vector spaces for all
µ ∈ P,w ∈ W . In particular, if V has finite-dimensional-weight spaces, ch(V) is W -invariant.

For µ ∈ P, let eµ ∈ ZP be the characteristic function of {µ}, i.e., eµ(λ) = δλ,µ. Then, every element
f ∈ ZP can be reinterpreted as a formal sum of the form f =

∑
µ∈P f (µ)eµ.

Corollary 1.3.8. If g is finite-dimensional and λ ∈ P+ is minuscule, then ch(V(λ)) =
∑

w∈Wλ
ew(λ).

More generally, we have:

Theorem 1.3.9. For all λ ∈ P+, ch(V(λ)) is given by the Weyl-Kac character formula.

Corollary 1.3.10. If g is finite-dimensional and λ ∈ P+, then wt(V(λ)) = wt(λ). In particular, O int is
the category of finite-dimensional g-modules.

Corollary 1.3.11. Suppose g is finite-dimensional and V is an integrable weight-module such that
wt(V) has a unique maximal element, say λ. Then, wt(V) = wt(λ).

We will need an expression for vectors spanning the weight spaces V(λ)w(λ), λ ∈ P+,w ∈ W . Fix
a reduced expression w = ril · · · ri1 for w and consider

(1.3.3) m j = (ri j−1 · · · ri1λ)(hi j).

Proceeding inductively on j, it follows from Proposition 1.1.21(iii) that m j ∈ Z≥0. Let v be a highest-
weight vector for V = V(λ) and set

(1.3.4) vw = (x−il )
ml · · · (x−i1)

m1v ∈ Vw(λ).

Since dim(Vw(λ)) = 1 by the previous proposition and vw , 0 by the first comment on Remark
1.3.5, vw spans Vw(λ). Moreover, by reverting the process, we see that v is a nonzero multiple of
(x+

i1)
m1 · · · (x+

i1)
ml(x−il )

ml · · · (x−i1)
m1v.

Given V ∈ O int, we can write V =
⊕

λ ∈ P+
V(λ)⊕[V:λ] for unique nonnegative integers [V : λ]. The

number [V : λ] is called the multiplicity of V(λ) in V . In particular,

ch(V) =
∑
λ∈P+

[V : λ] ch(V(λ)).
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Conversely, one can algorithmically recover the numbers [V : λ] from ch(V) (notice this is a very
laborious task in practice). In other words, from a theoretical point of view, the collection of numbers
[V : λ], λ ∈ P+, and the collection of numbers dim(Vµ), µ ∈ P, provide the same information about V .

Recall that if V and W are representations of a Hopf algebra A, then V ⊗W can be turned into a
representation of A by setting

(1.3.5) x(v ⊗ w) = ∆(x)(v ⊗ w) for all v ∈ V,w ∈ W, x ∈ A

where V ⊗ W is naturally interpreted as a representation for the algebra A ⊗ A. In particular, since
U(g) is a Hopf algebra, the tensor product of two given g-modules is defined in this way. Notice that,
since the formula for ∆(x) is symmetric (the comultiplication of U(g) is cocommutative), we have

(1.3.6) V ⊗W � W ⊗ V.

One can define the multiplication of the elements eµ by setting

eµeν = eµ+ν.

This multiplication extends naturally to the subset of ZP of functions with finite support turning it into
a ring which is nothing else but the group ring Z[P]. Evidently, this does not extend to a multiplication
on all of ZP. However, one can multiply characters of objects in O int in this way. In fact, O int is a
tensor category and, for every two modules V,W in O int, we have

(1.3.7) ch(V ⊗W) = ch(V)ch(W).

The above essentially follows from the following which is easily checked using (1.3.5) and the for-
mula for ∆(x) given in Remark 1.2.7.

(1.3.8) Vµ ⊗Wν ⊆ (V ⊗W)µ+ν.

Proposition 1.3.12. Let λ, µ ∈ P+ \ {0}. Then, [V(λ) ⊗ V(µ) : ν] , 0 for some ν ∈ P+, ν , λ + µ.

The dual space V∗ of a representation for a Hopf algebra A can be turned into a representation as
well by setting

(1.3.9) (x f )(v) = f (S (x)v) for all f ∈ V∗, v ∈ V, x ∈ A.

If V is a weight-module for g, then Vr := ⊕
µ ∈ P

(Vµ)∗ is a submodule of V∗ usually called the restricted

dual of V (if V is finite-dimensional, then Vr = V∗). We will only consider restricted duals, so we
abuse of notation and write V∗ instead of Vr. Since S (x) = −x for all x ∈ g (Remark 1.2.7), it easily
follows that

(1.3.10) (Vµ)∗ = (V∗)−µ for all µ ∈ P.

Notice also that, if all the weight-spaces are finite-dimensional, then (V∗)∗ � V as a g-module.

Proposition 1.3.13. Let U,V,W be g-weight-modules.
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(i) If V is integrable, so is V∗.

(ii) If 0→ U → V → W → 0 is a short exact sequence, so is 0→ W∗ → V∗ → U∗ → 0.

(iii) Suppose dim(Vµ) < ∞ for all µ ∈ P. Then, V is irreducible if and only if V∗ is irreducible.

Remark 1.3.14. Notice that if V is a simple highest-weight module of highest weight λ, then V∗ is a
simple lowest-weight module of lowest weight −λ. However, the dual of the Verma module is not a
lowest-weight module in general as it is easily seen from part (ii) of the above proposition (although
−λ is its unique minimal weight). ♦

The next corollary follows from Proposition 1.1.21(ii) and the above remark.

Corollary 1.3.15. Suppose g is finite-dimensional and let λ ∈ P+. Then, V(λ) is a lowest-weight
module of lowest weight w0(λ) and, if v is a highest-weight vector, vw0 is a lowest-weight vector. In
particular, V(λ)∗ � V(−w0(λ)).

Remark 1.3.16. Before turning to the quantum setting, we find interesting to remark the following.
Let V = V(λ) for some λ ∈ h∗ and notice that V can be naturally considered as ZI\I′

≥0 -graded g′-module.
Namely, given r = (r j) j∈I\I′ , the r-th graded piece of V is set to be

V[r] = {v ∈ V : d jv = (λ(d j) − r j)v for all j ∈ I \ I′} =
⊕

µ : µ(d j) = λ(h j) − r j

Vµ.

Thus, if we set δi = (δi j) j∈I\I′ , i ∈ I, we have x±i V[r] ⊆ V[r ∓ δi] for all i ∈ I, r ∈ ZI\I′

≥0 . It is not
difficult to see that, if λ, µ ∈ h∗ are such that (λ − µ)(d j) ∈ Z for all j ∈ I \ I′, then V(λ) � V(µ)
as a ZI\I′

≥0 -graded g′-module. Moreover, one can easily recover the g-module structure of V(λ) from
the graded g′-module structure together with the values λ(h j), j ∈ I \ I′. Thus, studying modules in
O int is essentially equivalent to studying ZI\I′

≥0 -graded g′-modules. Also, without loss of generality, we
restrict our attention to modules whose weights lie in Pd = {µ ∈ P : µ(d j) ∈ Z for all j ∈ I \ I′} from
now on (evidently, P = Pd if C is invertible). ♦

We now turn to the quantum case. One easily checks that, given a function σ : I −→ {−1, 1}, there
exists a unique F-algebra automorphism Uq(g) −→ Uq(g), also denoted by σ, such that

σ(x±i ) = σ(i)x±i , σ(ki) = σ(i)ki, σ(g j) = g j for all i, j ∈ I, j < I′.

Remark 1.3.17. If σ(i) , 1 for some i ∈ I, the above algebra homomorphism is not a coalgebra
homomorphism. ♦

Let V be a Uq(g)-module. Given µ ∈ Pd and σ as above, the weight space of V of weight µ and
type σ is the subspace

Vµ,σ = {v ∈ V : kiv = σ(i)qµ(hi)
i v, g jv = qµ(d j)v, for all i, j ∈ I, j < I′}.

As before, x±i Vµ,σ ⊆ Vµ±αi,σ and, if (µ, σ) , (µ′, σ′), then Vµ,σ ∩ Vµ′,σ′ = {0}. Therefore, ⊕
µ∈Pd
σ∈{±1}I

Vµ,σ and

Vσ =
⊕

µ ∈ Pd

Vµ,σ are submodules of V . V is said to be a weight-module if V =
⊕
µ, σ

Vµ,σ. A weight-

module V is said to be of type σ if V = Vσ. If σ(i) = 1 for all i ∈ I, and V = Vσ, V is said to be a
module of type 1.
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Given λ ∈ Pd such that λ(ĥ′) = {0}, notice that the Uq(g)-module V(λ, σ) given by the quotient of
Uq(g) by the left ideal generated by x±i , ki − σ(i), g j − qλ(d j) is a one-dimensional module of type σ.
The following is easily established.

Proposition 1.3.18. Let V,W be Uq(g)-modules and σ,σ′ : I → {1,−1}.
(i) If V is of type σ and W is of type σ′, then V ⊗W is of type σ ◦ σ′. Moreover, if σ , σ′, then

HomUq(g)(V,W) = {0}.

(ii) If V is of type σ, then the pullback Vσ′ of V by σ′ is of type σ ◦ σ′. In particular, Vσ is of type
1.

It follows from the above proposition that it suffices to study weight-module of type 1. Thus,
henceforth, the expression weight-module will stand for weight-module of type 1 and the weight-
spaces will be denoted by Vµ. As before, a nonzero vector in Vµ is called a weight-vector of weight
µ. In fact, from this point on, the description of the constructions and of the statements of the results
listed above in the classical case are transported to the quantum case in the obvious manner. We shall
add a subscript q in the notation developed in the classical case to refer to the quantum analogues.
Thus, the Verma module of highest-weight λ is denoted by Mq(λ) while Vq(λ) is the irreducible
quotient, and the quantum analogues of category O and O int are denoted by Oq and O int

q , respectively.
The notation for characters will remain the same: ch(V).

Remark 1.3.19. Although all the results listed above in the classical case hold in the quantum case as
well, some proofs are not developed in quite the same manner and, in some cases, the argumentation
is very different. For instance, (1.3.6) does not follow immediately from the definition since the
comultiplication is not cocommutative in the quantum setting and, in fact, is not true for any two given
Uq(g)-modules. In case these modules are in O int

q , (1.3.6) follows from complete reducibility and
(1.3.7). Alternatively, one can use the quasi-triangular structure of Uq(g) to deduce (1.3.6) whenever
the action of the universal R-matrix on V ⊗W is well-defined. A tensor category where (1.3.6) holds
for any two objects is said to be a braided tensor category (the formal definition of a braiding is
a little more technical than this). We also remark that, since S is an anti-automorphism, we have
(V ⊗W)∗ � W∗ ⊗ V∗ provided there exists such an isomorphism as vector spaces (which is the case
if both V and W are finite-dimensional or, more generally, if V ⊗W have finite-dimensional weight-
spaces). ♦

1.4. Loop algebras and affine Kac-Moody algebras

We now review a second realization of affine Kac-Moody algebras and their quantum groups. It
turns out that these alternate realizations are crucial for the development of the finite-dimensional
representation theory of g′ and of Uq(g′).

Given a Lie algebra a and an associative algebra A, the vector space a⊗ A can be equipped with a
Lie algebra structure by setting

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab for all x, y ∈ a, a, b ∈ A.

Notice that a ⊗ 1 = {x ⊗ 1 : x ∈ a} is a subalgebra of a ⊗ A isomorphic to a and, therefore, we regard
a as a subalgebra of a ⊗ A. Under this identification, we keep denoting an element x ∈ a by x instead
of x ⊗ 1.
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Remark 1.4.1. When A = F[t, t−1], the Lie algebra a ⊗ A is called the loop algebra of a. The
terminology comes from the fact that C[t, t−1] is the algebra of regular functions on the circle and,
if a is the Lie algebra of a Lie group G, then a ⊗ A is related to the Lie algebra of the group of
functions from the circle to G (loops on G). More generally, if A is the algebra of regular functions
on an algebraic variety X and a is the Lie algebra of an algebraic group G, then a ⊗ A is related to
the Lie algebra of the group of functions from V to G. In the case that A = F[t], a ⊗ A is called the
current algebra over a. Multivariable analogues of current and loop algebras (also known as toroidal
algebras) have also been studied frequently. We shall use the notation ã for the loop algebra over a
and a[t] for the current algebra. Notice that we can regard ã as Z-graded Lie algebra in the obvious
way. ♦

For the remainder of the text, we fix C so that g is finite-dimensional and let g̃ be the loop algebra
over g. Consider the vector space ĝ′ = g̃ × F and denote by c the element (0, 1) so that we can write
ĝ′ = g̃ ⊕ Fc. There exists a unique Lie algebra structure on ĝ′ such that c is central ([g̃, c] = 0) and

[x ⊗ tr, y ⊗ ts] = [x, y] ⊗ tr+s + r δr,−s(x, y)c for all x, y ∈ g, r, s ∈ Z.

The Z-gradation on g̃ extends to one on ĝ′ by setting the degree of c to be zero. Let ĝ = ĝ′ × F and
denote by d the element (0, 1) so that ĝ = ĝ′ ⊕ Fd. There exists a unique Lie algebra structure on ĝ
such that ĝ′ × {0} is an ideal isomorphic to ĝ′ and d acts as the degree operator on ĝ′, i.e., [d, x] = rx
for all x in the r-th graded piece of ĝ′. Again, we extend the Z-gradation to one on ĝ by setting the
degree of d to be zero. Set ĥ′ = h ⊕ Fc and ĥ = ĥ′ ⊕ Fd.

Recall that θ denotes the maximal root of g. Choose x±θ ∈ g±θ such that [x+
θ , x

−
θ ] = θ∨ and set

x0
± = x∓θ ⊗ t±1, h0 = [x+

0 , x
−
0 ]. Observe that

h0 = [xθ− ⊗ t, xθ+ ⊗ t−1] = [xθ−, xθ+] + (xθ+, xθ−)c =
2c

(θ, θ)
− θ∨.

Remark 1.4.2. Because of the above, several authors find it convenient to renormalize the Killing
form of g so that (θ, θ) = 2 while in our normalization (θ, θ) = 2r∨. ♦

Definition 1.4.3. Let Î = I t {0} and define the extend Cartan matrix matrix Ĉ = (ĉi j)i, j∈Î of C by
setting ĉ00 = 2,

ĉ0 j = −α j(θ∨) = −
2(α j, θ)
(θ, θ)

, ĉi0 = −θ(hi) = −
2(αi, θ)
(αi, αi)

, and ĉi j = ci j for all i, j ∈ I. ♦

One easily checks that we have

(1.4.1) [hi, x j
±] = ±ĉi jx±j and ad(x±i )1−ĉi j(x±j ) = 0 for all i, j ∈ Î

and, moreover:

Lemma 1.4.4. The matrix Ĉ = (ĉi j)i, j∈Î is a generalized Cartan matrix of affine type and s0 is the
lacing number r∨ of g.

It follows that the subalgebra of ĝ generated by x±i , hi, d, i ∈ I, is a quotient of the the affine
Kac-Moody algebra associated to Ĉ. In fact, we have:
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Theorem 1.4.5. The Lie algebra ĝ is isomorphic to the affine Kac-Moody algebra associated to Ĉ.

Remark 1.4.6. All generalized Cartan matrices with Dynkin diagram in Table 1.1.2 are of the form
Ĉ for some C with Dynkin diagram in Table 1.1.1. The affine Kac-Moody algebras of twisted type
can be realized as subalgebras of the non-twisted ones. Namely, each non-trivial Dynkin diagram
automorphism σ of g gives rise to a Lie algebra automorphism of ĝ. The twisted affine algebra ĝσ

associated toσ is then the corresponding fixed point subalgebra of ĝ. We shall not consider the twisted
affine algebras here. ♦

Regard the root lattice Q of g as a subset of ĥ∗ by extending αi, i ∈ I, to an element of ĥ∗ by
setting αi(c) = αi(d) = 0. Let δ be the unique element of ĥ∗ such that δ(ĥ′) = 0 and δ(d) = 1 and set
α0 = δ − θ. Given λ ∈ ĥ∗, let

ĝλ = {x ∈ ĝ : [h, x] = λ(h)x, for all h ∈ ĥ},

and set R̂ = {α ∈ ĥ∗ : ĝα , 0} \ {0}. One easily checks that ĝ0 = ĥ,

ĝkδ = h ⊗ tk, and ĝα+mδ = gα ⊗ tm for all k,m ∈ Z, k , 0, α ∈ R.(1.4.2)

In particular,
R̂ = {α + kδ : α ∈ R, k ∈ Z} ∪ {kδ : k ∈ Z \ {0}}

and ĝ = ĥ ⊕
⊕

α ∈ R̂
ĝα. The set {kδ : k ∈ Z \ {0}} is the set of imaginary roots.

We now turn to the quantum setting and present a realization of Uq(ĝ) which resembles the above
realization of the affine Kac-Moody algebra ĝ. However, in the quantum case, the description is not
via a construction beginning from Uq(g), but rather another presentation in terms of generators and
relations. This time the generators stand for “deformations” of the elements xαi ⊗ tr, hi ⊗ ts ∈ ĝ, i ∈
I, r, s ∈ Z, s , 0. Notice that Uq(g) is isomorphic to the subalgebra of Uq(ĝ) generated by x±i , ki, i ∈ I,
and we shall identify Uq(g) with this subalgebra. The following theorem was proved in [2].

Theorem 1.4.7. The quantized universal enveloping algebra Uq(ĝ′) is isomorphic to the F-associative
algebra Aq generated by elements x±i,r, hi,s, k±i , c

±1/2, i ∈ I, r, s ∈ Z, s , 0, subject to the following
defining relations. The elements c±1/2 are central,

c+1/2c−1/2 = 1 = kik−1
i , kik j = k jki, kih j,s = h j,ski, kix±j,rk

−1
i = q±ci j

i x±j,r, i, j ∈ I, r, s ∈ Z, s , 0,∑
σ∈S 1−ci j

1−ci j∑
m=0

(−1)m
[

1−ci j
m

]
qi

x±i,rσ(1)
. . . x±i,rσ(m)

x±j,sx
±
i,rσ(m+1)

. . . x±i,rσ(1−ci j)
= 0, i, j ∈ I, i , j, rn, s ∈ Z,

[hi,r, h j,s] = δr,−s
[rci j]qi

r
cr − c−r

q j − q−1
j

, i, j ∈ I, r, s ∈ Z \ {0}, where c±r := (c±1/2)2r,

[hi,s, x±j,r] = ±
1
s

[sci j]qi x
±
j,r+s(c

∓1/2)|r|, i, j ∈ I, r, s ∈ Z, s , 0,

x±i,r+1x±j,r − q±ci j

i x±j,sx
±
i,r+1 = q±ci j

i x±i,r x±j,s+1 − x±j,s+1x±i,s, i, j ∈ I, r, s ∈ Z,

[x+
i,r, x

−
j,s] = δi j

c
r−s
2 ψ+

i,r+s − ψ
−
i,r+sc

s−r
2

qi − q−1
i

, i, j ∈ I, r, s ∈ Z, where c
m
2 := (c+1/2)m,
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ψ±i,∓m = 0 if m > 0, and ψ±i,±m,m ≥ 0, are defined by the following equality of power series in u:

∑
m≥0

ψ±i,±mum = k±1
i exp

±(qi − q−1
i )

∑
s>0

hi,±sus

 .
Moreover, for all i ∈ I, the isomorphism maps the generator x±i of Uq(g) to the generator x±i,0 of Aq.

Henceforth, we identify Uq(ĝ′) with Aq. We shall refer to the second line of relations for Aq as the
loop analogue of the quantum Serre’s relations.

Let Uq(g̃) be the quotient of Uq(ĝ′) by the ideal generated by c1/2 − 1. We will refer to Uq(g̃) as
the quantum loop algebra of g (it is most often called quantum affine algebra in the literature by abuse
of terminology). We keep denoting the images of the generators of Uq(ĝ′) in Uq(g̃) by their original
notation. Let Uq(ñ±) be the subalgebra of Uq(g̃) generated by x±i,r, i ∈, r ∈ Z, respectively. Let also
Uq(h̃) be the subalgebra of Uq(g̃) generated by the elements k±1

i , hi,s, i ∈ I, s ∈ Z \ {0}. Given J ⊆ I, let
Uq(g̃J) be the subalgebra generated by x±i,r, ki, i ∈ J, r ∈ Z. For J = {i} we use the simplified notation
Uq(g̃i) (note this is isomorphic to Uqi( ˜sl2)). Given i ∈ I, r ∈ Z, let Uq(g̃i,r) be the subalgebra of Uq(g̃)
generated by ki and x±i,±r which is isomorphic to Uqi(sl2). The next proposition also follows from the
results of [2].

Proposition 1.4.8. The multiplication map induces an isomorphism of vector spaces Uq(ñ−)⊗Uq(h̃)⊗
Uq(ñ+)→ Uq(g̃).

The proof of the following lemma is straightforward.

Lemma 1.4.9. For every s ∈ Z, there exists a unique algebra automorphism of Uq(g̃′) such that
ki 7→ ki and x±i,r 7→ x±i,r±s for all i ∈ I, r ∈ Z. Moreover, this automorphism is the identity when
restricted to Uq(h̃).

It will be convenient to consider the elements Λi,r, i ∈ I, r ∈ Z, of Uq(h̃) defined by

∞∑
r=0

Λi,±rur = exp

− ∞∑
s=1

hi,±s

[s]qi

us

 .
In particular, Λi,0 = 1 for all i ∈ I. Note that, setting Λ±i (u) =

∑∞
r=0 Λi,±rur and Ψ±i (u) =

∑
m≥0 ψ

±
i,±mum,

we have

(1.4.3) Ψ±i (u) = k±1
i

Λ±i (uq∓1
i )

Λ±i (uq±1
i )

where the division is that of formal power series in u with coefficients in Uq(h̃). One easily checks
that (1.4.3) is equivalent to

(1.4.4) Λi,±r =
∓k∓1

i

qr
i − q−r

i

r∑
t=1

q±(r−t)
i ψ±i,±tΛi,±(r−t)
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and to

(1.4.5) ψ±i,±r = ∓k±1
i (qr

i − q−r
i )Λi,±r −

r−1∑
t=1

q±(r−t)
i ψi,±tΛi,±(r−t).

Note that Uq(h̃) is generated by k±1
i and Λi,r, i ∈ I, r ∈ Z. In fact, one can check that the elements

Λi,r, i ∈ I, r ∈ Z are algebraically independent and, therefore, the subalgebras Λ± of Uq(h̃) generated
by Λi,±r, i ∈ I, r > 0, are polynomial algebras on these elements. In particular, the multiplication map
induces an isomorphism of commutative algebras:

(1.4.6) Λ− ⊗ Uq(h) ⊗ Λ+
→ Uq(h̃).

The Hopf algebra structure on Uq(ĝ′) induces one on Uq(g̃). However, a precise formula for
the comultiplication of the generators x±i,r, hi,s, and Λi,r is not known. It is also not true that the
subalgebras Uq(ñ±),Uq(h̃), and Uq(g̃J) are Hopf subalgebras of Uq(g̃). For notation convenience, we
set Uq(ñ±)0 = Uq(ñ±) ∩ Uq(g̃)0 and so on. The next proposition gives partial information on the
comultiplication in terms of the loop like generators. The proof can be found in [2, 3, 26, 27].

Proposition 1.4.10. For i ∈ I, let Uq(ñ±(i)) be the subalgebra of Uq(ñ±) generated by x±j,r with j , i
and r ∈ Z.

(i) Modulo (Uq(h̃)Uq(ñ−)0) ⊗ (Uq(h̃)Uq(ñ+)0) we have ∆(hi, s) = hi,s ⊗ 1 + 1 ⊗ hi,s,

∆(Λi,±r) =

r∑
s=0

Λi,±s ⊗ Λi,±(r−s) and ∆(ψ±i,±r) =

r∑
s=0

ψ±i,±s ⊗ ψ
±
i,±(r−s).

(ii) Modulo (Uq(h̃)Uq(ñ−)0) ⊗ (Uq(h̃)(Uq(ñ+)0)2) + (Uq(h̃)Uq(ñ−)0) ⊗ (Uq(h̃)Uq(ñ+(i))0) we have

∆(x+
i,r) = x+

i,r ⊗ 1 + ki ⊗ x+
i,r +

r∑
s=1

ψ+
i,s ⊗ x+

i,r−s if r ≥ 0,

∆(x+
i,−r) = k−1

i ⊗ x+
i,−r + 1 ⊗ x+

i,−r +

r−1∑
s=1

ψ−i,−s ⊗ x+
i,−r+s if r > 0.

(iii) Modulo (Uq(h̃)(Uq(ñ−)0)2) ⊗ (Uq(h̃)Uq(ñ+)0) + (Uq(h̃)Uq(ñ−)0) ⊗ (Uq(h̃)Uq(ñ+(i))0) we have

∆(x−i,r) = x−i,r ⊗ ki + 1 ⊗ x−i,r +

r−1∑
s=1

x−i,r−s ⊗ ψ
+
i,s if r > 0,

∆(x−i,−r) = x−i,−r ⊗ k−1
i + 1 ⊗ x−i,−r +

r∑
s=1

x−i,−r+s ⊗ ψ
−
i,−s if r ≥ 0.

The next lemma is of crucial importance in the study of finite-dimensional representations of
Uq(g̃). For convenience, we introduce the notation of quantum divided powers: (x±i,r)

(m) :=
(x±i,r)m

[m]i!
.

Also, given i ∈ I and s,m ∈ Z,m ≥ 0, define

X−i,s;±(u) =
∑
r≥1

x−i,±(r+s)u
r and (X−i,s;±(u))(m) =

1
[m]i!

(X−i,s;±(u))m.
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Lemma 1.4.11. For every i ∈ I and s ∈ Z, we have

(x+
i,∓s)

(l)(x−i,±(s+1))
(m) = (−k±1

i )l
(
(X−i,s;±(u))(m−l)Λ±i (uq±1

i )
)

m

modulo elements in Uq(g̃)Uq(ñ+)0. Here (X−i,s(u))(m−l) is understood to be zero if m < l and the
subindex m on the right-hand side means the coefficient of um in the given power series.

Proof. The case (x+
i,0)(l)(x−i,1)(m) was proved in [27, Section 5] and the case (x+

i,0)(l)(x−i,−1)(m) is proved
similarly. The general case follows from these by applying the algebra automorphism of Lemma
1.4.9.

Remark 1.4.12. One can define elements Λi,r in the classical context as well by replacing quantum
numbers by usual ones in the definition above, where hi,s is replaced by hi ⊗ ts. Then (1.4.6) holds
again and, in fact, U(h̃) is the associative commutative algebra freely generated by the elements
hi,Λi,r, i ∈ I, r ∈ Z, r , 0. It is not difficult to see that ∆(Λi,±r) =

∑r
s=0 Λi,±s ⊗ Λi,±r∓s in this case.

The classical version of Lemma 1.4.11 (whose statement is recovered from the quantum one in the
obvious manner) was proved in [40]. ♦



2. Basic Finite-Dimensional Representation
Theory of Affine Algebras

Recall that in Subsection 1.4 we fixed a Cartan matrix C so that g is a finite-dimensional simple Lie
algebra. Recall also that ĝ denotes the affine Kac-Moody algebra associated to the extended matrix
Ĉ and that g̃ is the underlying loop algebra over g. This section is dedicated to the study of the basic
facts of the finite-dimensional representation theory of ĝ and g̃ as well of their quantum groups. The
main goal is to classify the irreducible representations. Along the way, it will become natural to
introduce the notion of `-weight spaces and the associated character theory as well as the concepts of
Weyl modules.

2.1. Simple modules in the classical setting

To shorten notation, we shall write x±i,r and hi,r for the elements x±i ⊗ tr and hi ⊗ tr, i ∈ I, r ∈ Z, of g̃,
respectively.

Let V be a nonzero finite-dimensional ĝ′-module. Then, as an h-module, we have V =
⊕

µ ∈ P
Vµ

and the relation [h j, x±i,r] = ±αi(h j)x±j,r, i, j ∈ I, implies

(2.1.1) x±i,rVµ ⊆ Vµ±αi for all i ∈ I, r ∈ Z.

In particular, since x±0 ∈ g∓θ ⊗ t±1, we have

(2.1.2) x±0 Vµ ⊆ Vµ±θ.

It now easily follows that V is integrable. If λ is a maximal weight of V , then λ ∈ P+ and x+
i,rVλ = {0}

for all i ∈ I, r ∈ Z. In particular, if W is the ĝ′-submodule of V generated by Vλ, then

(2.1.3) Wµ , {0} if and only if µ ∈ wt(λ).

and

(2.1.4) (x−i,r)
λ(hi)+1Vλ = {0} for all i ∈ I, r ∈ Z.

Proposition 2.1.1. The central element c acts trivially in every finite-dimensional ĝ′-module.

Proof. Let V be a nonzero finite-dimensional ĝ′-module. By Proposition 1.3.3, h0 also act semisimply
on V and, hence, so does c. Therefore, we may assume that V is irreducible. Let λ ∈ P+ be a maximal
weight of V and v ∈ Vλ \ {0}. Since V is irreducible and c is central, it follows from Schur’s Lemma
that the c by multiplication by a fixed scalar on V . Hence, it suffices to show that cv = 0.

Let a be the eigenvalue of c on V . Given i ∈ I, r ∈ Z, consider the subalgebra ĝi,r generated by
x±i,±r which is isomorphic to sl2. Let x±, h, denote the usual basis of sl2 and consider the isomorphism
sl2 → ĝi,r determined by x± 7→ x±i,r. In particular, h 7→ hi + r

si
c. Regard V as an sl2-module by means

of this isomorphism and notice that

hv =

(
λ(hi) +

ra
si

)
v.
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On the other hand, since x+v = 0, the sl2-submodule of V generated by V must a simple finite-
dimensional module of highest-weight λ(hi) + ra

si
. Therefore,

λ(hi) +
ra
si
∈ Z≥0 for all r ∈ Z.

This implies a = 0 as desired.

Proposition 2.1.2. Let V be a simple finite-dimensional ĝ-module. Then, V is one-dimensional and
ĝ′V = {0}.

Proof. Let v be an eigenvector of the action of d with eigenvalue a. Then, since [d, hi,r] = r, i ∈ I, r ∈
Z, hi,rv is also an eigenvector of the action of d with eigenvalue a + r. Since V is finite-dimensional, it
follows that hi,r acts nilpotently on V for r , 0. By the previous proposition, c acts trivially on V and,
hence, V is Z-graded module for g̃ ⊕ Fd. Since h̃ is abelian, we have

(2.1.5) hi,rVµ ⊆ Vµ

and there must be a nonzero v ∈ Vµ which is a common eigenvector for the actions of hi,r, i ∈ I, r ∈ Z.
In particular, hi,rv = Λi,r = 0 if r , 0. Let λ ∈ P+ be a maximal weight of V , v be an eigenvector for
h̃. By (2.1.1), given i ∈ I, there exists m > 0 such that (x−i,r)

mv = 0. Then, by lemma 1.4.11,

0 = (x+
i,−s)

(m−1)(x−i,s+1)(m)v =
(
x−i,s+1Λi,m−1 + x−i,s+2Λi,m−2 + · · · + x−i,s+m

)
v = x−i,s+mv.

It follows that x−i,rv = 0 for all i ∈ I, r ∈ Z. By considering the subalgebra g̃i,r, it follows that
λ = 0. Hence, g̃V = 0, and V is generated by the action of d on V . Since V is simple, it must be
one-dimensional.

Henceforth, we are left to study finite-dimensional representations of g̃. We start with looking at
evaluation representations. Namely, given a ∈ F×, let eva : g̃ → g be the evaluation map x ⊗ f (t) 7→
f (a)x which is easily seen to be a Lie algebra homomorphism. Then, if V is a g-module, we can
consider the g̃-module V(a) obtained by pulling-back the action of g to g̃ via eva. Modules of the
form V(a) are called evaluation modules. Notice that V(a) is simple if and only if V is simple. We
will denote by V(λ, a) the evaluation module constructed from V(λ), λ ∈ P+.

Theorem 2.1.3. Let λ1, . . . λm ∈ P+ \ {0} , a1, . . . , am ∈ F×. Then, V(λ1, a1) ⊗ · · · ⊗ V(λm, am) is
irreducible if and only if ai , a j for all i , j.

Proof. We write the proof for m = 2 and let as exercise for the reader to write the details in general.
Thus, to simplify notation, write a = a1, b = a2, λ = λ1, µ = λ2. Let also u, v be highest-weight vectors
for V(λ) and V(µ), respectively. Fix a basis

{
u j : j ∈ J

}
of V(λ) and {vk : k ∈ K} of V(µ) formed by

weight vectors.

Suppose a , b and let W be a nontrivial irreducible submodule of V(λ, a) ⊗ V(µ, b). Let ν is a
maximal weight of W and w be a nonzero vector in Wν which is an eigenvector for the action of h̃ (cf.
(2.1.5)). Then, ñ+w = 0 and W = U(ñ−)w. We want to show that w is a scalar multiple of u⊗ v. Since{
u j ⊗ vk : j ∈ J, k ∈ K

}
is a basis of V(λ) ⊗ V(µ) we can write

w =
∑

j,k

a j,kur ⊗ vk, for some a j,k ∈ F.
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Let x ∈ n+ and notice that, since xw = (x ⊗ t)w = 0, we have∑
j,k

a j,k(xu j) ⊗ vk = −
∑

j,k

a j,ku j ⊗ (xvk) and a
∑

j,k

(xu j) ⊗ vk = −b
∑

j,k

u j ⊗ (xvk).

The hypothesis a , b then implies that

(2.1.6)
∑

j,k

a j,k(xu j) ⊗ vk =
∑

j,k

a j,ku j ⊗ (xvk) = 0.

The linear independence of {vk : k ∈ K} implies that, for each k ∈ K, we have

0 =
∑
j∈J

a j,k(xu j) = x

∑
j∈J

a j,ku j

 .
Since V(λ) is irreducible, it follows that

∑
j∈J a j,ku j is a scalar multiple of u. Similarly, for each j ∈ J,

we get that
∑

k∈K a j,kvk is a scalar multiple of v. This proves that w is a scalar multiple of u⊗ v. Before
proving the converse, let us comment on the case m > 2. For instance, if m = 3, we would need to
use that (x⊗ tm)w = 0 for m = 0, 1, 2 and then, the analogue of (2.1.6) would follow from the fact that
the Vandermonde matrix


1 1 1

a1 a2 a3
a2

1 a2
2 a2

3

 is nonsingular if ai , a j for i , j.

Now assume a = b. By Proposition 1.3.12, we can choose ν < λ+µ such that [V(λ)⊗V(µ) : ν] , 0.
In other words, there exists w ∈ V(λ) ⊗ V(µ) which is a highest-weight vector of weight ν. Write

w =
∑

j,k

a j,ku j ⊗ vk for some a j,k ∈ F,

and observe that

(x ⊗ tm)w = amxw = 0 and (h ⊗ tm)w = amν(h)w for all x ∈ n+, h ∈ h,m ∈ Z.

It follows that the g̃-submodule W of V(λ, a) ⊗ V(µ, a) generated by w satisfies

Wω , 0 only if ω < ν.

In particular, W is a proper submodule.

Remark 2.1.4. In the classic theory finite-dimensional representations of g or Uq(g), the tensor prod-
uct of two non trivial simple modules is never simple (Proposition 1.3.12). On the other hand, the
above Theorem gives plenty of examples of simple tensor products within the finite-dimensional rep-
resentation theory of g̃. One can expand the argument of the above proof to obtain the following. If
V = V(λ) ⊗ V(µ) for some λ, µ ∈ P+ and a ∈ F×, then

V(λ, a) ⊗ V(µ, a) �
⊕

ν ∈ P+

V(ν, a)⊕[V:ν].

♦
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The remainder of this subsection is dedicated to proving that every simple finite-dimensional
g̃-module is isomorphic to a unique tensor product of evaluation modules (up to re-ordering), thus
completing the classification of the simple g̃-modules.

Since eva is a Lie algebra map, it can be uniquely extended to a Hopf algebra map U(g̃) → U(g)
which will also be denoted by eva. One can easily checks that

(2.1.7) eva(Λi,r) = (−a)r
(

hi
|r|

)
where

(
hi

s

)
=

hi(hi − 1) . . . (hi − (s − 1))
s!

.

In particular, if V is a g-module and v ∈ Vµ for some µ ∈ P, we have the following identity of formal
power series in the variable u with coefficients in V(a):

(2.1.8) Λ±i (u) v =

∑
r≥0

(−a)±r( µ(hi)
r

)
ur

 v.

The above can be expressed in a more convenient way as follows. For µ ∈ P and a ∈ F×, let
ωµ,a ∈ F(u)I be the I-tuple of rational functions whose i-th component (ωµ,a)i(u) is (1 − au)µ(hi). We
identify the rational function (1− au)−1 with the geometric power series

∑
r≥0 arur ∈ F[[u]]. This way,

every rational rational function f (u) ∈ F(u) such that f (0) = 1 can be identified with a unique element
of F[[u]]. One can now easily check that (2.1.8) implies that

Λ+
i (u) v = (ωµ,a)i(u) v.

The action of Λ−i (u) on V(a)µ can also be described in this way as follows. Given a polynomial
f (u) = 1 + c1u + · · · + cnun ∈ F[u] of degree n, let f −(u) = c−1

n un f (u−1). Thus, writing f −(u) =

1 + c−1u + · · · + c−nun, we have

(2.1.9) cnc−r = cn−r for all r = 0, 1, . . . , n.

Alternatively, if f (u) =
∏n

r=1(1 − aru), then f −(u) =
∏n

r=1(1 − a−1
r u). The assignment f 7→ f − can

be extended from polynomials to rational functions in the obvious way. Then, we can consider the
I-tuple of rational functions ω−µ,a whose i-th entry is (ωµ,a)−i and (2.1.8) is equivalent to

(2.1.10) Λ±i (u) v = (ωµ,a)±i (u) v

where, for notational convenience, we set f +(u) = f (u).

The set F[[u]]I of I-tuples of power series is a ring under coordinate-wise addition and multiplica-
tion. Let P be the multiplicative subgroup generated by ωµ,a, µ ∈ P, a ∈ F×. Since F is algebraically
closed, this coincides with the subgroup generated by ωωi,a, i ∈ I, a ∈ F×. We simplify notation and
set ωi,a = ωωi,a.

Definition 2.1.5. The elements ωi,a are called fundamental `-weights and the abelian group P is
called the `-weight lattice of g. The submonoid generated by the fundamental `-weights will be
denoted by P+. The elements of P+ are called dominant `-weights or Drinfeld polynomials. ♦

Notice that there exists a unique group homomorphism

(2.1.11) wt : P → P such that wt(ωµ,a) = µ for all µ ∈ P, a ∈ F×.
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The prefix ` is chosen here to suggest that these concepts should be thought of as “loop analogues”
of their classic counterparts.

We can identify P with a subset of U(h̃)∗ as follows. Let µ ∈P , identify the i-th rational function
of µ± with a formal power series as explained above and write µ±i (u) =

∑
r≥0 µ

±
i,ru

r. Since U(h̃) is the
commutative associative algebra freely generated by the elements hi,Λi,r, i ∈ I, r ∈ Z, r , 0, (Remark
1.4.12), there exists a unique algebra map U(h̃)→ F such that

(2.1.12) hi 7→ wt(µ)(hi) and Λi,±r 7→ µ±i,r for all i ∈ I, r ∈ Z.

Then, given a g̃-module V and µ ∈P , set

(2.1.13) Vµ = {v ∈ V : (x − µ(x))n v = 0 for all x ∈ U(h̃) and n � 0}.

Definition 2.1.6. Let V be a g̃-module. A nonzero vector of Vµ is called an `-weight vector and Vµ is
referred to as an `-weight space of V . V is said to be an `-weight module if

V =
⊕

µ ∈P
Vµ.

If Vµ , 0, µ is said to be an `-weight of V . The set of all `-weights of V will be denoted by wt`(V). ♦

Let V and W be g̃-modules and µ, ν ∈ P . Using the formula for the comultiplication of Λi,r

(Remark 1.4.12) it is not difficult, to check that we have the following (cf. Proposition 2.3.3):

(2.1.14) Vµ ⊗Wν ⊆ (V ⊗W)µν.

Let us return to the study of evaluation representations and their tensor products. Given a g-module
V and a ∈ F×, it follows from (2.1.10) that

(2.1.15) V(a)µ = Vωµ,a .

It then follows from (2.1.14) that the tensor product of `-weight modules is again an `-weight module.

Remark 2.1.7. While h̃ acts semisimply on an evaluation module constructed from a weight module,
and hence also on tensor products of evaluation modules, we shall see later on (Example 2.2.10) that
the same is not true on a general `-weight module even if it is finite-dimensional. ♦

Let λ, µ ∈ P+, and fix highest-weight vectors of v and w for V(λ) and V(µ), respectively. Consider
the evaluation modules V(λ, a) and V(µ, b) for some a, b ∈ F× and notice that v ⊗ w is an eigenvector
for the action of h̃ with eigenvalues given by the `-weight ωλ,aωµ,a. Moreover, ñ+(v ⊗ w) = 0. This
motivates the following definition

Definition 2.1.8. An `-weight vector v is said to be a highest `-weight vector if v is an eigenvector for
the action of h̃ and ñ+v = 0. A g̃-module V is said to be a highest `-weight module if it is generated
by a highest `-weight vector. ♦

The proof of the following proposition is straightforward.

Proposition 2.1.9.
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(i) Every highest `-weight module is a weight module. Moreover, if µ is the highest `-weight of a
highest `-weight module V , then Vν , 0 only if ν ≤ wt(µ).

(ii) Every highest `-weight module has a unique proper submodule and, hence, a unique irreducible
quotient. In particular, every highest-`-weight module is indecomposable.

(iii) Two highest `-weight modules are isomorphic only if they have the same highest `-weight.

One can consider Verma type highest `-weight-modules. Namely, given µ ∈ U(h̃)∗, let M(µ) be
the universal highest `-weight module of highest `-weight µ. In other words, M(µ) is the quotient of
U(g̃) by the left ideal generated by ñ+ and x − µ(x) for all x ∈ U(h̃). Then, as a U(ñ−)-module, M(µ)
is isomorphic to its free rank one module and, hence, is nonzero. We will denote by V(µ) the unique
irreducible quotient of M(µ). The following now follows immediately from Theorem 2.1.3 and the
above discussion.

Corollary 2.1.10. Let λ1, . . . λm ∈ P+ \ {0} , a1, . . . , am ∈ F× distinct, and λ =
∏m

j=1 ωλ j,a j . Then,
V(λ) � V(λ1, a1) ⊗ · · · ⊗ V(λm, am). In particular, V(λ) is finite-dimensional for all λ ∈P+.

Remark 2.1.11. Notice that, since x+
0 ∈ g̃−θ ⊗ t ⊆ ñ−, the highest-`-weight vector of M(µ) is not

a highest-weight vector in the classic sense. In fact, if λ ∈ P+ is not the I-tuple 1 of constant
polynomials, the irreducible module V(λ) cannot have a highest-weight vector in the classic sense
since, otherwise, the action of g̃ could be lifted to an action of ĝ contradicting Proposition 2.1.2.
Evidently, V(1) is the trivial representation of g̃. The reader should have noticed that we did not state
in Proposition 2.1.9 that a highest `-weight module is an `-weight module. In the classic context of
highest-weight modules, this was a trivial consequence of (1.3.2) which is in turn a consequence of
the fact that the elements x±i are eigenvectors for the adjoint action of h. Notice however that the
elements x±i,r are not eigenvectors for the adjoint action of h̃. In particular, there is no loop analogue
of (1.3.2) for a general `-weight module, even for finite-dimensional ones. In fact, one easily checks
that, if v is a highest-`-weight vector for V(λ), λ ∈P+, then x−i,rv may not be an `-weight vector. ♦

Lemma 2.1.12. Suppose g = sl2 and let I = {i}. For every m, r ∈ Z≥0 such that 0 < r ≤ m, there exists
a polynomial fm,r ∈ Z[t1, . . . , tm+1] satisfying the following property. For every finite-dimensional
g̃-module V such that ñ+Vmωi = 0 and Λi,m acts bijectively on Vmωi , we have

Λi,−sv = fm,s(Λi,1, . . . ,Λi,m,Λ
−1
i,m)v for all v ∈ Vλ, i ∈ I, 0 < s ≤ λ(hi),

where Λ−1
i,m is any left-inverse for the action of Λi,m on Vmωi .

Proof. Suppose V satisfies the above condition and v ∈ Vλ. By Lemma 1.4.11 and (2.1.4), for every
s > 1, we have

(2.1.16) 0 = (x+
i,0)(m)(x−i,1)(m+s)v = (−1)m

(x−i,1)(s)Λi,m +

m∑
j=1

Ys, jΛi,m− j

 v

where Ys, j is a Z-linear combination of elements of the form (x−i,1)(p1) · · · (x−i,m+1)(pm+1) (with
∑

k pk = s
and

∑
k kpk = s + j) which does not depend neither on V nor on v. Since −s < s + j− 2s < m, it is not

difficult to see that (x+
i,−2)(s)Ys, j ∈ U(g̃)U(ñ+)0 + Hs, j, where Hs, j is linear combination of monomials
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of the form Λi,r1 · · ·Λi,rm such that −s < r j < m. Moreover, (x+
i,−2)(s)(x−i,1)(s) ∈ (−1)sΛi,−s + U(g̃)U(ñ+)0

by Lemma 1.4.11. Plugging this into (2.1.16) and using that Λi,rv ∈ Vmωi for all r ∈ Z, we get

0 = (x+
i,−2)(s)

(x−i,1)(s)Λi,mv +

m∑
j=1

Ys, jΛi,m− jv

 = (−1)sΛi,−sΛi,mv +

m∑
j=1

Λi,m− jHs, jv,

which implies

(2.1.17) Λi,−sΛi,mv = (−1)s
m∑

j=1

Λi,m− jHs, jv,

Since Hs, j involves the elements Λi,r with r > −s only, an easy induction on s using (2.1.17) completes
the proof.

We are ready to complete the classification of the finite-dimensional simple g̃-modules.

Theorem 2.1.13. Let V be a finite-dimensional g̃-module and v be an eigenvector for action of h̃ such
that ñ+v = 0. Then, v is a highest-`-weight vector and its `-weight is in P+. In particular, if V is
irreducible, V � V(λ) for some λ ∈P+.

Proof. The last statement is clear from the previous since, if λ ∈ P+ is a maximal weight of V and v
is an eigenvector for action of h̃ in Vλ, then v generates a submodule of V which is a highest-`-weight
module with highest `-weight in P+.

Let λ be the weight of V and let ωi,r ∈ F, i ∈ I, r ∈ Z, be the eigenvalue of the action of Λi,r on
v. Since n+v = {0} and V is finite-dimensional, we must have λ ∈ P+. Let fi(u) =

∑
r≥0 ωi,rur and

gi(u) =
∑

r≥0 ωi,−rur. We need to show that:

(1) ωi,r = 0 if |r| > λ(hi).

(2) ωi,±λ(hi) , 0.

(3) ωi,λ(hi)ωi,−s = ωi,λ(hi)−s for all s = 1, . . . , λ(hi).

Let W be the submodule generated by v. To prove (1) and (2), given s ∈ Z, consider the algebra
g̃i,s � sl2 and let Ws be the the g̃i,s-submodule of V generated by v. Then, [x+

i,s, x
−
i,−s] = hi and Ws is

a highest-weight-module for sl2 with highest weight λ(hi). This implies (x−i,−s)
mv = 0 if m > λ(hi).

Now, applying Lemma 1.4.11 with l = m, we get

(x+
i,∓s)

(m)(x−i,±(s+1))
(m)v = (−1)mΛi,±mv.

In particular, if m > λ(hi), (1) follows since (x+
i,∓s)

(m)(x−i,±(s+1))
(m)v ∈ Wλ+αi = 0. For proving (2), by

considering m = λ(hi) above, we are left to show that (x+
i,∓s)

(m)(x−i,±(s+1))
(m)v , 0. In Remark 1.3.5 we

observed that (x−i,±(s+1))
(m)v is a nonzero vector of W∓(s+1). Moreover, x−i,±s(x−i,±(s+1))

(m)v ∈ Wλ−(m+1)αi =

{0} since λ − (m + 1)αi < wt(λ). In other words, (x−i,±(s+1))
(m)v is a lowest-weight vector for g̃i,∓s of

weight −λ(hi). By the analogous remark for lowest-weight modules, (x+
i,∓s)

(m)(x−i,±(s+1))
(m)v , 0.

Now (3) follows from the previous lemma applied to the algebra g̃i. Indeed, let λ ∈ P+ be the
`-weight whose i-th component is

∑
r≥0 ωi,rur. Notice that both W and V(λ) satisfy the condition of

the lemma on the weight space λ. Thus, the action of Λ−i (u) on both Wλ and Vλ is obtained from that
of Λ+

i (u) by means of the same polynomial on ωi,1, · · · , ωi,λ(hi), ω
−1
i,λ(hi)

.



2.2 The quantum setting and Weyl modules 29

Corollary 2.1.14. Every finite-dimensional g̃-module is an `-weight module.

Proof. Since every finite-dimensional representation has a composition series, it suffices to prove the
corollary for the irreducible ones. But these are tensor products of evaluation modules.

2.2. The quantum setting and Weyl modules

As in the classical case, one shows that the only simple finite-dimensional Uq(ĝ)-modules are one-
dimensional and that the central element c acts as the identity operator on any finite-dimensional
Uq(ĝ′)-module. In particular, c1/2 acts as multiplication by ±1. As in the discussion about type σ and
type 1-modules, one sees that the modules on which c1/2 acts as multiplication by −1 are obtained
from those on which it acts as multiplication by 1 after tensoring with a one-dimensional module
(cf. Proposition 1.3.18). Therefore, the study of finite-dimensional Uq(ĝ′)-modules reduces to that of
Uq(g̃)-modules (which are of type 1 as Uq(g)-modules).

The main goal of this subsection is to obtain the classification of the simple finite-dimensional
Uq(g̃)-modules. In the classical case, we have seen that we have two points of view for describing this
classification: in terms of tensor products of evaluation modules or in terms of Drinfeld polynomials.
In the quantum case, the former is no longer an option because, unless g = sln, there is no quantum
analogue of evaluation maps. As a consequence, the study of the structure of the finite-dimensional
representations of Uq(g̃) is much harder in the quantum case. Still, the classification of the simple
modules in terms of Drinfeld polynomials can be carried out in essentially the same way. However,
we shall consider a broader context and introduce other important class of Uq(g̃)-modules: the Weyl
modules in the sense of Chari and Pressley. We let I denote the category of Uq(g̃)-modules which
are integrable weight-modules (of type 1) as Uq(g)-modules.

We begin observing that if V ∈ I , since Uq(h̃) is commutative, we have

(2.2.1) Λi,rVµ ⊆ Vµ for all i ∈ I, r ∈ Z, µ ∈ P.

Also, (2.1.1) remains valid.

Lemma 2.2.1. Let V ∈ I , λ ∈ wt(V) be such that x+
i,rVλ = {0} for all i ∈ I, r ∈ Z, and W = Uq(g̃)Vλ.

Then:

(i) λ ∈ P+ and wt(W) = wt(λ). In particular, (x−i,r1
) · · · (x−i,rm

)Vλ = {0} for all i ∈ I, r ∈ Z if m > λ(hi).

(ii) Λi,±rVλ = 0 for all i ∈ I, r > λ(hi).

(iii) Λi,±λ(hi) act as a linear monomorphism on Vλ.

(iv) (Λi,λ(hi)Λi,−s − Λi,λ(hi)−s)Vλ = {0} for all i ∈ I, 0 ≤ s ≤ λ(hi).

Proof. It follows from (2.1.1) and (2.2.1) that λ is the unique maximal element of wt(W). Since V is
integrable, any v ∈ Vλ generates a finite-dimensional Uq(g)-submodule of V . Hence, λ ∈ P+ and the
second statement of part (i) then follows from Corollary 1.3.11. Parts (ii) and (iii) are proved similarly
to items (1) and (2) in the proof of Theorem 2.1.13. We cannot prove part (iv) in the same way we
proved item (3) in the proof of Theorem 2.1.13 since we have not constructed any representation
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satisfying the hypothesis of the lemma yet. We use an alternate approach which could have been used
in the classical context as well by using the classical analogues of (1.4.4) and (1.4.5).

Let v ∈ Vλ and write n = λ(hi). Using Lemma 1.4.11 with l = n and m = l + 1 we get

(2.2.2)
n∑

r=0

(qn−r
i x−i,rΛi,n−r)v = 0.

Apply x+
i,−s with s ≥ 0 to (2.2.2) and use the relation (qi − q−1

i )[x+
i,s, x

−
i,r] = ψ+

i,r−s − ψ
−
i,r−s to obtain

(2.2.3)
s∑

r=0

qn−r
i ψ−i,r−sΛi,n−rv =

n∑
r=s

qn−r
i ψ+

i,r−sΛi,n−rv.

By (1.4.4) with r = n − s, the right-hand side of (2.2.3) is

qn−s
i kiΛi,n−sv +

n−s∑
t=1

qn−s−t
i ψ+

i,tΛi,n−s−tv = (q2n−s
i − qn

i (qn−s
i − q−(n−s)

i ))Λi,n−sv = qs
i Λi,n−sv.

Plugging this in (2.2.3) we get

(2.2.4)
s−1∑
r=0

qn−r
i ψ−i,r−sΛi,n−rv = (qs

i − q−s
i )Λi,n−sv.

We now proceed recursively on s = 1, . . . , n. For s = 1, the left-hand side of (2.2.4) is qn
i ψ
−
i,−1Λi,nv =

qn
i (k−1

i (qi − q−1
i )Λi,−1)Λi,nv = (qi − q−1

i )Λi,−1Λi,nv where we used (1.4.5) in the first equality. It follows
from (2.2.4) that (Λi,−1Λi,n − Λi,n−1)v = 0 as claimed. Now, fix s > 1 and assume Λi,nΛi,−rv = Λi,n−rv
for all 0 ≤ r < s. The left hand side of (2.2.4) is

s−1∑
r=0

qn−r
i ψ−i,r−sΛi,n−rv = qn

i ψ
−
i,−sΛi,nv +

s−1∑
r=1

qn−r
i ψ−i,r−sΛi,n−rv =

= qn
i ψ
−
i,−sΛi,nv +

s−1∑
r=1

qn−r
i ψ−i,r−sΛi,nΛi,−rv =

= qn
i Λi,n

ψ−i,−s +

s−1∑
r=1

q−r
i ψ

−
i,r−sΛi,−r

 v =

= qn
i Λi,n

(
k−1

i (qs
i − q−s

i )Λi,−s

)
v = (qs

i − q−s
i )Λi,nΛi,−sv

where we used (1.4.5) in the last line. Plugging this in (2.2.4) the proof is complete.

Definition 2.2.2. For λ ∈ P+, the global Weyl module Wq(λ) of highest-weight λ is the Uq(g̃)-module
generated by a vector v satisfying the defining relations of having weight λ and x+

i,rv = (x−i )λ(hi)+1v = 0
for all i ∈ I, r ∈ Z. ♦

Proposition 2.2.3. For every λ ∈ P+,Wq(λ) ∈ I . Moreover, every V ∈ I which is generated by a
highest-weight vector of weight λ is a quotient of Wq(λ).
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Proof. The second statement is clear from Lemma 2.2.1(i) and the definition of Wq(λ). Clearly xv ∈
Wq(λ)λ for all x ∈ Uq(h̃). Therefore, Wq(λ) = Uq(ñ−)Vλ is a weight-module and λ is the unique
maximal element of wt(Wq(λ)). This and (2.1.1) immediately imply that x+

i,r act locally nilpotently on
Wq(λ) for all i ∈ I, r ∈ Z. It remains to show that x−i act locally nilpotently for all i ∈ I. Thus, we
have to show that, for all v ∈ Wq(λ)λ,m ≥ 0, i1, . . . im ∈ I, r1, . . . , rm ∈ Z, and i ∈ I, there exists n > 0
such that (x−i )nx−im,rm

· · · x−i1,r1
v = 0. This can be proved by induction on m ≥ 0 similarly to the proof of

Lemma 1.3.2 using the loop analogue of the quantum Serre’s relations (cf. [59, Lemma 5.7]).

Remark 2.2.4. One can define global Weyl modules W(λ) in the classical context as well. Notice that
if λ ∈ P+ is such that wt(λ) = λ, then V(λ) is a quotient of W(λ) showing that W(λ) , {0}. In order
to show that Wq(λ) , {0}, observe that it suffices to show this for g = sl2. In that case, we shall see in
Subsection 2.3 that there exists an algebra map Uq(g̃) → Uq(g) which is the identity on Uq(g). The
pull-back of Vq(λ) by this map is then a nonzero quotient of Wq(λ) showing that Wq(λ) , 0. One can
also think of W(λ) as a quotient of the g̃-module induced from the g-module V(λ). It follows from
Lemma 2.2.1 that wt(W(λ)) = wt(λ) and, hence, the elements x±0 also act locally nilpotently on W(λ),
i.e., W(λ) is an integrable ĝ′-module. Moreover, since W(λ) is a quotient of U(g̃) by a Z-graded ideal,
we can regard W(λ) as a ĝ-module. Evidently, all these comments apply to the quantum setting as
well. ♦

We can regard Wq(λ) as a right module for Uq(h̃) as follows:

(xv) y = (xy) v, for all x ∈ Uq(g̃), y ∈ Uq(h̃), v ∈ Wq(λ)λ.

One easily checks that this is a well defined action.

Theorem 2.2.5. For all λ ∈ P+, Wq(λ) is finitely generated as a right Uq(h̃)-module.

Proof. Set V = Wq(λ) and let v ∈ Wq(λ)λ be a generator of Wq(λ). Since wt(V) ⊆ wt(λ), Wq(λ) has
finitely many weight spaces and it remains to show that all weight spaces are finitely generated as
Uq(h̃)-modules. It suffices to show that, given µ < λ, Vµ is generated by elements of the form

(2.2.5) (x−im,rm
) · · · (x−i1,r1

)yv with y ∈ Uq(h̃),
m∑

j=1

αi j = λ − µ, 0 ≤ r j < λ(hi j) + j − 1.

This will be proved by induction on m ≥ 1.

Let m = 1, i = i1, r = r1. Observe that Lemmas 1.4.11 and 2.2.1 imply
∑λ(hi)

t=0 qt
ix
−
i,λ(hi)+s−tΛi,tv = 0

for all s ∈ Z. We rewrite this in two equivalent ways:

(2.2.6) x−i,λ(hi)+sv =

λ(hi)∑
t=1

qt
ix
−
i,λ(hi)+s−tΛi,tv and x−i,sv =

λ(hi)−1∑
t=0

qt
ix
−
i,λ(hi)+s−tΛi,t

 Λi,−λ(hi)v.

To obtain the second version of (2.2.6), we used that (Λi,λ(hi)v)Λi,−λ(hi) = v. If r ≥ λ(hi), we let
s = r − λ(hi) in the first version of (2.2.6) and proceed by induction on r to get the claim. If r < 0, we
let s = r in the second version of (2.2.6) and obtain the claim by induction on |r|.

Now, consider a vector of the form x−i,r x−im,rm
· · · x−i1,r1

v with m ≥ 1 and assume, by induction hy-
pothesis on m, that 0 ≤ r j ≤ λ(hi j) + j − 1, for all j = 1, . . . ,m. Recall the defining relation:

(2.2.7) x−i,r x−j,s − q−ci j

i x−j,sx
−
i,r = q−ci j

i x−i,r−1x−j,s+1 − x−j,s+1x−i,r−1.
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Suppose first that r > λ(hi) + m and proceed by induction on r using (2.2.7). Namely, letting j = im,
and s = rm in 2.2.7, we get

(2.2.8) x−i,r x−im,rm
= q−ciim

i (x−i,r−1x−im,rm+1 + x−im,rm
x−i,r) − x−im,rm+1x−i,r−1.

Therefore,

(x−i,r x−im,rm
)x−im−1,rm−1

· · · x−i1,r1
yv = −x−im,rm+1x−i,r−1x−im−1,rm−1

· · · x−ii,r1
yv︸                                  ︷︷                                  ︸

a

+

q−ci,im
i (x−i,r−1x−im,rm+1x−im−1,rm−1

· · · x−i1,r1
yv︸                                ︷︷                                ︸

b

+ x−im,rm
x−i,r x−im−1,rm−1

· · · x−i1,r1
yv︸                           ︷︷                           ︸

c

).

We want to show that a, b, and c are in the span of vectors of the form (2.2.5). For a, by induction
hypothesis on m, x−i,r−1x−im−1,rm−1

· · · x−ii,r1
yv is in the span of vectors of this form. Since 0 ≤ rm <

λ(him) + m − 1, we have 0 ≤ rm + 1 < λ(him) + m as desired. The conclusion for c is reached similarly.
For b, by induction hypothesis on m, x−im,rm+1x−im−1,rm−1

. . . x−i1,r1
v is also in the span of vectors of the form

(2.2.5). An obvious induction on r completes the argument.

Finally, if r < 0, we use (2.2.7) with r + 1 in place of r, j = im, and s = rm − 1 to get

(2.2.9) x−i,r x−im,rm
= q−ciim

i (x−i,r+1x−im,rm−1 + x−im,rm
x−i,r) − x−im,rm−1x−i,r+1.

Now one proceeds as in the previous case using a further induction on |r|.

Remark 2.2.6. Notice that, in the classical case, the proof of the above theorem implies that W(λ) =

U(g[t])v. ♦

The next corollary is immediate.

Corollary 2.2.7. Let λ ∈ P+ and V be a quotient of Wq(λ) such that Vλ is finite-dimensional. Then, V
is finite-dimensional.

Now, let V be a simple finite-dimensional Uq(g̃)-module. As in the classical case, if λ is a maximal
weight of V , then there exists v ∈ Vλ which is an eigenvector for the action of Uq(h̃). Since, V is
certainly in I , it must be a quotient of Wq(λ). In particular, Vλ is a one-dimensional quotient of
Wq(λ)λ. But Wq(λ)λ is generated by the action of the subalgebra generated Λi,r, i ∈ I, r = 1, . . . λ(hi).
Let annλ be the kernel of the representation of this algebra on Wq(λ)λ and Aλ be its quotient by annλ.
Then, when regarded as a module for Aλ, Vλ is isomorphic to Aλ/m for some maximal ideal m of Aλ.
Since Aλ is a finitely generated commutative algebra, m must be generated by elements of the form
Λi,r − ai,r for some ai,r ∈ F. Moreover, ai,λ(hi) , 0. By letting λ ∈ P+ be the element whose i-th
polynomial is 1 +

∑λ(hi)
r=1 ai,rur, we have an injective map from the set specm(Aλ) of maximal ideals of

Aλ to P+.

Proposition 2.2.8. The map specm(Aλ)→P+ constructed above is bijective.

Remark 2.2.9. We postpone the proof of this proposition to Subsection 2.3. It easily follows from
Corollary 2.3.4. Notice that for g = sl2 the proposition is equivalent to saying that the homomorphism
from the polynomial algebra F[t1, · · · , tm−1][t±1

m ] to Aλ sending tr to Λi,r is an isomorphism. ♦
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Definition 2.2.10. Let λ ∈ P+, λ = wt(λ), and m be the ideal of Aλ associated to λ. The local Weyl
module Wq(λ) is the quotient of Wq(λ) by the submodule generated by mWq(λ)λ. If V is a quotient of
Wq(λ), then V is said to be a highest-`-weight module of highest `-weight λ. ♦

Given λ ∈ P+, let λi(u) =
∑

r≥0 λi,rur and λ = wt(λ). Notice that Wq(λ) is isomorphic to the
quotient of Uq(g̃) by the ideal generated by x+

i,r, (x−i )λ(hi)+1, ki − qλ(hi)
i ,Λi,s − λi,s,Λi,λ(hi)Λi,−s − Λi,λ(hi)−s,

for all i ∈ I, r, s ∈ Z, 0 < s ≤ λ(hi). Since Wq(λ)λ is one-dimensional by construction, Wq(λ) is
finite-dimensional by Corollary 2.2.7.

One easily proves the quantum analogue of Proposition 2.1.9. We denote by Vq(λ) the irreducible
quotient of Wq(λ), λ ∈P+. The next proposition is now immediate.

Proposition 2.2.11. The assignment λ 7→ Vq(λ) induces a bijection from P+ to the set of isomor-
phism classes of simple finite-dimensional Uq(g̃)-modules.

Since every finite-dimensional module has a composition series, given a finite-dimensional Uq(g̃)-
module V and λ ∈P+, we can consider the multiplicity [V : λ] of Vq(λ) as a simple factor of V (and
similarly in the classical setting). Evidently, [V : λ] = 1 if V is a highest-`-weight module of highest
`-weight λ.

Example 2.2.12. Let g = sl2, I = {i}, and λ = ωi,aωi,b for some a, b ∈ F×. Then, wt(λ) = 2ωi and
wt(W(λ)) = {2ωi, 0,−2ωi}. Also, dim(W(λ)±2ωi) = 1 and, from the proof of Theorem 2.2.5, we see
that W(λ)0 is panned by x−i v, x−i,1v where v is a nonzero element of W(λ)2ωi . One can check that these
two vectors are linearly independent and, hence, dim(W(λ)) = 4 (similarly in the quantum case).

If a , b, we have V(λ) � V(ωi, a) ⊗ V(ωi, b) which is 4-dimensional and, therefore, the Weyl
module W(λ) is irreducible. It follows that the `-weights of W(λ) are λ,ωi,aω

−1
i,b ,ω

−1
i,aωi,b, and λ−1.

All the `-weight spaces are one-dimensional. It is interesting to notice that neither x−i v nor x−i,1v are
`-weight vectors (for instance, they are not eigenvectors for the action of Λi,1 = −hi,1). In fact, x−i,rv is
not an `-weight vector for every r ∈ Z.

If a = b, then the irreducible quotient of W(λ) is the evaluation module V(2ωi, a) which is 3-
dimensional. Thus, we have a non-split short exact sequence of representations

(2.2.10) 0→ F→ W(λ)→ V(λ)→ 0

where F stands for the trivial representation of g̃, i.e., the simple module associated to the constant
Drinfeld polynomial 1. In particular, this shows that the category of finite-dimensional g̃-modules is
not semisimple (we will see a similar non-split short exact sequence in the quantum case in the next
subsection). It is not difficult to check that W(λ)0 = W(λ)1. Therefore, the vectors x−i,rv, r ∈ Z, are
`-weight vectors. However, one can check that they are still not eigenvectors for the action of Λi,1 -
only generalized eigenvectors. Therefore, h̃ does not act semisimply on W(λ). ♦

For later use, we record the following trivially established lemma (which also holds in the classical
setting with the same proof).

Lemma 2.2.13. Let λ ∈ P+, v a highest-`-weight vector of Vq(λ), and J ⊆ I. Then, the Uq(g̃J)-
submodule of V generated by v is irreducible.
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2.3. Basic character theory

Similarly to the classical case, we identify the `-weight lattice P with a subset of Uq(h̃)∗. Namely,
given µ ∈ P , we define µ(Λi,r) as in (2.1.12), while we set µ(ki) = qwt(µ)(hi)

i and require µ to be
an algebra homomorphism Uq(h̃) → F as before. Once this identification is done, one can define the
notions of `-weight vectors and modules as in Definition 2.1.6 and the ones of highest `-weight vectors
and modules as in Definition 2.1.8 (one should replace the requirement ñv = 0 by Uq(ñ+)0v = 0).
Notice that this agree with the definition of highest-`-weight modules in the sense of of Definition
2.2.10 in case µ ∈P+. The notation wt`(V) is also defined as before. Notice that if V is an `-weight
module, then

(2.3.1) Vµ =
⊕
µ∈P

wt(µ)=µ

Vµ for all µ ∈ P.

One of the main goals of this section is to prove the quantum analogue of Corollary 2.1.14.
Namely, we want to prove that every finite-dimensional (type 1) Uq(g̃)-module is an `-weight module.
Before doing that, let us define the `-analogue of the notion of characters.

Definition 2.3.1. Let V be an `-weight module with finite-dimensional `-weight spaces. The qchar-
acter of V is the function qch(V) : P → Z,µ 7→ dim(Vµ). Given χ ∈ ZP , let wt`(χ) = {µ ∈ P :
χ(µ) , 0} (in particular, wt`(V) = wt`(qch(V))). A dominant `-weight λ is said to be q-minuscule if
wt`(Vq(λ)) ∩P+ = {λ}. In that case Vq(λ) is said to be an `-minuscule module. ♦

Remark 2.3.2. The reason for the choice of terminology qcharacter instead of `-character is historical
and will be explained in Subsection 2.4. Evidently, the notion makes sense in the classical context
as well (and some other contexts) where the terminology q sounds strange. However, notice that
the qcharacter of a simple finite-dimensional g̃-module is easily deduced from its character due to
(2.1.15), (2.1.14), and Corollary 2.1.10. Thus, the notion is really interesting only in the quantum
case. However, as in the case of characters, one easily checks that the qcharacter determines the
multiplicities of the simple factors of a finite-dimensional module V and vice-versa (something the
character alone does not do even in the classical context). We shall denote by [V : λ] the multiplicity
of Vq(λ) as a simple factor of V .

The notion of q-minuscule weight generalizes that of minuscule weights. However, we shall see
that we do not have a characterization of q-minuscule weights in terms of the action of a group on
P as we have for minuscule in terms of the Weyl group action on P. It turns out that, if q and
q′ are not roots of unit, then λ is q-minuscule if and only if it is q′-minuscule. One can also think
of defining 1-minuscule elements of P+ by requiring that the set of `-weights of the corresponding
simple g̃-module has a unique dominant `-weight. However, using Corollary 2.1.10, it is not difficult
to see that λ is 1-minuscule if and only if it is of the form λ =

∏m
j=1 ωi j,a j with m ≥ 0, a j ∈ F× all

distinct, and i j ∈ I such that ωi j is minuscule. In other words, V(λ) is a tensor product of evaluation
modules (at distinct evaluation parameters) of minuscule representations of g. Thus, the classical
notion of a minuscule `-weight is also not too interesting. We shall see below that there are many
more q-minuscule `-weights. Because of this, we shall drop the dependence of q in the terminology
and simply say λ is a minuscule `-weight. ♦
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As in the case of characters, it is convenient to regard qch(V) as a formal sum

qch(V) =
∑
µ∈P

dim(Vµ)µ,

where we identify µ with the characteristic function of the subset {µ} ⊆P . If V is finite-dimensional,
this allows us to regard qch(V) as an element of the group ring Z[P]. Notice that, by (2.3.1), the
character of an `-weight module with finite-dimensional weight spaces is given by

(2.3.2) ch(V) =
∑
µ∈P

dim(Vµ)ewt(µ).

Since the formula for the comultiplication of the elements Λi,r is more complicated than in the
classical setting (indeed not known precisely), (2.1.14) is no longer true in the quantum setting. Still,
the following proposition (which is easily deduced from (2.1.14) in the classical case), remains true.

Proposition 2.3.3. Let V and W be finite-dimensional `-weight modules. Then, V ⊗W is an `-weight
module and qch(V ⊗W) = qch(V)qch(W).

Proof. Choose a basis α of V and a basis β of W, both consisting of `-weight vectors. Say, v j ∈ Vµ j

and wk ∈ Wµk
, for some µ j, νk ∈ P . We will write the proof under the assumption that all `-weight

vectors are in fact eigenvectors for the action of Uq(h̃) and leave it to the reader to provide the details
for the case of generalized eigenvectors. Order α in such a way that wt(µ j) < wt(µ j′) implies j > j′.
Similarly, order β in such way that wt(νk) < wt(νk′)⇒ k > k′. Also, order α⊗ β so that ( j, k) > ( j′, k′)
if k > k′.

Given i ∈ I, r > 0, Proposition 1.4.10(i) implies

Λi,r(v j ⊗ wk) =
∑r

s=0
(Λi,sv j) ⊗ (Λi,r−swk) + m j,k,

where m j,k is a linear combination of elements v j′ ⊗ wk′ with k′ < k. Let (µ j)i(u) =
∑

s≥0 µ j,i,su
s for

some µ j,i,s ∈ F, and, similarly, let (νk)i(u) =
∑

s≥0 νk,i,sus. Thus, Λi,sv j = µ j,i,sv j and Λi,swk = νk,i,swk.
Therefore,

Λi,r(v j ⊗ wk) =

 r∑
s=0

µ j,i,sνk,i,r−s

 v j ⊗ wk + m j,k.

It follows that the matrix of the action of Λi,r on V ⊗ W with respect to the basis α ⊗ β is upper
triangular with

∑r
s=0 π j,i,s$k,i,r−s in the diagonal entry corresponding to ( j, k). On the other hand,

(µ j)i(u)(νk)i(u) =
∑

r≥0
∑r

s=0 µ j,i,sνk,i,r−sur.

The next corollary follows immediately.

Corollary 2.3.4. Let λ = µν for some µ, ν ∈ P+. Then, Vq(λ) is a quotient of the submodule of
V = Vq(µ) ⊗ Vq(ν) generated by Vwt(λ).

Corollary 2.3.5. Let µ, ν ∈ P+. Then, Vq(µ) ⊗ Vq(ν) is irreducible if and only if Vq(ν) ⊗ Vq(µ) is
irreducible.
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Proof. Let V = Vq(µ) ⊗ Vq(ν),W = Vq(ν) ⊗ Vq(µ), λ = µν, and λ = wt(λ). Then, the submodules of V
and W generated by Vλ and Wλ, respectively, are quotients of Wq(λ) by Corollary 2.3.4. Since V and
W have the same dimension, either both are irreducible or none.

Thus, in order to prove that Vq(λ) is an `-weight module, it suffices to show that the fundamental
representations Vq(ωi,a) is an `-weight module. Moreover, it is clear that it suffices to do this in the
case that g = sl2. In that case, as observed earlier, we have quantum analogues of evaluation maps. In
particular, Vq(ωi,a) is a simple evaluation module. We will be able to describe precisely the qcharatcer
of all simple evaluation modules. For doing that, it will be convenient to introduce `-analogues of
simple roots. We take the chance and introduce them for any g before restricting our attention the sl2
case.

Definition 2.3.6. Given i ∈ I, a ∈ F×, r ∈ Z≥0, let

ωi,a,r =

r∏
s=1

ωi,aqr+1−2s
i

and αi,a = ωi,aqi,2

∏
j,i

ω j,aqi,−c ji


−1

.

The elements αi,a are called quantum simple `-roots and the subgroup Qq of P generated by them is
called the quantum `-root lattice of g. Denote by Q+

q the submonoid generated by the simple `-roots
and by Q−

q the submonoid by their inverses. Define a partial order on P by µ ≤ λ if λµ−1 ∈ Q+
q . ♦

Remark 2.3.7. Observe that the classic simple roots are given in terms of the fundamental weights
by the formula: αi = 2ωi −

∑
j,i(−c ji)ω j. This implies wt(αi,a) = αi which gives a partial motivation

for the above definition of simple `-roots. A more complete motivation, explaining the choices of
the other parameters appearing in the definition is given by the next proposition (cf. (1.1.3)). One
can also consider the `-root lattice in the classical context which will be denoted by Q. In that case,
αi,a = ωαi,a. ♦

The proof of the next lemma is straightforward.

Lemma 2.3.8. The `-root lattice is the free abelian group generated by the simple `-roots.

Proposition 2.3.9. There exists a unique action of the braid group B of g on P such that

(Ti(µ))i(u) =
(
µi

(
q2

i u
))−1

and (Ti(µ)) j(u) = µ j(u)
−ci j−1∏

r=0

µi

(
qsi−ci j−1−2ru

)
for all µ ∈P , i, j ∈ I, i , j. In particular, Tw acts by a group homomorphism for all w ∈ W ,

wt(Tw(µ)) = w(wt(µ)) and αi,a = ωi,a(Ti(ωi,a))−1

for all w ∈ W ,µ ∈P , i ∈ I, a ∈ F×.

Proof. The checking of the first statement is straightforward using the defining relations of the braid
group. It is clear from the above expression for the action of Ti that Ti(µν) = Ti(µ)Ti(ν) for all µ, ν ∈
P showing that B acts by group homomorphisms on P . Thus, it suffices to show that wt(Tw(µ)) =

w(wt(µ)) when w = ri for some i ∈ I and µ is a fundamental `-weight which is immediately verified.
The above expression for αi,a is easily verified.



2.3 Basic character theory 37

Corollary 2.3.10. Let j ∈ I and µ =
∏

i∈I,a∈F×
ω

pi,a
i,a ∈ P where pi,a ∈ Z. Then, T j(µ) = µ

∏
a∈F×

α
−p j,a

j,a . In

particular, if µ j(u) is a polynomial, T j(µ) ≤ µ.

Proof. Immediate from the fact that the action is by group homomorphism and T j(ωi,a) = ωi,aα
−δi j

i,a .

Let us formally state the quantum analogue of Corollary 2.1.14.

Theorem 2.3.11. Every finite-dimensional (type 1) Uq(g̃)-module is an `-weight module.

As in the classical case, it suffices to prove Theorem 2.3.11 for the simple modules and, as we have
already observed, it suffices to prove it for the fundamental modules for g = sl2. Before restricting
our attention to the sl2 case, we record the following corollary.

Corollary 2.3.12. Let Gq be the Grothendieck ring of the category of finite-dimensional type 1 Uq(g̃)-
modules. The assignment V 7→ qch(V) induces a ring homomorphism qch : Gq → Z[P]. Moreover,
Gq is commutative and is generated by the classes of the fundamental representations Vq(ωi,a), i ∈
I, a ∈ F×.

Proof. Let V be a finite-dimensional (type 1) Uq(g̃)-module. Since V is an `-weight module, the
multiplicities [V : λ] are completely determined by qch(V) (Remark 2.3.2). In particular, there exists
a unique homomorphism of additive abelian groups Gq → F[P] such that the class of is mapped to
qch(V). Proposition 2.3.3 then implies that this is a ring homomorphism and that Gq is commutative.
The last statement is immediate from Corollary 2.3.4.

For the remainder of the subsection, we set g = sl2 and let i be the unique element of I.

Proposition 2.3.13. Given a ∈ F×, there exists a unique algebra homomorphism eva : Uq(s̃l2) →
Uq(sl2) such that

eva(x+
i,r) = (aki)r x+

i , eva(x−i,r) = ar x−i kr
i , eva(ki) = ki, for all r ∈ Z.

Proof. The uniqueness is clear since the elements x±i,r, ki, r ∈ Z, generate Uq(s̃l2). For proving the
existence one just needs to check that the defining relations are preserved by the above assignments.
It is easier to work with Chevalley-Kac generators for doing that and then deduce the above formulas
using the isomorphism of Theorem 1.4.7. It remains to define eva on the Chevalley-Kac generators
x±0 . Thus, set eva(x±0 ) = (qa−1)∓1x∓i . The checking of the relations is then straightforward. One
then uses that the isomorphism of Theorem 1.4.7 (composed with the projection onto Uq(s̃l2)) maps
the elements x±i , ki to themselves while x+

0 7→ x−i,1k−1
i and x−0 7→ kix−i,−1. It immediately follows that

eva(x+
i,−1) = (aki)−1x+

i and eva(x−i,1) = ax−i ki. Since [x+
i , x

−
i,1] = hi,1, we get

(2.3.3) eva(hi,1) = a(x+
i x−i ki − x−i kix+

i ) = a[x+
i , x

−
i ]q2ki

where [x, y]p := xy − pyx is the p-deformed commutator. Since x±i,r+1 = [hi,1, x±i ], an easy induction
on r ≥ 0 using (2.3.3) proves the stated formulas for eva(x±i,r) with r ≥ 0. For r ≤ 0, one proceeds
similarly using that hi,−1 = [x+

i,−1, x
−
i ].
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To shorten notation, given m ∈ Z≥0 we denote by Vq(m) the simple Uq(g)-module with highest-
weight mωi. Similarly, we denote by Vm the corresponding weight space of a Uq(g)-module V . Let
also Vq(m, a) be the pullback of Vq(m) by eva, a ∈ F×.

Theorem 2.3.14. For all m ∈ Z≥0, a ∈ F×, we have Vq(m, a) � Vq(ωi,a,m). Moreover, Vq(m, a) is an
`-weight module and

qch(Vq(m, a)) = ωi,a,m

m∑
r=0

 r−1∏
s=0

αi,aqm−1−2s

−1

.

Proof. Let vm be a highest-weight vector of Vq(m) and v j
m = (x−i )( j)vm, 0 ≤ j ≤ m. Then, {v j

m : j =

0, . . . ,m} is a basis of Vq(m) and one can easily check that

(2.3.4) x+
i v j

m = [m + 1 − j]qv j−1
m and x−i v j

m = [ j + 1]qv j+1
m .

Set µm, j = ωi,a,m

(∏ j−1
s=0 αi,aqm−1−2s

)−1
. Notice that µm, j(u) is the rational function

(2.3.5) µm, j(u) =
(1 − aq−(m−1)u)(1 − aq−(m−1)+2u) · · · (1 − aqm−1−2 ju)

(1 − aqm+1−2( j−1)u) · · · (1 − aqm−1u)(1 − aqm+1u)
.

All the statements follow if we show that v j
m ∈ Vµm, j

for all j = 0, . . . ,m. By (1.4.3), this is equivalent
to showing that

(2.3.6) Ψ+
i (u) v j

m = qm−2 j
µm, j(q

−1u)

µm, j(qu)
and Ψ−i (u) v j

m = q−m+2 j
µm, j(qu)

µm, j(q−1u)
.

The computations for proving each of these identities are analogous, so we focus on the former. By
Proposition 2.3.13 and (2.3.4) we have

x+
i,rv

j
m = (aki)r x+

i v j
m = (aki)r[m + 1 − j]qv j−1

m =
(
aqm−2( j−1)

)r
[m + 1 − j]qv j−1

m ,

(2.3.7)

x−i,rv
j
m = ar x−i kr

i v
j
m =

(
aqm−2 j

)r
[ j + 1]qv j+1

m .

For r > 0, this implies

(q − q−1)−1ψ+
i,rv

0
m = [x+

i,r, x
−
i,0]v0

m = x+
i,r x−i,0v0

m = x+
i,rv

1
m = (aqm)r[m]qv0

m.

Hence,

(2.3.8) ψ+
i,rv

0
m = (q − q−1)(aqm)r[m]qv0

m.

Notice that under our identification of formal power series with rational functions, the series
∑

r≥1(aqmu)r

corresponds to aqmu
1−aqmu . Therefore,

Ψ+
i (u) v0

m =

ki + [m]q(q − q−1)
∑
r≥1

(aqm)r

 v0
m = qm

(
1 − aq−mu
1 − aqmu

)
v0

m,

and (2.3.6) with j = 0 as well as the first statement of the theorem follow. The general case of (2.3.6)
can be proved similarly. Namely, one uses (2.3.7) to obtain the general version of (2.3.8) and proceed
as in the case j = 0 to get (2.3.6) from the expression (2.3.5) for µm, j(u). We leave the details for the
reader.
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Remark 2.3.15. It follows from the above formulas that all quantum evaluation modules are `-
minuscule showing that there are many more minuscule `-weights than minuscule weights. Notice
however that the qcharacter of the evaluation modules are not invariant under the braid group action
on P in general (in fact, that is the case only for the trivial representation). ♦

Corollary 2.3.16. Let V be a tensor product of simple finite-dimensional Uq(s̃l2)-modules, say V =

Vq(λ1) ⊗ · · · ⊗ Vq(λm) for some m ≥ 1, λ j ∈P+, and λ =
∏m

j=1 λ j. Then, µ ∈ wt`(V) only if µ ≤ λ.

Proof. By Proposition 2.3.3, it suffices to consider the case m = 1. Write λ =
∏n

j=1 ωi,a j . Then,
by Corollary 2.3.4, Vq(λ) is a quotient of V = Vq(1, a1) ⊗ · · · ⊗ Vq(1, an). Again, Proposition 2.3.3
implies that it suffices to consider the case n = 1. But this follows immediately from the previous
theorem.

Remark 2.3.17. It is natural to expect that the definition of the simple `-roots was made in such a way
that the following holds for arbitrary g: if V is a highest-`-weight module of highest-`-weight λ ∈P+

and µ ∈ wt`(V), then µ ≤ λ. This is true, but the proof (which will be given in Section 4) is amazingly
harder than one may expect at this point. Even in the classical case this is not so immediate, although
much easier to prove than in the quantum case. The classical version of the previous corollary (for
general g) easily follows from (2.1.15) and Corollary 2.1.10. ♦

It is natural to expect that, once we have quantum analogues of evaluation modules in the sl2
case, that we should be able to describe the simple modules as tensor products of evaluation as in the
classical case. It is not difficult to see that, given λ ∈ P+, there exist unique m ≥ 0, a j ∈ F×, and
r j > 0, j = 1, . . . ,m, such that

(2.3.9) λ =

m∏
j=1

ωi,a j,r j and
a j

ak
, q±(r j+rk−2p) for all j, k, 0 ≤ p < min{r j, rk}.

Definition 2.3.18. The factorization (2.3.9) is called the q-factorization of λ and the factors ωi,a j,r j are
called the q-factors of λ. An ordered pair (λ,µ) of elements of P+ is said to be in q-resonant order if

a j

bk
, q−(r j+sk−2p) for all 0 ≤ p < r j, 1 ≤ j ≤ m, 1 ≤ k ≤ n

where {ωi,a j,r j | 1 ≤ j ≤ m, a j ∈ F×, r j > 0} and {ωi,b j,s j | 1 ≤ j ≤ n, b j ∈ F×, s j > 0} are the sets of
q-factors of λ and µ, respectively. The pair (λ,µ) is said to be in weak q-resonant order if

a j

bk
, q−(r j+sk−2p) for all 0 ≤ p < min{r j, sk}, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

The polynomials λ,µ are said to be in general position if both (λ,µ) and (µ, λ) are in weak q-resonant
order. An m-tuple (λ1, λ2, . . . , λm) of elements of P+ is said to be in (weak) q-resonant order if (λr, λs)
is in (weak) q-resonant order for all r < s. The family λ1, . . . , λm, is in general position if they are
pairwise in general position. ♦

Remark 2.3.19. The definition of the above concepts for general g will be given in Subsection 3.2
using the above definition for the sl2-case and the braid group action on P . In the sl2-case, it is
not difficult to check that λ,µ are in general position if and only if the q-factorization of λµ is the
multiplication of their q-factorizations (and similarly for general families). Notice, if (λ,µ) is in
q-resonant order, it is also in weak q-resonant order. ♦
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Theorem 2.3.20. Let λ ∈ P+ and λ =
∏m

j=1 ωi,a j,r j be its q-factorization. Then, Vq(λ) � Vq(a1, r1) ⊗
· · · ⊗ Vq(am, rm).

We postpone the proof of this theorem to Subsection 3.2.

Corollary 2.3.21. Let λ,µ ∈ P+. Then Vq(λ) ⊗ Vq(µ) is irreducible if and only if λ and µ are in
general position.

Proof. Let λ =
∏m

j=1 ωi,a j,r j and µ =
∏n

j=1 ωi,b j,s j be the corresponding q-factorizations. Then, λ,µ
are in general position if and only if the family ωi,a1,r1 , . . . ,ωi,am,rm ,ωi,b1,s1 , . . . ,ωi,bn,sn is in general
position. In that case, it follows from the theorem that

Vq(λµ) �
(
Vq(ωi,a1,r1) ⊗ · · ·Vq(ωi,am,rm)

)
⊗

(
Vq(ωi,b1,s1) ⊗ · · ·Vq(ωi,bn,sn)

)
� Vq(λ) ⊗ Vq(µ).

Conversely, if Vq(λ) ⊗ Vq(µ) is irreducible, i.e., Vq(λ) ⊗ Vq(µ) � Vq(λµ), it follows from the
theorem and Corollary 2.3.5 that Vq(λ) is isomorphic to the tensor product of the modules Vq(ωi,a j,r j)
and Vq(ωi,bk ,sk) in any order. If λ and µ were not in general position, there would be j, k such that
ωi,a j,r j and ωi,bk ,sk are not in general position.

Therefore, it suffices to consider the case m = n = 1 and prove that if ωi,a,r and ωi,b,s is not in
general position, then Vq(a, r) ⊗ Vq(b, s) is reducible. One easily checks that the q-factorization of
λ = ωi,a,rωi,b,s is of the form ωi,a′,r′ωi,b′,s′ for some a′, b′ ∈ F× and where min{r′, s′} < min{r, s}. Then,
it follows from the theorem that Vq(λ) is isomorphic to Vq(r′) ⊗ Vq(s′) when regarded as a Uq(g)-
module. On the other hand, Vq(r, a) ⊗ Vq(b, s) is isomorphic to Vq(r) ⊗ Vq(s) when regarded as a
Uq(g)-module. One easily checks that Vq(r′)⊗Vq(s′) and Vq(r)⊗Vq(s) do not have the same character
and, hence, cannot be isomorphic.

Remark 2.3.22. One easily checks that the theorem can be deduced from the corollary, i.e., the
statements are equivalent. ♦

Example 2.3.23. Let a ∈ F× and consider λ = ω2
i,a whose unique q-factor is ωi,a with multiplicity 2.

It follows from Theorem 2.3.20 that Vq(λ) � V(1, a) ⊗ V(1, a) whose qcharacter is

qch(Vq(ω2
i,a)) = ω2

i,a + 2ωi,aω
−1
i,aq2 + ω−2

i,aq2 .

Therefore, contrary to the classic theory of minuscule weights, there are `-minuscule modules having
`-weight spaces of dimension higher than one. ♦

Example 2.3.24. We give an example of simple Uq(s̃l2)-module which is not `-minuscule. Let λ =

ω2
i,aωi,aq2 = ωi,aq,2ωi,a for some a ∈ F×. By Theorem 2.3.20, Vq(λ) � V(2, aq) ⊗ V(1, a) and, hence,

qch(Vq(λ)) = ω2
i,aωi,aq2 + ωi,a + ω2

i,aω
−1
i,aq4 + 2ωi,aω

−1
i,aq2ω

−1
i,aq4 + (ω2

i,aq2ωi,aq4)−1.

♦

Let us now take a look at the quantum counterpart of Example 2.2.12.
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Example 2.3.25. Let a, b ∈ F× and λ ∈P+ be the polynomial λi(u) = (1− au)(1− bu) = ωi,aωi,b. As
in the classical case, we see that Wq(λ) is 4-dimensional. Moreover, by Theorem 2.3.20, if b , aq±2,
then Vq(λ) � Vq(1, a) ⊗ Vq(1, b) which is 4-dimensional. It then follows from Corollary 2.3.4 that
Wq(λ) � Vq(λ).

We will show in the next section that, if b , aq2, then Wq(λ) � Vq(1, a)⊗ Vq(1, b). In fact, we will
show in Subsection 3.2 that the right-hand side is a highest-`-weight module and, hence, a quotient of
Wq(λ). Since both modules have the dimension 4, the isomorphism follows. Notice that this implies
that, for every a, b ∈ F×, either Wq(λ) � Vq(1, a)⊗Vq(1, b) or Wq(λ) � Vq(1, b)⊗Vq(1, a). In particular,

qch(Wq(λ)) = ωi,aωi,b + ω−1
i,aq2ωi,b + ωi,aω

−1
i,bq2 + (ωi,aq2ωi,bq2)−1.

Hence, the `-weight spaces of Wq(λ) are all one-dimensional unless a = b. Moreover, wt`(Wq(λ))
has a unique dominant `-weight unless b = aq±2. Suppose b = aq−2 so that Vq(λ) � Vq(2, aq−1)
which is 3-dimensional. Therefore, the kernel of the canonical projection Wq(λ)→ Vq(λ) is the trivial
representation and we have obtained the quantum version of (2.2.10). Noticing that αi,b = ωi,bωi,a =

λ, this sequence can be written in the form 0→ Vq(1)→ Wq(αi,b)→ Vq(αi,b)→ 0. ♦

Remark 2.3.26. One can define the notion of lowest-`-weight modules in a similar manner by ex-
changing the roles of Uq(ñ+) and Uq(ñ−). Evidently, similar results for lowest-`-weight modules can
be proved. In particular, every finite-dimensional highest-`-module is also a lowest-`-weight mod-
ule. Indeed, since the lowest weight is w0(λ) where λ is the highest weight, the lowest-weight space
is 1-dimensional and, hence, must be spanned by an eigenvector for the action of Uq(h̃). The Uq(g)-
submodule generated by the lowest-weight space is irreducible and contains the highest-weight space.
Therefore, it generates the whole module. Notice that, in the sl2 case, Theorem 2.3.14 implies that
the lowest-`-weight of Vq(ωi,a,m) is ω−1

i,aq2,m = Ti(ωi,a,m). Theorem 2.3.20 together with Proposition
2.3.3 then implies that the lowest-`-weight of Vq(λ) is Ti(λ). Since ri = w0 in this case, it follows that
Ti(λ) is the lowest `-weight of any highest-`-module with highest `-weight λ. We shall compute the
the lowest-`-weight of any highest-`-weight module for general g later on (Proposition 3.1.2). ♦

2.4. Bibliographical notes

1. Classification of simple modules

The classification of the simple finite-dimensional g̃-modules in terms of tensor products of evalu-
ation modules follows from the work of V. Chari and A. Pressley [9, 23]. The classification in terms of
Drinfeld polynomials arose only when the quantum case started to be studied and is also due to Chari
and Pressley. The sl2 case was studied in [24] where Theorem 2.3.20 was also proved. The proof
of Proposition 2.3.13 presented here is also from [24] although a more general version for g = sln
was previously proved by Jimbo [60]. The classification in terms of Drinfeld polynomials in general
follows from the sl2 case and was treated in the book [25]. The setting of quantum groups at roots of
unity was considered in [27]. The term Drinfeld polynomials comes from a similar result on the clas-
sification of finite-dimensional representations of Yangians obtained by Drinfeld. The terminology
highest-`-weight module came only later on (for instance, the terminology “pseudo-highest-weight
module” is used in the book [25]). The assumption that the ground field F is algebraically closed is
used here to ensure the existence of eigenvalues for the action of the elements Λi,r. One can obtain
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the classification of simple module over a non-algebraically closed field by using Galois groups (cf.
[57]).

The classification of simple finite-dimensional g̃-modules has been recently extended to the broader
context of algebras of the form g⊗ A in [14] and to the even broader context of equivariant map alge-
bras (which includes the twisted affine algebras) in [81]. Since the choice of an evaluation parameter
is equivalent to the choice of a maximal ideal of F[t, t−1], it is not surprising that the classification is
given in terms of a generalization of evaluation modules obtained by choosing maximal ideals of A.
The case of quantum groups at roots of unity were treated in [27] (Lusztig’s version) and [4] (Kac-
DeConcini’s version). It is interesting to note that one can define an algebra Aq(g) given by generators
and relations as in Theorem 1.4.7 starting from any symmetrizable Kac-Moody algebra g. These al-
gebras are called Drinfeld affinizations and, in the special case that g is an affine Kac-Moody algebra,
they are also known as quantum toroidal algebras (since their q → 1 limit is a toroidal algebra over
a simple finite-dimensional Lie algebra). One can then study the category of representations of Aq(g)
which lie in the category O int

q associated to the Kac-Moody algebra g. The classification of the simple
modules is also given in terms of Drinfeld polynomials and was obtained in [46].

2. Weyl modules

The above notions of Weyl modules were introduced by Chari and Pressley in [28]. The global
Weyl modules were originally called maximal integrable modules and the local Weyl modules were
simply called Weyl modules. The present terminology of local and global Weyl modules were intro-
duced by B. Feigin and S. Loktev in [33]. The choice of the terminology Weyl modules comes from
the finite-dimensional representation theory of algebraic groups in positive characteristic where the
Weyl modules are the universal highest-weight modules while, in our context, the local Weyl modules
are the universal finite-dimensional highest-`-weight modules. The original motivation for the term
comes from another perspective since, at the time, the language of `-weight modules was not used.
Namely, in the context of algebraic groups in characteristic p, Weyl’s approach to construct what are
nowadays named Weyl modules, was by a process of reduction modulo p of the modules V(λ). Chari
and Pressley conjectured something similar for the local Weyl modules. Namely, assume F is the
algebraic closure of K(q) for some field K such that q is transcendent over K, i.e., K(q) is the field
of rational functions in one variable q. Then, the conjecture was that, if λ ∈ P+ is such that that
λi(u) ∈ K[u] for all i ∈ I, then the Weyl module W(λ) could be obtained as the q → 1 limit of the
irreducible module Vq(λ) (which is isomorphic to Wq(λ) in this case). This conjecture was proved still
in [28] in the sl2 case. For g = sln it was proved by Chari and Loktev in [17] by finding a PBW-like
basis of W(λ) while for any simply laced g it was proved by G. Fourier and P. Littelmann in [35] by
establishing a relation with the theory of Demazure modules. Both of these proofs establish relations
with the notion of fusion products defined by Feigin and Loktev in [32]. This relation with Demazure
modules was very recently generalized to an arbitrary simple Lie algebra g by W. Naoi in [76] with
the help of the theory of crystals, thus finalizing the proof of the conjecture. It is interesting to remark
that it is very easy to see that the q → 1 limit of Vq(λ) is a quotient of W(λ). Thus, in order to prove
the conjecture one “just” needs to prove that dim(W(λ)) ≤ dim(Vq(λ)). The proof of the conjecture
actually implies that the character of the Weyl modules depends only on wt(λ) (and not on the choice
of q or F). More precisely, we have the following corollary which will be used below.

Corollary 2.4.1. Let λ ∈ P+ and λ = wt(λ). Write λ =
∑

i∈I miωi and let ci = ch(Wq(ωi,1)). Then,
ch(Wq(λ)) = ch(W(λ)) =

∏
i∈I cmi

i .
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There is also a proof based on the theory of global crystal basis of M. Kashiwara which has
been suggested by H. Nakajima. Namely, the global Weyl modules are isomorphic to the level zero
extremal-weight modules in the sense of Kashiwara [62, 63] which have global crystal bases. The
argument essentially uses the fact that these bases are “well behaved” with respect to the defining
relations of the global Weyl modules and, therefore, the q → 1 limit of a quantum global Weyl
module is a classical global Weyl module. Moreover, the results of J. Beck and H. Nakajima [5]
imply that the global Weyl module Wq(λ) is free of finite-rank as a right-module for the algebra Aλ

mentioned in Proposition 2.2.8. This was previously proved in the sl2 case still in [28] and for any
simply laced g by Nakajima in [72] using the geometry of quiver varieties. A similar result in the
context of the algebras g ⊗ A was proved in [14]. This structure is compatible with the crystal theory
so that the q → 1 limit of the global Weyl Wq(λ) remains free of the same rank as a right-module for
Aλ (whose classical limit is itself!). It is clear from the way that the local Weyl modules are obtained
from the global ones that the dimension of a local Weyl module is exactly the rank of the global Weyl
module as a right Aλ-module, thus proving the conjecture. We plan to survey this argument in a more
complete manner elsewhere. The advantage of this method over the aforementioned ones is that one
can consider general limits q → ξ with ξ ∈ F×, which allows one to go to the root of unity setting
(in Lusztig’s sense). Moreover, it also allows to perform change of base field and, therefore, one can
have similar results in positive characteristic. In particular, this proves a similar conjecture we made
in [55] in the context of hyper loop algebras (the study of these algebras essentially corresponds to
that of algebraic loop groups). The theory of Weyl modules has just been expanded to the setting of
equivariant map algebras [34].

3. Character theory

The study of `-weight modules essentially begun in the paper [38] where E. Frenkel and N.
Reshetikhin introduced the notion of qcharacters, although the terminology `-weight spaces and so
on was not used. The original definition of qcharacters was rather more complicated than the one we
gave above. It was motivated by the study of deformedW-algebras and used the concept of transfer
matrices which involves the R-matrix of Uq(ĝ). Because of the quantum nature of the original defini-
tion, the name q-character was chosen. It was proved in [36, Proposition 2.4] that the definition given
above coincides with the definition of [38]. Although the above definition does not sound quantum in
nature nor does it acknowledge what the value of q is, for historical reasons the terminology qcharac-
ter has been kept (and the prefix q may not be the name of the quantization parameter). There is also
two different notations for the elements ωi,a and αi,a in use in the literature. Namely, the elements αi,a

are denoted by Ai,aqi in [38] and several other papers which follow the notation developed there. Also,
the elements ωi,a are denoted there by Yi,a and the elements of P are referred to as monomials (of the
qcharacters) instead of `-weights. In fact, the systematic use of the terminology `-weight lattice and
`-root lattice was initiated in [19], where the notations αi,a and ωi,a were introduced and the definition
of αi,a using the braid group action on P as in Proposition 2.3.9 was given (the first statement of that
proposition appeared previously in [7, 12] in a different form). We find the notation ωi,a and αi,a more
suggestive, making the parallel with the classic theory of weights and roots much more evident.

The quest for understanding the qcharacters of the simple modules remains ongoing. The first
attempt to obtain a general procedure for calculating them was given in [36] and is now known as
the Frenkel-Mukhin algorithm which we shall present in Subsection 4.1. Therefore, we leave further
historical comments related to qcharacters to Subsection 4.4. We remark that the terminology minus-
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cule for `-weights started to be used systematically more recently and that the terminology “special
module” was in practice for sometime in place of `-minuscule module (frequently one simply says
“minuscule module” meaning `-minuscule). We shall make some remarks about the terminologies
“general position” and q-resonant order in Subsection 3.4. The terminology q-factorization is also re-
cent and appeared for the first time in [15]. As mentioned in Remark 2.3.2, the theory of qcharacters
is trivial in the classical setting. However, if the ground field is not algebraically closed, the story is
a little more interesting and is nicely described using Galois groups. This was done in a joint work
with D. Jakelić [56] in the broader context of hyper loop algebras. The same ideas of [56] can be
used in the quantum setting as well. In the root of unity setting, the theory of qcharacters was studied
in [37, 45, 58]. The classic characters of finite-dimensional representations of the simple Lie algebra
g (or of Uq(g)) also give rise to a ring homomorphism from the associated Grothendieck ring to the
integral group ring Z[P]. The image of the classic character homomorphism is the subring of Z[P]
of elements left invariant by the Weyl group action. As we have seen, the qcharacters of the simple
modules are not invariant under the action of the braid group on P . The image of the qcharacter ring
homomorphism was described in [36] as the intersection of the kernels of some operators introduced
in [38] called screening operators.



3. Tensor Products of Simple Modules
The main goal of this subsection is to study a few results concerning the tensor structure of the
category of finite-dimensional modules for the quantum affine algebra Uq(g̃). The main problem we
address here is the one of finding a sufficient condition for a tensor product of simple modules to be
highest-`-weight. It will be necessary to have some knowledge about the dual module of a simple
module and, thus, we begin by studying duality. As an application of the results on tensor products,
we finish the section presenting the block decomposition of the category.

3.1. Duality

Recall that if V is a g̃-module, then V∗ is turned into a g̃-module by means of (1.3.9) and similarly
in the quantum setting. In this subsection we study some results about dual representations which
will be useful tools in the study of other topics such as tensor products and extensions. The quantum
setting is rather more complicated since it is also not known a precise formula for the antipode on the
loop-like generators. In fact, we shall see in Remark 3.1.8 below that (V∗)∗ is not usually isomorphic
to V for a finite-dimensional Uq(g̃)-module V . This is a very different scenario than that of the finite-
dimensional representation theory of Uq(g). It is also different than the classical context because, since
S 2 = 1, the double dual of any finite-dimensional g̃-module is isomorphic to the original module.

The loop analogue of Proposition 1.3.13 for finite-dimensional representations is easily estab-
lished both in the classical and quantum settings. One of our goals is to establish the analogues of
Corollary 1.3.15. We start with the classical case which is simpler. In particular, since S (hi,r) = −hi,r

for all i ∈ I, r ∈ Z, we have

(3.1.1) S (Λ±i (u)) = (Λ±i (u))−1 for all i ∈ I,

where the inverse is that of formal power series with coefficients in U(h̃). This immediately implies
the classical loop analogue of (1.3.10):

(3.1.2) (Vµ)∗ = (V∗)µ−1 for all µ ∈P .

Let λ ∈ P+, a ∈ F×, and V = V(λ, a) = V(ωλ,a). By (2.1.15), for all w ∈ W , Vw(λ) = Vωw(λ),a is
spanned by the vector vw for some choice of highest-weight vector v of V(λ). In particular, V(λ, a)∗

is a lowest-`-weight module of lowest `-weight ωw0(λ),a. One easily checks that there exists a unique
action of the Weyl group on P by group homomorphisms such that

(3.1.3) w(ωµ,a) = ωw(µ),a for all w ∈ W , µ ∈ P, a ∈ F×.

Given λ =
∏m

j=1 ωλ j,a j ∈ P+, it follows from Corollary 2.1.10 and Proposition 2.3.3 that V(λ) is a
lowest-`-weight module of lowest `-weight w0(λ). More generally, if V is a highest-`-weight module
of highest `-weight λ, then

(3.1.4) Vw(wt(λ)) = Vw(λ) for all w ∈ W .

We are ready to establish the loop analogue of Corollary 1.3.15 in the classical context.
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Proposition 3.1.1. Let λ ∈P+. Then, V(λ)∗ � V(w0(λ)−1).

Proof. Since V(λ)∗ is irreducible, we must have V(λ)∗ � V(µ) for some µ ∈P+. To shorten notation,
write V = V(λ), λ = wt(λ), and µ = wt(µ). Let v ∈ Vw0(λ) and f ∈ (V∗)−w0(λ) be nonzero. Since
(V∗)−ν = (Vν)∗ for all ν ∈ P by (1.3.10) and dim(Vw0(λ)) = dim((V∗)−w0(λ)) = 1, we must have f (v) , 0.
Also,Vw0(λ) = Vw0(λ) by (3.1.4). Moreover, since −w0(λ) is the unique maximal weight of V∗, we must
have (V∗)−w0(λ) = (V∗)µ. Therefore, both v and f are `-weight vectors with `-weights w0(λ) and µ,
respectively. Hence, f ⊗ v is an `-weight vector of `-weight µ(w0(λ)) by (2.1.14). Therefore, we are
left to show that µ(w0(λ)) = 1, i.e., that f ⊗ v is an `-weight vector of `-weight 1.

For doing that, notice that the canonical linear map V∗⊗V → F, f ⊗v 7→ f (v), is a homomorphism
of representations (this is true for any Hopf algebra, but in general we cannot state the same for the
map V ⊗ V∗ → F). But F is the trivial representation, i.e., F � Vq(1). Therefore, since f (v) , 0, f (v)
is an `-weight vector of `-weight 1 and, hence, the same must hold for f ⊗ v.

We now turn to the quantum case. Since the precise formula for S (Λi,r) is not known in this case,
we do not have a quantum analogue of (3.1.2). However, it is natural to expect that the quantum
analogue of (3.1.4) should obtained by replacing the Weyl group action on P defined in (3.1.3) by
the braid group action on P as defined in Proposition 2.3.9. This is what we prove next.

Proposition 3.1.2. Let V be a highest-`-weight module of highest `-weight λ ∈ P+. Then, VTw(λ) =

Vw(wt(λ)) for all w ∈ W . In particular, the lowest `-weight of V is Tw0(λ).

Proof. The second statement is immediate from the first (cf. Remark 2.3.26).

Let λ = wt(λ), v ∈ Vλ \ {0}, and vw ∈ Vwλ \ {0} be defined as in (1.3.4). Then, since Vw(λ) = Fvw,
vw is necessarily an `-weight vector (say vw ∈ Vµ) which is an eigenvector for the action of Uq(h̃). We
need to show that µ = Tw(λ), i.e., that Λ+

i (u)vw = (Tw(λ))i(u)vw for all i ∈ I. This will be proved by
induction on `(w) ≥ 0 which clearly starts if `(w) = 0.

Let w ∈ W and i ∈ I be such that l(riw) = l(w) + 1. By induction hypothesis, assume that
vw ∈ VTw(λ). We need to show that vriw ∈ VTiTw(λ). Notice that Proposition 1.1.21(iii) implies x+

i,rvw = 0
for all r ∈ Z, i.e., vw is a highest-`-weight vector for the subalgebra Uq(g̃i) � Uq(s̃l2). In particular,
since by induction hypothesis µ = Tw(λ), it follows that

(3.1.5) (Tw(λ))i(u) ∈ F[u]

and, moreover, vriw = (x−i )mvw where m = w(λ)(hi). Thus, we are left to show that

(3.1.6) Λ+
j (u)(x−i )mvw = (TiTw(λ)) j(u)(x−i )mvw for all j ∈ I.

Notice that, for j = i, this follows from Remark 2.3.26.

Recall that [h j,r, x−j′] = −
[rc j j′ ]q j

r x−j′,r for all j, j′ ∈ I, r ∈ Z. In particular,

(3.1.7) [h j,r, x−i ] =
[rc ji]q j

[2r]qi

[hi,r, x−i ] for all j ∈ I, r ∈ Z.
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Let µ j,r be the eigenvalue of the action of hi,r on vw. The, by definition of Λi,r we have

µ j(u) = exp

−∑
s>0

µ j,s

[s]q j

us

 .
Using (3.1.7) we get:

h j,svriw = h j,s(x−i )mvw = (x−i )m(µ j,svw) +
[sc ji]q j

[2s]qi

[hi,s, (x−i )m]vw

= µi,svriw +
[sc ji]q j

[2s]qi

(hi,s(x−i )mvw − (x−i )m(µi,svw))

=

µ j,s −
[sc ji]q j

[2s]qi

µi,s +
[sc ji]qi j

[2s]qi

hi,s

 vriw.

By (3.1.6) with j = i, we know that hi,svriw = −µi,sq2s
i vriw. Plugging this above, we get

h j,svriw =
(
µ j,s − [sc ji]qiµi,s(1 + q−2s

i )
)

vriw.

Setting µ̃ j,s := µ j,s − [sc ji]qiµi,s(1 + q−2s
i ), it follows that

(3.1.8) Λ+
j (u)vriw = exp

−∑
s>0

µ̃ j,s

[s]q j

us

 vriw.

A simple comparison of (3.1.8) with the definition of (Ti(µ)) j(u) completes the proof of (3.1.6).

Corollary 3.1.3. Let λ ∈P+ and w ∈ W . Then Tw(λ) ≤ λ.

Proof. Immediate from Corollary 2.3.10 and (3.1.5).

The following analogue of Corollary 1.3.8 is now immediate.

Corollary 3.1.4. Suppose λ ∈P+ is such that λ = wt(λ) is minuscule. Then qch(Vq(λ)) =
∑

w ∈ Wλ

Tw(λ).

In particular, if Vq(λ)µ , {0}, µ ≤ λ.

Remark 3.1.5. The classical analogue of the above corollary also follows easily by replacing the
braid group action by the Weyl group action on P . We have already remarked that the qcharacter
of an `-minuscule module is not invariant under the braid group action on P in general. We shall
see later that the Frenkel-Mukhin algorithm can be used for computing the qcharacter of `-minuscule
modules. ♦

Example 3.1.6. Let g = sln, i ∈ I, and a ∈ F×. Since every fundamental weight of sln is minuscule,
we can use Corollary 3.1.4 to express the qcharacter of Vq(ωi,a). In particular, if Vq(ωi,a)µ , {0},
µ ≤ λ. For n = 3, we have Wωi = {ri, r jri} where i , j. Then,

qch(Vq(ωi,a)) = ωi,a + ωi,aα
−1
i,a + ωi,aα

−1
i,aα

−1
j,aq = ωi,a + ω−1

i,aq2ω j,aq + ω−1
j,aq3 .

♦
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For notational convenience, given λ ∈P+, set

(3.1.9) λ∗ = Tw0(λ)−1.

The proof of the next Corollary is similar to that of Proposition 3.1.1. However, one needs to take
the same extra care taken in the proof of Proposition 2.3.3 since the tensor product of two `-weight
vectors may not be an `-weight vector in the quantum case.

Corollary 3.1.7. Let λ ∈P+. Then, Vq(λ)∗ � Vq(λ∗).

Remark 3.1.8. Recall in Remark 1.1.22 that w0 defines an involution on I. A straightforward but
tedious computation working with the known reduced expressions for w0 can be used to show that

(λ∗)i(u) = λw0(i)

(
qr∨h∨u

)
.

It follows that (Vq(λ)∗)∗ � Vq(shq2r∨h∨ (λ)), where sha, a ∈ F×, is the group automorphism of P induced
from the ring automorphism of F[u] given by the shift u 7→ au. In the classical case, we could have
set the notation λ∗ = (w0(λ))−1. This is in fact consistent with the quantum notation since, by setting
q = 1 in the definition of the braid group action on P , we recover (3.1.3).

One can also use the formulas in Theorem 2.3.14 together with Corollary 3.1.7 to see that (3.1.2)
is indeed false in the quantum setting. Theorem 2.3.14 can also be used to see that the qcharacter
of the finite-dimensional Uq(g̃)-modules are not invariant under the braid group action in general.
In other words, we have no quantum loop analogue of Proposition 1.3.7. In the classical context,
such a loop analogue under the Weyl group action defined by (3.1.3) is easily deduced from (2.1.14),
(2.1.15), Corollary 2.1.10, and (3.1.2). ♦

Example 3.1.9. Let us return to Example 2.3.25. Recall that if λ = ωi,aωi,b and b , aq2, then Wq(λ) �
Vq(1, a) ⊗ Vq(1, b). Moreover, if b = aq−2, we have a short exact sequence 0 → Vq(1) → Wq(λ) →
Vq(λ) → 0. Therefore, we also have a short exact sequence 0 → Vq(λ∗) → (Wq(λ))∗ → Vq(1) → 0.
Using Remark 1.3.19 and that µ∗ = shq2(µ) for all µ ∈P+, the latter exact sequence can be rewritten
as

0→ Vq(shq2(λ))→ Vq(1, a) ⊗ Vq(1, q2a)→ Vq(1)→ 0.

In particular, Vq(1, a) ⊗ Vq(1, q2a) is not a highest-`-weight module while Vq(1, q2a) ⊗ Vq(1, a) is iso-
morphic to Wq(shq2(λ)). This shows that, in our category, it may happen that V ⊗W is not isomorphic
to W ⊗ V . In other words, the category is not braided. ♦

We end this subsection recording the following lemma to be used in the next subsection.

Lemma 3.1.10. Suppose V and V∗ are finite-dimensional highest-`-weight modules. Then, V is
irreducible.

Proof. Let W be the irreducible quotient of V and consider the associated exact sequences 0→ U →
V → W → 0 and 0 → W∗ → V∗ → U∗. Then, W∗ is irreducible and contains the lowest-weight
space of V∗. Since the characters are W -invariant, it also contains the highest-weight space. Since V∗

is generated by its highest-weight space by hypothesis, it follows that W∗ = V∗ showing that V∗ (and
therefore also V) is irreducible.
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3.2. Highest-`-weight tensor products of simple modules

The main goal of this subsection is to establish a sufficient condition for a tensor product of simple
Uq(g̃)-modules to be a highest-`-weight module. Along the way we prove Theorem 2.3.20.

Remark 3.2.1. Notice that, in the classical setting, such condition is easily obtained from Theorem
2.1.3 and Remark 2.1.4. In fact, it follows that in the classical setting a tensor product of simple
modules is completely reducible. Theorem 3.2.5 below shows that the picture is very different in the
quantum setting where we have plenty examples of tensor products of simple modules which are a
indecomposable but reducible. ♦

We begin with the following lemma (whose proof is easily transported to the classical setting).

Lemma 3.2.2. Let λ, λ′ ∈ P+, λ = wt(λ), and λ′ = wt(λ′). Suppose V and V ′ are highest-`-weight
modules with highest `-weights λ and λ′, respectively. Let also v ∈ Vλ \ {0} and v′ ∈ V ′λ′ \ {0}. Then,
V ⊗V ′ is generated by (vw0 ⊗ v′). In particular, if (vw0 ⊗ v′) is in the submodule of V ⊗V ′ generated by
v ⊗ v′, then V ⊗ V ′ is a highest-`-weight module.

Proof. Let W be the submodule of V ⊗ V ′ generated by vw0 ⊗ v′. Since w0(λ) is the lowest weight of
V , x−i,rvw0 = 0 for all i ∈ I, r ∈ Z. Then, by Proposition 1.4.10, we have

x−i,r(vw0 ⊗ v′) = vw0 ⊗ (x−i,rv
′).

Since V ′ = Uq(ñ−)v′, it follows that vw0 ⊗ V ′ ⊆ W. Next, we will show that v ⊗ V ′ ⊆ W. Recall that
if w0 = ril . . . ri1 is a reduced expression for w0 and m j, j = 1, . . . , l, are given by (1.3.3), then v is a
nonzero multiple of (x+

i1)
m1 . . . (x+

il
)mlvw0 . Therefore, it suffices to show that

(x+
im · · · x

+
i1vw0) ⊗ V ′ ⊆ W for all m ≥ 0, i j ∈ I, j = 1, . . . ,m.

We prove this by induction on m ≥ 0 which clearly starts at m = 0. Assume m ≥ 0, let u = x+
im . . . x+

i1vw0

and assume, by induction hypothesis, that u ⊗ V ′ ⊆ W. Then, by Proposition 1.2.4,

x+
i (u ⊗ u′) = (x+

i u) ⊗ u′ + (kiu) ⊗ (x+
i u′) for all i ∈ I, u′ ∈ V ′.

Notice kiu = qau for some a ∈ Z and, hence, by induction hypothesis, (kiu) ⊗ (x+
i u′) ∈ W. Since W

is a submodule of V and u ⊗ u′ ∈ W by induction hypothesis, we have x+
i (u ⊗ u′) ∈ W and, therefore,

(x+
i u) ⊗ u′ ∈ W for all i ∈ I, u′ ∈ V ′. This proves the inductive step.

Finally, it suffices to show that

(xεm
im
. . . xε1

i1
v) ⊗ V ⊆ W for all m ≥ 0, i j ∈ Î, ε j ∈ {+,−}, j = 1, . . . ,m.

This is done exactly as in the previous step.

We now give the general definition of q-resonant ordering.

Definition 3.2.3. Let λ,µ ∈ P+. The ordered pair (λ,µ) is said to be in (weak) q-resonant order

if there exists a reduced expression w0 = ril · · · ri1 for w0 such that
((

Ti j−1 · · · Ti1(λ)
)

i j
(u),µi j

(u)
)

is in
(weak) qi j-resonant order in the sense of Definition 2.3.18 for all j = 1, . . . , l. An m-tuple (λ1, . . . , λm)
of Drinfeld polynomials is said to be in (weak) q-resonant order if (λr, λs) is in (weak) q-resonant
order for all 1 ≤ r < s ≤ m. ♦
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Remark 3.2.4. Since q is not a root of unity, it is not difficult to show that, if (λ,µ) is in q-resonant
order, then (λi(u),µi(u)) is in (weak) qi-resonant order in the sense of Definition 2.3.18 for all i ∈ I.
Notice that (3.1.5) implies that

(
Ti j−1 · · · Ti1(λ)

)
i j

(u) is indeed a polynomial and, hence, the above
definition makes sense. ♦

The main goal of this subsection is to prove the following theorem.

Theorem 3.2.5. Let m > 0 and λ1, . . . , λm ∈P+. If (λ1, . . . , λm) is in q-resonant order, then Vq(λ1) ⊗
· · · ⊗ Vq(λm) is a highest-`-weight module.

Before venturing into the proof, let us obtain a consequence of Theorem 3.2.5 and Corollary 2.4.1
which describes the structure of the local Weyl modules in terms of the structure of the fundamental
modules. We need the following lemma which is not difficult to establish.

Lemma 3.2.6. Let m > 0, a j ∈ F×, j = 1, . . . ,m. If a j

as
< qZ>0 for j > s, then (ωi1,a1,r1 , · · · ,ωim,am,rm)

is in q-resonant order for any choice of i j ∈ I, r j ∈ Z≥0. In particular, for any choice of a j ∈ F×, j =

1, . . . ,m, there exists σ ∈ S m such that (ωi1,aσ(1),r1 , · · · ,ωim,aσ(m),rm) is in q-resonant order for any choice
of i j ∈ I, r j ∈ Z≥0.

Corollary 3.2.7. Let λ ∈ P+ and write λ =
(∏m

j=1 ωi j,a j

)
for some m ≥ 0, i j ∈ I and a j ∈ F×, j =

1, . . . ,m. Then, there exists σ ∈ S m such that:

Wq(λ) � Vq(ωiσ(1),aσ(1)) ⊗ · · · ⊗ Vq(ωiσ(m),aσ(m)).

Proof. Let σ be as in the previous lemma. Then, by Theorem 3.2.5, Vq(ωiσ(1),aσ(1))⊗ · · ·⊗Vq(ωiσ(m),aσ(m))
is a quotient of Wq(λ). As explained in the paragraph after Corollary 2.4.1, the dimension of Wq(λ) is
equal to the rank of the global Weyl module Wq(wt(λ)) as a right Awt(λ)-module. But Corollary 2.4.1
implies that this rank is exactly the dimension of Vq(ωiσ(1),aσ(1)) ⊗ · · · ⊗ Vq(ωiσ(m),aσ(m)).

Remark 3.2.8. Notice that Corollary 3.2.7 together with Proposition 2.3.3 implies that the qcharacter
of a quantum local Weyl module can be given as a product of fundamental qcharacters. Notice that,
in the classical setting, local Weyl module may not be a tensor product of fundamental modules. ♦

Example 3.2.9. Let g = sl3 and denote by i and j the two distinct elements of I. Let us study the
Weyl module Wq(ωi,aω j,b) with a, b ∈ F×. As remarked above, we have

qch(Wq(ωi,aω j,b)) = qch(Vq(ωi,a)) qch(Vq(ω j,b)).

Recall from Example 3.1.6 that

(3.2.1) qch(Vq(ωi,a)) = ωi,a+ω−1
i,aq2ω j,aq+ω−1

j,aq3 and qch(Vq(ω j,b)) = ω j,b+ω−1
j,bq2ωi,bq+ω−1

i,bq3 .

Therefore,

qch(Wq(ωi,aω j,b)) = ωi,aω j,b + ω−1
i,aq2ω j,aqω j,b + ωi,aωi,bqω

−1
j,bq2

+ ω−1
j,aq3ω j,b + ω−1

i,bq3ωi,a + ωi,bqω
−1
i,aq2ω j,aqω

−1
j,bq2

+ ω−1
i,aq2ω

−1
i,bq3ω j,aq + ωi,bqω

−1
j,bq2ω

−1
j,aq3 + ω−1

i,bq3ω
−1
j,aq3 .
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Notice that, if a/b , q±3, the only dominant `-weight in wt`(Wq(ωi,aω j,b)) is ωi,aω j,b. Therefore, in
that the case, Wq(ωi,aω j,b) � Vq(ωi,a) ⊗ Vq(ω j,b) � Vq(ω j,b) ⊗ Vq(ωi,a) is irreducible.

Let us assume b = aq3. It follows from Lemma 3.2.6 and Corollary 3.2.7 that

Wq(ωi,aω j,aq3) � Vq(ω j,aq3) ⊗ Vq(ωi,a).

Moreover, the above computation shows that 1 ∈ wt`(Wq(ωi,aω j,aq3)). Although this is not sufficient
to conclude that the trivial representation is an irreducible factor of Wq(ωi,aω j,aq3), let us show that
this is indeed true. Notice that, as a Uq(sl3)-module, we have

Wq(ωi,aωi,aq3) � Vq(ωi) ⊗ Vq(ω j) � Vq(ωi + ω j) + Vq(0).

As mentioned earlier, if g = sln, there exist quantum analogues of evaluation maps and, therefore,
there exist Uq(s̃l3)-modules such that the underlying Uq(sl3)-module is isomorphic to Vq(ωi +ω j). The
Drinfeld polynomial of such a module must be of the formωi,aω j,b for some a, b ∈ F×. As seen above,
if a/b , q±3, the associated simple module is 9-dimensional and, hence, cannot be an evaluation
module. Therefore, the Drinfeld polynomial must be either ωi,aω j,aq3 or ωi,aω j,bq−3 . Noticing that
(ωi,aω j,aq3)∗ = ωi,aq6ω j,aq3 , it follows that both Vq(ωi,aω j,aq3) and Vq(ωi,aω j,aq−3) are isomorphic to
Vq(ωi + ω j) as Uq(sl3)-modules. This shows that we have a short exact sequence

0→ Vq(1)→ Wq(ωi,aωi,aq3)→ Vq(ωi,aωi,aq3)→ 0

and, moreover,

qch(Vq(ωi,aω j,aq3)) = ωi,aω j,aq3 + ω−1
i,aq2ω j,aqω j,aq3 + ωi,aωi,aq4ω−1

j,aq5

+ ω−1
i,aq6ωi,a + ωi,aq4ω−1

i,aq2ω j,aqω
−1
j,aq5

+ ω−1
i,aq2ω

−1
i,aq6ω j,aq + ωi,aq4ω−1

j,aq5ω
−1
j,aq3 + ω−1

i,aq6ω
−1
j,aq3 .

Notice that Vq(ωi,aω j,aq3) is `-minuscule and all `-weight spaces are one-dimensional.

One can avoid the use of the existence of quantum evaluation maps in order to conclude the
above. Namely, one can find an explicit expression for a highest-weight vector generating the trivial
representation inside Vq(ωi) ⊗ Vq(ω j). Then, using Proposition 1.4.10 and (3.2.1), one can show that
this highest-weight vector is also a highest-`-weight vector. ♦

Example 3.2.10. Once more, let g = sl3 and denote by i and j the two distinct elements of I. Pro-
ceeding as in the previous example, one can show that Wq(ωi,aωi,b) is irreducible unless b = aq±2.
Moreover, if b = aq2, then Wq(ωi,aωi,aq2) � Vq(ωi,aq2) ⊗ Vq(ωi,a) and we have a short exact sequence

0→ Vq(ω j,aq)→ Wq(ωi,aωi,aq2)→ Vq(ωi,aωi,aq2)→ 0.

In particular,

qch(Wq(ωi,aωi,aq2)) = ωi,aωi,aq2 + ω j,aq + ωi,aω
−1
i,aq4ω j,aq3

+ ωi,aq2ω−1
j,aq3 + ωi,aω

−1
j,aq5 + ω−1

i,aq2ω
−1
i,aq4ω j,aqω j,aq3

+ ω−1
i,aq2ω j,aqω

−1
j,aq5 + ω−1

i,aq4 + ω−1
j,aq3ω

−1
j,aq5
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and

qch(Vq(ωi,aωi,aq2)) = ωi,aωi,aq2 + ωi,aω
−1
i,aq4ω j,aq3 + ωi,aω

−1
j,aq5

+ ω−1
i,aq2ω

−1
i,aq4ω j,aqω j,aq3 + ω−1

i,aq2ω j,aqω
−1
j,aq5 + ω−1

j,aq3ω
−1
j,aq5 .

It follows that ωi,aωi,aq2 = ωi,aq,2 is minuscule. ♦

Assume we have proved Theorem 3.2.5 in the sl2-case and let us deduce the general case.

Proof of Theorem 3.2.5. We proceed by induction on m which clearly starts at m = 1. Let v j, j =

1, . . . ,m be highest-`-weight vectors for Vq(λ j),V = Vq(λ1),V ′ = Vq(λ2) ⊗ · · · ⊗ Vq(λm), and v′ =

v2 ⊗ · · · ⊗ vm. By the induction hypothesis, V ′ = Uq(g̃)v′. Choose a reduced expression ril · · · ri1 for w0

satisfying the property for q-resonance in Definition 3.2.3. By Lemma 3.2.2, it suffices to show that

(3.2.2) v1
ri j ···ri1

⊗ v′ ∈ Uq(g̃i j)(v
1
ri j−1 ···ri1

⊗ v′) for all j = 1, . . . , l.

By Remark 3.2.4, the (m− 1)-tuple of polynomials ((λ2)i j(u), . . . , (λm)i j(u)) is in qi j-resonant order. In
particular, it follows from the sl2-case that

Uq(g̃i j)v
′ = (Uq(g̃i j)v

2) ⊗ · · · ⊗ (Uq(g̃i j)v
m).

On the other hand, it follows from Proposition 3.1.2 that Uq(g̃i j)v
1
ri j−1 ···ri1

is a quotient of the local Weyl

module for Uq(g̃i j) � Uqi j
(s̃l2) with highest-`-weight given by the polynomial (Ti j−1 · · · Ti1λ1)i j(u).

By Corollary 3.2.7 (in the sl2-case), this Weyl module is a tensor product of the form Vqi j
(ωi j,a1) ⊗

· · · ⊗ Vqi j
(ωi j,ak) for some a1, . . . , ak ∈ F×, where k = wt(Ti j−1 · · · Ti1λ1)(hi j) and the order is so that

(ωi j,a1 , . . . ,ωi j,ak) is a tuple of polynomials in qi j-resonant order. By our choice of reduced expression
for w0, the tuple of polynomials

(
(Ti j−1 · · · Ti1λ1)i j(u), (λ2)i j(u), . . . , (λm)i j(u)

)
is in qi j-resonant order.

One easily checks that this implies that (ωi j,a1 , . . . ,ωi j,ak , (λ2)i j , . . . , (λm)i j) is also a tuple of polyno-
mials in qi j-resonant order. Since Uq(g̃i j)v

n is an irreducible Uq(g̃i j)-module for all n ≥ 1 by Lemma
2.2.13, it then follows from the sl2-case that

Uq(g̃i j)(v
1
ri j−1 ···ri1

⊗ v′) = (Uq(g̃i j)v
1
ri j−1 ···ri1

) ⊗ (Uq(g̃i j)v
′).

This clearly implies (3.2.2).

It remains the prove Theorem 3.2.5 for g = sl2. Thus for the remainder of the subsection we set
g = sl2 and, as usual, let i denote the unique element of I. Before continuing, let us remark that the
claim made in Example 2.3.25 that Vq(1, a) ⊗ Vq(1, aq2) is a highest-`-weight module follows easily
from Theorem 3.2.5.

Theorem 3.2.5 will follow from the following Proposition which will enable us to prove Theorem
2.3.20 as well.

Proposition 3.2.11. Let k > 0, a1, . . . , ak ∈ F×, and r1, . . . , rk ∈ Z≥0. If (ωi,a1,r1 , . . . ,ωi,ak ,rk) is in
q-resonant order, then Vq(ωi,a1,r1)⊗ · · · ⊗Vq(ωi,ak ,rk) is a highest-`-weight module. Moreover, the same
holds if k = 2 and (ωi,a1,r1 ,ωi,a2,r2) is in weak q-resonant order.
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Proof of Theorem 2.3.20. We need to prove that, if λ =
∏m

j=1 ωi,a j,r j is the q-factorization of λ ∈P+,
then Vq(λ) � V where V = Vq(ωi,a1,r1)⊗· · ·⊗Vq(ωi,am,rm). Notice that (ωi,a j,r j ,ωi,ak ,rk) and (ω∗i,ak ,rk

,ω∗i,a j,r j
)

are in weak q-resonant resonant order for every j, k = 1, . . . ,m. The second statement of Proposition
3.2.11 and together with Lemma 3.1.10 imply that

Vq(ωi,a j,r j) ⊗ Vq(ωi,ak ,rk) � Vq(ωi,a j,r jωi,ak ,rk) � Vq(ωi,ak ,rk) ⊗ Vq(ωi,a j,r j).

It follows that

V � Vq(ωi,aσ(1),rσ(1)) ⊗ · · · ⊗ Vq(ωi,aσ(m),rσ(m)) and V∗ � Vq(ωi,aσ(1),rσ(1))
∗ ⊗ · · · ⊗ Vq(ωi,aσ(m),rσ(m))

∗

for all σ ∈ S m. It then follows from Lemma 3.2.6 that both V and V∗ are highest-`-weight modules
and we are done by Lemma 3.1.10.

Proof of Theorem 3.2.5 for sl2. Given 1 ≤ l ≤ m, let λl =
∏gl

j=1 ωi,a j,l,r j,l be the q-factorization of λl.
Notice that, by definition of q-resonant order, if (λl, λn) is in q-resonant order, so is (ωi,a j,l,r j,l ,ωi,ak,n,rk,n)
for all 1 ≤ j ≤ gl, 1 ≤ k ≤ gn. Therefore, by Theorem 2.3.20, in order to prove Theorem 3.2.5, it
suffices to prove Proposition 3.2.11.

Remark 3.2.12. Notice that in the proof of Theorem 2.3.20 we use Proposition 3.2.11 with k being
the number of q-factors of λ. In the proof of Proposition 3.2.11 we will perform an induction on k
and use Theorem 2.3.20 with λ having less than k q-factors which, therefore, does not characterize a
circling argument. ♦

Proof of Proposition 3.2.11. We begin with the the second statement. To simplify notation, we set
a1 = a, a2 = b, r1 = m, and r2 = n. Let v j

m, j = 0, . . . ,m, be as in the proof of Theorem 2.3.14 and
similarly define v j

n, j = 0, . . . , n. We first prove that v j
m ⊗ v0

n, v
j−1
m ⊗ v1

n ∈ Uq(g̃)(v0
m ⊗ v0

n) for 0 ≤ j ≤
min{m, n} by induction on j which clearly starts when j = 0. Hence, assume 0 ≤ j < min{m, n} is
such that v j

m ⊗ v0
n ∈ Uq(g̃)(v0

m ⊗ v0
n). By Proposition 1.4.10, given r > 0, we have

x−i,r(v
j
m ⊗ v0

n) = ar,1 v j+1
m ⊗ v0

n + ar,2 v j
m ⊗ v1

n,

for some ar,s ∈ F× with s ∈ {1, 2}. Consider the matrix A = (ar,s) with r, s ∈ {1, 2}. It suffices to show
that det(A) , 0. Using (2.3.7) and (2.3.8) we can compute A precisely:

A =

 [ j + 1]qaqm+n−2 j bqn

[ j + 1]qaqm+n−2 j(aqm−2 j + b (qn − q−n)) (bqn)2

 .
Therefore, det(A) = [ j + 1]qabqm+2n−2 j

(
bq−n − aqm−2 j

)
, 0 since j < min{m, n} and (ωi,a,m,ωi,b,n) is in

weak q-resonant order.

By Lemma 3.2.2, it suffices to show that vm
m ⊗ v0

n ∈ Uq(g̃)(v0
m ⊗ v0

n) which is immediate from the
above computation if m ≤ n. Otherwise, set V = Vq(m, a)⊗Vq(n, b) and observe that (m+n)ωi−mαi =

w0((m + n)ωi − nαi). Since vm
m ⊗ v0

n ∈ V(m+n)ωi−mαi , it follows from Proposition 1.3.7 that it suffices to
show that

V(m+n)ωi−nαi ⊆ Uq(g̃)(v0
m ⊗ v0

n).
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We now show that the above computations imply that

(3.2.3) V(m+n)ωi− jαi ⊆ Uq(g̃)(v0
m ⊗ v0

n) for all 0 ≤ j ≤ n

which completes the proof.

Observe that the vectors v j,l := v j−l
m ⊗ vl

n, l = 0, . . . , j, form a basis of V(m+n)ωi− jαi . We prove (3.2.3)
by induction on j which again clearly starts when j = 0. Thus, assume 0 ≤ j < n is such that (3.2.3)
holds. This implies v j,l ∈ Uq(g̃)(v0

m ⊗ v0
n) for all 0 ≤ l ≤ j. Using Proposition 1.4.10 and (2.3.7) once

more we get

x−i v j,l = [ j − l + 1]qqn−2l(v j−l+1
m ⊗ vl

n) + [l + 1]q(v j−l
m ⊗ vl+1

n )
(3.2.4)

= [ j − l + 1]qqn−2lv j+1,l + [l + 1]qv j+1,l+1 ∈ Uq(g̃)(v0
m ⊗ v0

n).

Setting l = 0 above and recalling that we have already shown that v j+1,0 ∈ Uq(g̃)(v0
m ⊗ v0

n), it follows
that v j+1,1 ∈ Uq(g̃)(v0

m ⊗ v0
n). An obvious induction on l = 0, . . . , j, using (3.2.4) shows that v j+1,l+1 ∈

Uq(g̃)(v0
m ⊗ v0

n) thus proving (3.2.3).

We now prove the first statement of Proposition 3.2.11 by induction on k ≥ 1 which clearly starts
when k = 1. Also, the case k = 2 follows from the second statement. The inductive step will follow
from studying a generalization of the matrix A above. To simplify notation, set V j = V(r j, a j), j =

1, . . . , k. By induction hypothesis, V2 ⊗ · · · ⊗ Vk is a highest-`-weight module. Let v j be a highest-`-
weight vector for V j and vl

j = (x−i )lv j, 0 ≤ l ≤ r j (we dropped the use of divided powers here so that we
get rid of the terms [ j+1]q appearing in the first column of matrix A above). Let also w1 = v2⊗· · ·⊗vk,
and V = Uq(g̃)(v1 ⊗ w1). By Lemma 3.2.2, it suffices to show that vr1

1 ⊗ w1 ∈ V . As before, we prove
this by showing that

(3.2.5) vl
1 ⊗ w1 ∈ V for all 0 ≤ l ≤ r1

by a further induction on 0 ≤ l ≤ r1 which clearly starts when l = 0.

Assume 0 < l < r1 and, by induction hypothesis, that vl−1
1 ⊗ w1 ∈ V . By Proposition 1.4.10, given

s > 0, we have

(3.2.6) x−i,s(v
l−1
1 ⊗ w1) = vl−1

1 ⊗ (x−i,sw1) +

s−1∑
t=0

(x−i,s−tv
l−1
1 ) ⊗ (ψ+

i,tw1).

Since w1 is a highest-`-weight vector, we must have ψ+
i,tw1 = φt,1w1 for some φt,1 ∈ F×. Using (2.3.7)

we get

(3.2.7)
s−1∑
t=0

(x−i,s−tv
l−1
1 ) ⊗ (ψ+

i,twi) =

 s−1∑
t=0

(
a1qr1−2(l+1)

)s−t
φt,1

 vl
1 ⊗ w1.

More generally, set w j = v j+1⊗ . . .⊗ vk and let φt, j be the eigenvalue of ψ+
i,t acting on w j, 1 ≤ j ≤ k−1.

Given 1 ≤ s ≤ k, set

as, j =


s−1∑
t=0

(
a jqr j

)s−t
φt, j, if 1 ≤ j < k

(akqrk)s , if j = k
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Proceeding as above, we get

x−i,s(v
l−1
1 ⊗ w1) = as,1(vl

1 ⊗ w1) + as,2(vl−1
1 ⊗ v1

2 ⊗ w2) + · · · + as, j(vl−1
1 ⊗ v2 ⊗ · · · ⊗ v j ⊗ v1

j ⊗ w j)+

+ · · · + as,k(vl−1
1 ⊗ v2 ⊗ · · · ⊗ vk−1 ⊗ v1

k).

Let v j be the vector being multiplied by as, j above so that x−i,s(v
l−1
1 ⊗ w1) =

∑k
j=1 as, jv j. Consider the

matrix A = (as, j) with 1 ≤ s, j ≤ k. The set β = {v1, . . . , vk} is clearly linearly independent and A is
the matrix whose s-th row is formed by the coordinates of (x−i,s)(v

l−1
1 ⊗ w1) with respect to β. Thus,

α := {x−i,s(v
l−1
1 ⊗ w1) : s = 1, . . . , k} is linearly independent if and only if det(A) , 0. In particular, if

we show that det(A) , 0, it follows that v j is a linear combination of the elements of α. Since α ⊆ V
by induction hypothesis on l, it follows that v1 = vl

1 ⊗ w1 ∈ V which completes the proof of (3.2.5).

The remainder of the proof is dedicated to showing that

(3.2.8) det(A) = qr2+2r3+...+(k−1)rk

 k∏
j=1

b j


∏

j>m

(
b j − bmq2r j

)
where

b j =

a1qr1−2(l−1), if j = 1
a jqr j , otherwise.

Using (3.2.8) one easily sees that det(A) , 0 since (ωi,a1,r1 , . . . ,ωi,ak ,rk) is in q-resonant order.

For proving (3.2.8), observe first that

A =


φ0,1 b1 φ0,2 b2 · · · φ0,k−1 bk−1 bk

φ0,1 b2
1 + φ1,1 b1 φ0,2 b2

2 + φ1,2 b2 · · · φ0,k−1 b2
k−1 + φ1,k−1 bk−1 b2

k
...

...
...

...
s−1∑
t=0
φt,1 bs−t

1 · · · · · ·
s−1∑
t=0
φt,k−1 bs−t

k−1 bk
k


and let

a′s, j =


bs−1

k , if j = k,
s−1∑
t=0
φt, j bs−t−1

j , otherwise,

so that det(A) = (
∏k

j=1 b j) det(A′), where A′ = (a′s, j). Observe also that, since ψi,0 = ki, we have
φ0, j = qr j+1+···+rm . We shall also need the following identities.

(3.2.9) a′s+1, j = b ja′s, j + φs, j for all 1 ≤ j < k

and

(3.2.10) φs, j = qr j+1φs, j+1 + b j+1(qr j+1 − q−r j+1)a′s, j+1 for all 1 ≤ j < k − 1.

The former is easily obtained from the definition of a′s, j while latter is obtained as follows. By Propo-
sition 1.4.10, we have

φs, jw j = ψ+
i,sw j =

s∑
t=0

(ψi,tv j+1) ⊗ (ψi,s−tw j+1)

= (kiv j+1) ⊗ (φs, j+1w j+1) +

s∑
t=1

(ψ+
i,tv j+1) ⊗ (φs−t, j+1w j+1).
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Using (2.3.8), we get ψ+
i,tv j+1 = (b j+1)t[r j+1]q(q − q−1)v j+1 = (b j+1)t(qr j+1 − q−r j+1)v j+1. Therefore,

φs, jw j =

qr j+1φs, j+1 + (qr j+1 − q−r j+1)
s∑

t=1

(b j+1)tφs−t, j+1

 w j

=

qr j+1φs, j+1 + (qr j+1 − q−r j+1)b j+1

s∑
t=1

(b j+1)t−1φs−t, j+1

 w j

=

qr j+1φs, j+1 + (qr j+1 − q−r j+1)b j+1

s−1∑
t′=0

φt′, j+1(b j+1)s−t′−1

 w j

=
(
qr j+1φs, j+1 + (qr j+1 − q−r j+1)b j+1a′s, j+1

)
w j.

It is clear from the above proof of (3.2.10) that φs, j is a polynomial on the elements bm and, hence,
so is det(A′). By looking at the degree of det(A′) as a polynomial on b j for some fixed j, it follows
that, if we show that bmq2r j is a root of det(A′) for all m < j, than these must be all the roots. In other
words, it follows that det(A′) is a nonzero scalar multiple of

∏
j>m(b j−bmq2r j). This scalar is computed

by looking at the coefficient of the monomial b2b2
3 . . . b

k−1
k . Namely, the coefficient of b2b2

3 . . . b
k−1
k in∏

j>m(b j − bmq2r j) is 1 while, in det(A′), it is φ0,1 φ0,2 · · · φ0,k−1 = qr2+2r3+···+(k−1)rk .

Thus, it remains to show that det(A′) = 0 whenever b j = bmq2r j for some 1 ≤ m < j ≤ k. We first
show that det(A′) = 0 if b j+1 = b jq2r j+1 for some 1 ≤ j < k − 1. We will do this by showing that, in
this case, the ( j + 1)-th column of A′ is a scalar multiple of the j-th column. More precisely, we will
show, by induction on s ≥ 1, that

(3.2.11) a′s, j = qr j+1a′s, j+1.

If s = 1, then a′s, j = φ0, j and a′s, j+1 = φ0, j+1 showing that induction starts. Assume (3.2.11) holds for
a′s, j by induction hypothesis and notice that

a′s+1, j
(3.2.9)

= b ja′s, j + φs, j = (b j+1q−2r j+1)(qr j+1a′s, j+1) + φs, j

(3.2.10)
= b j+1a′s, j+1q−r j+1 + qr j+1φs, j+1 + b j+1(qr j+1 − q−r j+1)a′s, j+1

= qr j+1b j+1a′s, j+1 + qr j+1φs, j+1 = qr j+1(b j+1a′s, j+1 + φs, j+1)
(3.2.9)

= qr j+1a′s+1, j+1.

In the second equality above we used both the induction hypothesis and the hypothesis b j+1 = b jq2r j+1 .
This shows that det(A′) = 0 if b j+1 = b jq2r j+1 with 1 ≤ j < k − 1. Similarly one shows that det(A′) = 0
if bk = bk−1q2rk .

It remains to show that det(A′) = 0 if b j = bmq2r j with j − m > 1. We proceed by induction on
k ≥ 2 which was shown to start when we proved the second statement of Proposition 3.2.11. Let
k > 2 and that (3.2.8) holds for (k − 1)-fold tensor products by induction hypothesis. Since det(A′)
is a polynomial on b1, . . . , bk, it depends continuously on these numbers. Therefore, for computing
(3.2.8), we might as well assume that b1, ..., bk are such that det(A′) , 0. Furthermore, we can
also assume that b2, . . . , bk are such that (ωi,a2,r2 , . . . ,ωi,ak ,rk) is in general position. By the induction
hypothesis on k and Theorem 2.3.20 with λ =

∏k
j=2 ωi,a j,r j (which can be used by Remark 3.2.12), we

have isomorphisms

(3.2.12) V1 ⊗ V2 ⊗ · · · ⊗ Vk
ϕσ
−→ V1 ⊗ Vσ(2) ⊗ · · · ⊗ Vσ(k) for all σ ∈ S k, σ(1) = 1.
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Moreover, we can assume ϕσ(v1⊗· · ·⊗vk) = v1⊗vσ(2)⊗· · ·⊗vσ(m). It follows that α = {x−i,s(v
l−1
1 ⊗w1) :

s = 1, . . . , k} is linearly independent if and only if ασ = {x−i,s(v
l−1
1 ⊗ wσ

1 ) : s = 1, . . . , k} is linearly
independent, where wσ

1 = vσ(2) ⊗ · · · ⊗ vσ(k). Since we are assuming that b1, . . . , bk are such that
det(A′) , 0, both α and α′ are linearly independent.

Let Aσ and A′σ be the matrices defined as before using Vσ(2)⊗· · ·⊗Vσ(m) in place of V2⊗· · ·⊗Vk. By
the previous argument, we know that, if 1 ≤ j,m ≤ k are such that σ( j) = σ(m)+1, then b j−bmq2r j is a
factor of det(A′σ). Recall that we defined β = {v1, . . . , vk} and similarly define βσ. By our assumptions
[β] = [α] and [βσ] = [ασ]. Notice also that ϕσ([β]) ⊆ [βσ]. By abuse of notation, let ϕσ denote also
the induced linear map [β]→ [βσ] and observe that [ϕσ]αασ is the identity matrix. Then,

Id = [ϕσ]αασ = [Id]βσασ[ϕσ]ββσ[Id]αβ = (At
σ)−1[ϕσ]ββσAt

and it follows that

(3.2.13) det(Aσ) = det(A) det
(
[ϕσ]ββσ

)
.

It is not difficult to see that det
(
[ϕσ]ββσ

)
is a rational function on b2, . . . , bk. Moreover, if m < j are

such that σ(m) < σ( j), then, for any choice of c ∈ F×, (b j − bmc) is not a factor of det
(
[ϕσ]ββσ

)
. Fix m

and j such that j−m > 1 and let σ be the permutation (m, j−1). Since σ( j) = j = σ(m)+1, it follows
that b j−bmq2r j is a factor of det(A′σ) which is not a factor of det

(
[ϕσ]ββσ

)
. By (3.2.13), b j−bmq2r j must

be a factor of det(A′) as well.

Remark 3.2.13. It should be instructive for the reader to compare the above proof with that of Theo-
rem 2.1.3. In particular, compare (3.2.8) with the determinant of the Vandermonde matrix associated
to a1, . . . , ak. ♦

3.3. Blocks

Let us recall the basics about the block decomposition of Jordan-Hölder categories. Let C be such
a category and recall that every object has a unique splitting into a direct sum of indecomposable
sub-objects.

Definition 3.3.1. Two nonzero indecomposable objects V1,V2 ∈ C are said to be linked if there is no
splitting of C in a direct sum of two full abelian subcategories, say C = C1 ⊕ C2, such that V1 ∈ C1

and V2 ∈ C2. The category C is said to be indecomposable if every two of its indecomposable objects
are linked. ♦

It is easy to see that linkage is an equivalence relation on the subclass of indecomposable objects
of C . The next lemma is a straightforward consequence the Jordan-Hölder Theorem.

Lemma 3.3.2. Let V,W ∈ C be indecomposable. The following are sufficient conditions for V and
W to be linked.

(a) V and W are simple factors of the same indecomposable object.

(b) V and W have a common simple factor.
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Proposition 3.3.3. There exists a unique splitting of C into a direct sum of full indecomposable
abelian subcategoies.

Proof. Let L be the set of equivalence classes of linked indecomposable objects, and given γ ∈ L ,
let Cγ be the full subcategory of C whose objects are direct sums of objects in γ. By the uniqueness
of the decomposition of objects into direct sum of indecomposable sub-objects, we have

(3.3.1) C =
⊕

γ ∈ L
Cγ.

Furthermore, the categories Cγ are indecomposable. Indeed, if that was not the case, let Cδ = C1 ⊕C2

be a nontrivial decomposition of Cδ for some δ ∈ L . Then we can consider the following splitting of
C :

C = C1 ⊕

C2 ⊕
⊕
γ , δ

Cγ

 .
It follows that if V j is an indecomposable object in C j, j = 1, 2, then V1 and V2 are not linked. This
contradicts the definition of Cδ since both V j ∈ Cδ. This proves the existence of such splitting of C .
The uniqueness is now obvious.

Let L be as in (3.3.1). Then, given V ∈ C , there exists unique sub-objects Vγ, γ ∈ L , such that

(3.3.2) V =
⊕

γ ∈ L
Vγ.

Definition 3.3.4. The decomposition (3.3.1) is called the block decomposition of C and the sub-
categories Cγ are called the blocks of C . Similarly, given V ∈ C , the decomposition (3.3.2) is called
the block decomposition of V and the sub-objects Vγ are called the blocks of V . ♦

Example 3.3.5. If C is semi-simple, L coincides with the set of isomorphism classes of simple
objects. ♦

The main goal of this subsection is to give a concrete description, in terms of `-weights, of the set
L and the objects lying in each block in the case that C is the category of finite-dimensional (type 1)
Uq(g̃)-modules (which is obviously a Jordan-Hölder category).

Definition 3.3.6. The group Eq = P/Qq is called the group of elliptic characters of Uq(g̃). Let
εq : P → Eq be the canonical projection. An object V ∈ C is said to have elliptic character γ ∈ Eq if
wt`(V) ⊆ ε−1

q (γ). Given γ ∈ Eq, let Cγ be the full subcategory of C all of whose objects have elliptic
character γ. ♦

Remark 3.3.7. We shall describe generators and relations for the abelian group Eq later on. It will
then become clear that ε−1

q (γ) ∩P+ , ∅ for all γ ∈ Eq. In particular, the subcategories Cγ are all
nonempty. ♦

Notice that Proposition 2.3.3 implies:

Corollary 3.3.8. Let γ, δ ∈ Eq. If V ∈ Cγ and W ∈ Cδ, then V ⊗W ∈ Cγδ.
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The following proposition is straightforward.

Proposition 3.3.9. The category Cγ is an abelian subcategory of C for every γ ∈ Eq.

The next theorem gives the promised description of the set of equivalence classes of linked inde-
composable objects and the modules lying in each block in terms of `-weights.

Theorem 3.3.10. The categories Cγ, γ ∈ Eq, are the blocks of C .

Remark 3.3.11. Recall that if V and W are finite-dimensional simple g-modules (or Uq(g)-modules)
both not isomorphic to the trivial representation, then V ⊗ W is reducible and completely reducible.
Therefore, by Example, 3.3.5, even though V and W belong to a block of the category of finite-
dimensional g-modules, V ⊗ W does not belong to a block. In fact, examples of categories with the
property described in Corollary 3.3.8 appear to be very rare. ♦

Theorem 3.3.10 is a consequence of the following proposition.

Proposition 3.3.12. Let V and W be objects in C .

(i) If V is indecomposable, then V ∈ Cγ for some γ ∈ Eq.

(ii) If V and W are simple and have the same elliptic character, then they are linked.

Proof of Theorem 3.3.10. Part (i) clearly implies that C =
⊕

γ ∈ Eq

Cγ. Therefore, we have found a

splitting of C into a direct sum of full abelian subcategories. On the other hand, part (ii) implies
that, for all γ ∈ Eq, the subcategory Cγ is a full abelian subcategory of a block and, hence, must be
indecomposable. By the uniqueness part of Proposition 3.3.3, this must be the block decomposition
of C .

In order to prove Proposition 3.3.12(i) we will need the following theorem.

Theorem 3.3.13. If V is a finite-dimensional highest-`-weight module of highest-`-weight λ ∈ P+

and µ ∈ wt`(V), then µ ≤ λ.

By Proposition 2.3.3 and Corollary 3.2.7, it suffices to prove Theorem 3.3.13 in the case that V is
a fundamental module. If g = sln, this follows from Example 3.1.6. For general g the proof will be
given in Subsection 4.2. However, since the proof is available for sln, we can use Theorem 3.3.13 in
this case and, in fact, along the proof of its general case, we will make use of the sl2 case. Notice that
the Theorem 3.3.13 immediately implies:

Corollary 3.3.14. If V is a finite-dimensional highest-`-weight module of highest-`-weight λ ∈P+,
then V ∈ Cεq(λ).

Let us show that Theorem 3.3.13 implies part (i) of Proposition 3.3.12.
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Proof of Proposition 3.3.12(i). We claim that it suffices to show that if U and W have different elliptic
characters, then every short exact sequence of the form 0→ U → V → W → 0 splits. Indeed, assum-
ing this, the proof of Proposition 3.3.12(i) is completed as follows. Let V ∈ C be indecomposable and
consider a decomposition series for V: {0} = V0 ↪→ V1 ↪→ · · · ↪→ Vl = V . Let us prove by induction
on l that V j has elliptic character for all 1 ≤ j ≤ l. If l = 1, then V is simple and we are done by
Corollary 3.3.14. Thus, assume l > 1 and, by induction hypothesis, that Vl−1 has elliptic character.
Set U = Vl−1 and W = V/U so that we have a short exact sequence as above. Since W is simple, it
has elliptic character. Since V is indecomposable, the short exact sequence 0 → U → V → W → 0
does not split and it follows from our claim the elliptic characters of U and W must be the same. This
implies V has this same elliptic character.

To prove the claim, let us first consider the case that both U and W are simple. Let λ and µ denote
their highest `-weights, respectively. By turning to the dual sequence if necessary, we can assume
that wt(µ) is not strictly smaller than wt(λ). Notice that this implies that x+

i,rVµ = {0} for all i ∈ I and
r ∈ Z. In particular, there must be a highest-`-weight vector in Vµ. Since λ , µ (otherwise the elliptic
characters of U and W would be the same), it follows that this vector must be in W. If the sequence
did not split, then the submodule of V generated by W would be all of V and, hence, V would be a
highest-`-weight module. But then, Corollary 3.3.14 would contradict the assumption that the elliptic
characters of U and W are different.

The inductive step for proving the claim is actually generic, i.e., it does not depend on which
Jordan-Hödler category we are working at. Namely, suppose we know that C1 and C2 are full abelian
subcategories of Jordan-Hölder category C satisfying: for every two simple objects U ∈ C1 and
W ∈ C2, a short exact sequence of the form 0 → U → V → W → 0 splits. Then, every short exact
sequence of the form 0 → U → V → W → 0 with U ∈ C1 and W ∈ C2 splits. The proof goes by
induction on the length of V . Let π : V → W be the projection having U as kernel. We again use
induction on the length of V . Let us first show that the induction hypothesis indeed brings us to the
analysis of modules of length 2 and only then show that induction starts when the length is 2. We
begin showing that we can reduce to the case that W is simple. If that was not the case, let W ′ be
a proper nonzero submodule of W and consider V ′ = π−1(W ′). Then, U is a proper submodule of
V ′ and we have a short exact sequence 0 → U → V ′ → W ′ → 0. Since, W has elliptic character,
all of its submodules have the same elliptic character, the sequence 0 → U → V ′ → W ′ → 0
splits by the induction hypothesis. Therefore, V ′ � U ⊕ W ′ and we obtain a short exact sequence
0→ U ⊕W ′ → V → W/W ′ → 0. This in turn gives rise the sequence 0→ U → V/W ′ → W/W ′ → 0
which splits by induction hypothesis. But this implies that the sequence 0→ U → V → W → 0. An
obvious sub-induction on the length of W shows that we can assume W is simple. Similarly, we can
use the induction hypothesis to reduce to the case that U is also simple.

Even for sln, with n > 3, there are still a few extra results needed to prove Proposition 3.3.12(ii)
which we have not developed so far. Therefore, we restrict ourselves to n = 2 for the time being. This
is all that we will need for developing the results of the next section which, in particular, will imply
the general case of Theorem 3.3.13. Thus, for the remainder of this subsection, we assume g = sl2
and let i denote the unique element of I. Recall that, in this case, αi,a = ωi,aωi,aq2 ∈P+.

Lemma 3.3.15. Let λ ∈P+ and a ∈ F×. Then, Vq(λ) is a simple factor of both Wq(λ) and Wq(λαi,a).

Proof. In Example 2.3.25 we have seen that there exists a short exact sequence 0 → Vq(1) →
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Wq(αi,a)→ Vq(αi,a)→ 0. Therefore, Vq(λ) is a common simple factor of Wq(λ) and Wq(λ) ⊗Wq(αi,a).
On the other hand, we know that Wq(αi,a) � Vq(ωi,aq2) ⊗ Vq(ωi,a). Moreover, by Corollary 3.2.7,

Wq(λ) � Vq(ωi,a1) ⊗ · · · ⊗ Vq(ωi,am)

for some m ≥ 0 and a1, . . . , am ∈ F×. Therefore,

(3.3.3) Wq(λ) ⊗Wq(αi,a) � Vq(ωi,a1) ⊗ · · · ⊗ Vq(ωi,am) ⊗ Vq(ωi,aq2) ⊗ Vq(ωi,a).

Again, by Corollary 3.2.7, Wq(λαi,a) is a tensor product of fundamental modules and, hence, it is iso-
morphic to a re-ordering of the tensor product on the right-hand-side of (3.3.3). Hence, qch(Wq(λαi,a)) =

qch(Wq(λ) ⊗Wq(αi,a)) and the lemma follows.

Proof of Proposition 3.3.12(ii). Let λ,µ ∈ P+ determine the same element of Eq. Then, there exist
m, n ≥ 0, a1, . . . , am, b1, . . . , bn ∈ F× such that

λ
m∏

j=1

αi,a j = µ
n∏

j=1

αi,b j .

Consider the following two sequences of elements of P+:

λr = λ
r∏

j=1

αi,a j and µs = µ
s∏

j=1

αi,b j for 0 ≤ r ≤ m, 0 ≤ s ≤ n.

Clearly, Vq(λ) is a simple factor of Wq(λ0), Vq(µ) is a simple factor of Wq(µ0), and Wq(λm) = Wq(µn).
Then, since the local Weyl modules are indecomposable, by Lemma 3.3.2, it suffices to show that
Wq(λr) and Wq(λr−1) have a common simple factor for every 1 ≤ r ≤ m and similarly for the sequence
µs. But this follows from Lemma 3.3.15.

3.4. Bibliographical notes

1. Duality

Proposition 3.1.2 was proved originally by V. Chari in [12]. The connection with the theory of
general `-weights and, in particular, with the theory of qcharacters was not considered in that paper
and, therefore, Corollaries 3.1.3 and 3.1.4 were not announced there. Evidently, they easily follow
from that work as seen above (both Corollaries were announced in [19]). An alternate proof of
Corollary 3.1.3 was given in [15, §2.10]. Corollary 3.1.7 is also immediate from the results of [12].
However, the formula for the Drinfeld polynomial of the dual modules was known before the action
of the braid group on the `-weight lattice was considered. Namely, it was proved in [26] that there
existed m ∈ Z such that λ∗i (u) = λw0(i)(qmu) for all i ∈ I. On the other hand, the Drinfeld polynomial
of the double dual (Vq(λ)∗)∗ was already known from an explicit formula for S 2 on an enlargement of
Uq(ĝ) due to Drinfeld [30]. Combining these results one gets the formula for λ∗ given in Remark 3.1.8
without using the braid group at all. The same formula was recovered in [36] using consequences of
the fact that the Frenkel-Mukhin algorithm can be used to compute the qcharacter of fundamental
representations.
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2. Tensor Products

Theorem 3.2.5 was the main result of V. Chari’s work [12] where Lemma 3.2.2 was also proved.
The condition of q-resonant ordering can be made into a very explicit description of the finite set for
the the values of a/b for which the tensor product Vq(ωi,a,m) ⊗ Vq(ωi,b,n) may fail to be a highest-`-
weight module (see [12, Section 6]). Therefore, outside this set and the one for Vq(ωi,b,n)⊗ Vq(ωi,a,m),
these tensor products are isomorphic and, hence, a simple module. Using this, Chari obtained proofs
of conjectures made in [1, 41, 63] on the irreducibility of tensor products of Kirillov-Reshetikhin
modules. The same results were also proved by E. Frenkel and E. Mukhin in [36] using the Frenkel-
Mukhin algorithm for qcharacters which we will study in Section 4.

As seen above, the proof of the general case of Theorem 3.2.5 uses its sl2-version – the first
statement of Proposition 3.2.11 – which was essentially obtained by Chari and Pressley in [24]. The
statement from [24] had the additional hypothesis that r1 ≤ r2 ≤ · · · ≤ rk. Notice that, in this case,
q-resonant ordering is the same as weak q-resonant ordering. This statement was needed in [24] in
order to prove Theorem 2.3.20. The proof of Theorem 2.3.20 we presented above has a point where
it differs from the original one since we used the second statement of Proposition 3.2.11 which was
not stated in [24]. We used this in the proof of Theorem 2.3.20 in order to be able to change the order
of the tensor products. The proof of the second statement of Proposition 3.2.11 was taken from an
earlier version of [58] which is available in the ArXiv.

Some remarks regarding the terminologies “general position” and “q-resonant order” are due.
The first appearance of the term “general position” was in [24] meaning exactly what we mean here.
However, the same term was used in [12] to mean what we are calling q-resonant order. Since “general
position” gives the idea of something which does not depend on ordering, we kept this term for its
original meaning. The choice of the term q-resonant order was made in our joint work with D. Jakelić
[58] where the term weak q-resonant order was created. The choice is based on the term “resonant
order” used in [31] for a related, but not exactly the same, concept. Namely, in [31], a tuple of
fundamental `-weights (ωi1,a1 , . . . ,ωim,am) was said to be in resonant order if the corresponding tensor
product of fundamental representations is a highest-`-weight module. Therefore, Theorem 3.2.5 says
that the present definition of q-resonant order is a sufficient condition for the tuple (ωi1,a1 , . . . ,ωim,am)
to be in resonant order in the sense of [31]. The definition of resonant ordering was extended to the
root of unity setting in [58] and the corresponding version Theorem 3.2.5 was also obtained.

Corollary 3.2.7 which is essentially a consequence of Theorem 3.2.5 and Corollary 2.4.1 was
first announced in [19]. Recall from Subsection 2.4 that Corollary 2.4.1 is related to the study of
the character or dimension of the Weyl modules. Therefore, several results related to this study are
indirectly being used in the proof of Corollary 3.2.7.

In this section we were mostly concerned with the question “when is the tensor product of simple
modules a highest-`-weight module”. Another interesting question is “when is the tensor product of
simple modules a simple module as well?”. In the sl2 case, this is answered by Theorem 2.3.20 and
Corollary 2.3.21. The answer can be stated as the following corollary.

Corollary 3.4.1. Let g = sl2 and suppose V1, · · · ,Vm are simple Uq(g̃)-modules. Then, V1 ⊗ · · · ⊗ Vm

is simple if and only if Vr ⊗ Vs is simple for all r , s. In particular, the tensor powers of a simple
module is simple.

It has been recently proved by D. Hernandez in [50] that we can remove the assumption g = sl2
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from the first statement of the above corollary (but not from the second!). The works [50, 51] have
drawn attention to a very important class of representations which was not much studied until then –
that of prime representations. A prime representation is a simple representation which is not isomor-
phic to a tensor product of other two nontrivial representations. Evidently, every simple representation
must be a tensor product of prime representations. The classification of prime representations and the
description of their qcharacters is one of the main questions to be answered in the direction of under-
standing the tensor structure of the category. It follows from Theorem 2.3.20 and Corollary 2.3.21
that, if g = sl2, a representation is prime if and only if it is an evaluation module. It is known that
all minimal affinizations in the sense defined by Chari in [10] are prime (see [15, §7.1]), but there
are examples of prime representations which are not minimal affinizations. As we mentioned earlier,
there exists quantum analogues of evaluation maps when g = sln and, therefore, all minimal affiniza-
tions are evaluation modules in this case. One may then expect that every simple finite-dimensional
Uq(s̃ln)-module is a tensor product of evaluation representations just as in the sl2 case (Theorem
2.3.20). However, this is not true. Using the relation with cluster algebras, Hernandez and Leclerc
gave an example of a prime representation which is not an evaluation module in the case that g = sl3
– its Drinfeld polynomial is ωi,aq,2ω j,aq4,2 (where i and j are the two distinct elements of I) and its
simple factors as Uq(g)-module are Vq(2θ) and Vq(θ) both with multiplicity one. The existence of
such example is another reason for the theory of qcharacter to be so much more intricate in the quan-
tum setting in comparison with its almost trivial description in the classical context. By Proposition
2.3.3, the description of the qcharacters of the prime representations completes one possible way of
describing the qcharacters of all simple modules. As we remarked in [58], Theorem 3.2.5 provides an
algorithm for deciding if the simple module associated to a given dominant `-weight λ is not prime.
Namely, if λ = µν for some nontrivial µ, ν ∈ P+ such that both (µ, ν) and (ν,µ) are in q-resonant
order, then Vq(λ) is isomorphic to Vq(µ) ⊗ Vq(ν) and, hence, is not prime. This was also remarked by
Chari in a talk whose video is available online [13]. At some point, it should be interesting to try to
turn such algorithm into some explicit sufficient condition for non-primality.

3. Blocks

Theorem 3.3.13 implies that the general quantum version of Corollary 2.3.16 holds. Recall that
the corresponding classic result saying that the weights of highest-weight module are smaller than
the highest weight is trivially established. The reader is already noticing that the proof of the `-
analogue of this (Theorem 3.3.13) requires a great deal of more work. So far we have proved it only
when g = sln. The general case will follow from the results of Subsection 4.2 which require some
results on the combinatorial aspects of the theory of qcharacters to be developed in Subsection 4.1.
It turns out that the results needed to complete the proof of Theorem 3.3.13 have a strong relation
with the block decomposition of the category of finite-dimensional Uq(s̃l2)-modules. We will leave
the bibliographical notes regarding the proof of Theorem 3.3.13 to be given in Subsection 4.4.

The description of the blocks of the category of finite-dimensional Uq(g̃)-modules was originally
obtained in a joint work with by P. Etingof [31]. However, the definition of elliptic characters was
very different than the one presented here. The original definition (under the name of elliptic central
characters by analogy with the fact that the blocks of category O are given by central characters)
was in terms of the action of the R-matrix of Uq(g̃) on certain tensor products. Because of this, the
original proof of Theorem 3.3.10 actually required the assumption that F ⊆ C and q is not in the unity
circle! On the other hand, it had the advantage that Proposition 3.3.12(i) followed essentially from the
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definition of elliptic characters. In particular, there was no need of the knowledge of Weyl modules
which were not mentioned at all in [31]. The version presented here is taken from a joint work with
V. Chari [19], where the connection of elliptic characters and qcharacters was established (the term
“central” was dropped from the terminology due to the lack of an actual meaning and qcharacters
were renamed `-characters in [19] – a terminology abandoned due to historical reasons as mentioned
previously). In a joint work with D. Jakelić [58], we showed that the theory of limits q → ξ, ξ ∈ F×,
can be used to extend Theorem 3.3.10 to the root-of-unity setting (in Lusztig’s sense). This also works
for the limit q → 1 which then describes the blocks of the category of finite-dimensional g̃-modules
which was previously obtained in [18]. The elliptic characters were renamed spectral characters in the
q→ 1 limit since their elliptic nature degenerates into a spectral nature (depends only on the spectral
parameters of the dominant `-weights of the module). Let us explain what this elliptic nature is in the
sl2 case. To make things clearer, we need the following lemma.

Lemma 3.4.2. Let g = sl2. The group Eq is isomorphic to the abelian group with generators γa, a ∈
F×, satisfying the defining relations γaγaq2 = 1 for all a ∈ F×.

Proof. Denote by G the group defined by the aforementioned generators and relations. Notice that
there exists a unique surjective homomorphism G → Eq such that γ 7→ εq(ωi,a). This is clear from the
fact that αi,a = ωi,aωi,aq2 . Injectivity follows easily from the fact that F[u] is a unique factorization
domain.

In particular, we have γaq4 = γaq4(γaq2γa) = (γaq4γaq2)γa = γa. It follows that the parameterizing
set of distinct generators of the group of elliptic characters is the elliptic curve F×/q4Z. Notice that
when q→ 1 the elliptic curve degenerates to F× and the group of elliptic characters degenerates to the
group of functions γ : F× → P/Q with finite-support. We shall obtain the general version of Lemma
3.4.2 below, from where we will see that the parameterizing set of distinct generators of the group
of elliptic characters is the elliptic curve F×/q2r∨h∨Z, except in the case of algebras of type Dn with n
even which is a little more complicated (the complication degenerates in the q → 1 limit to the fact
that P/Q � Z4 if n is odd and P/Q � Z2 × Z2 if n is even). Finally, observe that F× is in bijection
with the set of maximal ideals of F[t, t−1]. Therefore, in the context of the algebras of the form g ⊗ A,
one should expect, after what we commented in Subsection 2.4, that the blocks are parameterized
by functions γ : specm(A) → P/Q with finite-support. This agrees with the results of R. Kodera
[66] where the first Ext groups between simple modules was obtained. The results of Kodera were
generalized to the context of equivariant map algebras very recently by E. Neher and A. Savage in
[80]. It is interesting to notice that [80] avoids the use of Weyl modules in the proof of the analogue of
Theorem 3.3.10. It should be interesting to transport this method to the quantum setting making the
argument free of Corollary 3.2.7 and, therefore, free of the use of global crystal basis results (recall
that the proof of Corollary 3.2.7 depends on Corollary 2.4.1 whose available proofs for general g
depend on crystal arguments). We also remark that the theory of limits q → ξ can be used alongside
the theory of reduction modulo p to obtain results in positive characteristic. We shall describe this in
a more precise manner in a joint work with D. Jakelić which is ongoing (see also [55] for the case of
hyper loop algebras).



4. Algorithms for qcharacters
We now return to the theory of qcharacters and study a few algorithms designed to compute the
qcharacter of certain classes of simple Uq(g̃)-modules. We begin with the first to be proposed, the
Frenkel-Mukhin algorithm, and present the proof that it works for `-minuscule modules. We then
present the class of Kirillov-Reshetikhin modules which are all `-minuscule and give a few other
examples where the algorithm works and also one for which it does not. We also present an algorithm
for computing the qcharacter of fundamental representations in terms of the braid group action on the
`-weight lattice which works in the case that the underlying simple Lie algebra is not of exceptional
type.

4.1. The Frenkel-Mukhin algorithm

The goal of this subsection is to describe the first algorithm proposed for computing the qcharacter
of simple modules Vq(λ) - the Frenkel-Mukhin algorithm. It is essentially an `-analogue of a classic
algorithm for computing the character of minuscule modules. The main result of the subsection is
a sufficient condition for the algorithm to actually return the correct desired qcharacter. In particu-
lar, this condition is satisfied by all minuscule `-weights. Our description of the algorithm makes
use of the block decomposition of the category of finite-dimensional Uq(s̃l2)-modules described in
Subsection 3.3.

Definition 4.1.1. Let J ⊆ I. Denote by PJ the subgroup of P+ generated by ω j,a, j ∈ J, a ∈ F×
and set P+

J = P+ ∩PJ. Similarly, let QJ be the subgroup generated by α j,a, j ∈ J, a ∈ F× and
Q±

J = Q±
q ∩QJ. The unique group homomorphism ρJ : P → PJ which is the identity on PJ and

has PI\J as its kernel is called the J-restriction homomorphism. An element µ is called J-dominant
in ρJ(µ) ∈ P+

J . Denote by PJ,+ the set of all J-dominant `-weights. Set also EJ = P/QJ and
let εJ : P → EJ be the canonical projection. Let τJ : P → PJ × EJ be the homomorphism
τJ(µ) = (ρJ(µ), εJ(µ)). We shall refer to EJ as the group of J-elliptic characters of Uq(g̃). ♦

Remark 4.1.2. The subgroup PJ can be naturally identified with the `-weight lattice of Uq(g̃J) and
similarly for the subgroup QJ. Under the aforementioned identification, the group PJ/QJ gets iden-
tified with the group of elliptic characters of Uq(g̃J). Notice that this is not the same as the group
of J-elliptic characters EJ, unless J = I. When J = {i} for some i ∈ I, we shall use the shortened
notations Pi,Qi, τi, and so on. Notice that, under the identification of Pi with the `-weight lattice
of Uqi(s̃l2), ρi(µ) is identified with the rational function µi(u). Thus, we shall write µi(u) or simply µi
instead of ρi(µ) when convenient. ♦

Lemma 4.1.3. Let J ⊆ I and γ ∈ EJ. Then, τJ and the restriction of ρJ to ε−1
J (γ) are injective.

Proof. Suppose that µ ∈ ker(τJ). In particular, µ ∈ ker(εJ) and, therefore, µ ∈ QJ. Identifying PJ

and QJ with the corresponding `-lattices of Uq(g̃J), it follows from Lemma 2.3.8 that QJ is freely
generated by ρJ(α j,a), j ∈ J, a ∈ F×. Therefore, since µ ∈ ker(ρJ) and ρJ is the identity on PJ, it
follows that µ = 1.

Now suppose µ, ν ∈ ε−1
J (γ) and ρJ(µ) = ρJ(ν). It follows that τJ(µ) = τJ(ν) and, hence, µ = ν.
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Proposition 4.1.4. Let V be a finite-dimensional Uq(g̃)-module, i ∈ I, and γ ∈ Ei. Then,

Vγ =
⊕

µ ∈ ε−1
i (γ)

Vµ

is a Uq(g̃i)-submodule of V . In particular, V =
⊕

δ ∈ Ei

Vδ.

Proof. Recall the relation, [h j,s, x±i,r] = ±1
s [sc ji]q j x

±
i,r+s, i, j ∈ I, r, s ∈ Z, s , 0. Given j ∈ I, consider

h̃ j,s = h j,s −
[sc ji]q j

[2s]qi
hi,s, and notice [h̃ j,s, x±i,r] = 0 for all j ∈ I, r, s ∈ Z, s , 0. Consider also the

subalgebra U⊥i of Uq(h̃) generated by h̃ j,s, j , i, s , 0, and notice that Uq(h̃) is generated by U⊥i
together with Uq(h̃i) = Uq(h̃) ∩Uq(g̃i) and Uq(h). Moreover, the elements of U⊥i commute with those
of Uq(g̃i) by definition.

Since V is finite-dimensional, we can write V =
m⊕

n = 1
Vn where each Vn is a generalized eigenspace

for the action of the elements of U⊥i . Notice that, since the elements of U⊥i commute with those of
Uq(g̃i), each of the subspaces Vn is a Uq(g̃i)-submodule of V . Let

Vn =
ln⊕

r = 1
Vn,l

be the block decomposition of the Uq(g̃i)-module Vn. Notice that, since Uq(h̃) is commutative, we
have

Vn,l =
⊕

µ ∈P
Vn,l ∩ Vµ for all n, l.

Set wt`(Vn,l) = {µ ∈P : Vn,l∩Vµ , {0}}. By the sl2 case of Theorem 3.3.10, the i-th rational functions
of the `-weights µ lying in wt`(Vn,l) can be obtained from each other by successive multiplication by
elements of the form ρi(α±1

i,a ) with a ∈ F×. Let µ, ν ∈ wt`(Vn,l) for some n, l, be such that ρi(µ) =

ρi(ν)ρi(αi,a) for some a ∈ F×. We claim that, in this case, we must have µ = ναi,a. Assuming this, it
follows that Vn,l ⊆ Vγ where γ = εi(µ), which completes the proof.

Let v be an eigenvector for the action of Uq(h̃) associated to ν and w be one associated to µ. We
now perform a computation similar to that at end of the proof of Proposition 3.1.2. Let µ j,s and ν j,s be
the eigenvalues of the actions of h j,s on w and v, respectively. Then,∑

r≥0

Λ j,rur

 w = exp

−∑
s>0

h j,s

[s]q j

us

 w = exp

−∑
s>0

µ j,s

[s]q j

us

 w = µ j(u) w

and∑
r≥0

Λ j,rur

 v = exp

−∑
s>0

h j,s

[s]q j

us

 v = exp

−∑
s>0

ν j,s

[s]q j

us

 v = ν j(u) v.

For j = i, we know that µi(u) = νi(u)(1 − au)(1 − aq2
i u) (since ρi(αi,a) = ωi,aωi,aq2

i
). Therefore,

exp

−∑
s>0

µi,s

[s]qi

us

 = exp

−∑
s>0

νi,s

[s]qi

us

 exp
(
ln

(
(1 − au)(1 − aq2

i u)
))

= exp

−∑
s>0

(
νi,s

[s]qi

+
as(1 + q2s

i )
s

)
us

 .
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In other words,

(4.1.1) µi,s = νi,s + as [s]qi

s
(1 + q2s

i ) = νi,s + (aqi)s [2s]qi

s
for all s ∈ Z, s , 0.

Recall that Vn is a generalized eigenspace for the action of U⊥i . Therefore, v and w must be eigenvec-
tors for the action h̃ j,s associated to the same eigenvalue, say λ j,s. This implies,

h j,sw =

(
h̃ j,s +

[sc ji]q j

[2s]qi

hi,s

)
w =

(
λ j,s +

[sc ji]q j

[2s]qi

µi,s

)
w = µ j,s w

and

h j,sv =

(
h̃ j,s +

[sc ji]q j

[2s]qi

hi,s

)
v =

(
λ j,s +

[sc ji]q j

[2s]qi

νi,s

)
v = ν j,s w.

Using (4.1.1) we get,

µ j(u) = exp

−∑
s>0

(
λ j,s

[s]q j

+
[sc ji]q j

[s]q j[2s]qi

µi,s

)
us


= exp

−∑
s>0

(
λ j,s

[s]q j

+
[sc ji]q j

[s]q j[2s]qi

(
νi,s + (aqi)s [2s]qi

s

))
us


= ν j(u) exp

−∑
s>0

(
(aqi)s [sc ji]q j

s[s]q j

)
us

 = ν j(u) exp

−1−c ji∑
r=0

∑
s>0

1
s

(
aqiq

−c ji−1−2r
j u

)s


= ν j(u)
−1−c ji∏

r=0

(
1 − aqsi−s j(c ji+1+2r)u

)−1
= (νω−1

j,aqi,−c ji
) j(u).

Finally, a quick glance at Definition 2.3.6 and we see that µ = ναi,a.

Definition 4.1.5. Let V be a finite-dimensional Uq(g̃)-module and i ∈ I. The decomposition V =⊕
γ ∈ Ei

Vγ will be referred to as the i-th elliptic decomposition of V . ♦

Remark 4.1.6. Assuming Theorem 3.3.10, the above proposition and definition can be easily gener-
alized for any subset J of I. Notice that the i-th elliptic decomposition of V is not the same as the i-th
block decomposition of V (the block decomposition of V when regarded as a Uq(g̃i)-module). Indeed,
identifying the group of elliptic characters of Uq(g̃i) with the subgroup E i = Pi/Qi of Ei (the image
of Pi in Ei under εi), the i-th block decomposition of V can be described as follows. Given δ ∈ E i,
the block of V associated to δ is

Vδ =
⊕

µ ∈ ε−1
i (δ)

Vµ.

Notice that if µ, ν ∈ P are such that εi(µ) = εi(ν), then Vµ and Vν are subspaces of the same block
of the Uq(g̃i)-module V . In other words, given γ ∈ Ei, Vγ is contained in a block. However, one can
easily produce an example of µ, ν ∈ wt`(V) for some Uq(g̃)-module V such that Vµ and Vν are in the
same block of the Uq(g̃i)-module V , but εi(µ) , εi(ν). Therefore, the i-th elliptic decomposition of V
is finer than its i-th block decomposition. ♦
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Let i ∈ I. By Theorem 3.3.13, given µ ∈Pi,+, the qcharacter of Vq(µi) is of the form

(4.1.2) qch(Vq(µi)) = µi

1 +

m∑
j=1

ρi(η j)

 for some unique m ≥ 0, η j ∈ Q−
i , j = 1, . . . ,m.

Set

(4.1.3) ζ i
µ = µ

1 +

m∑
j=1

η j


where m and η j are given by (4.1.2). Let γ ∈ Ei. Since the restriction of ρi to ε−1

i (γ) is injective by
Lemma 4.1.3, given a Uq(g̃)-module V , there exist unique m > 0,µ1, . . . ,µm ∈ wt`(V) ∩ ε−1

i (γ) such
that

(4.1.4) qch(Vγ) =

m∑
j=1

[Vγ : ρi(µ j)] qch(Vq(ρi(µ j))).

Moreover, if we set

(4.1.5) ζ(Vγ) =

m∑
j=1

ζ i
µ j
,

where m and µ j are as in (4.1.4), it follows from Proposition 4.1.4 that

(4.1.6) qch(V) =
∑
γ∈Ei

ζ(Vγ) and wt`(V) =
⊔

γ ∈ Ei

wt`(ζ(Vγ)).

This proves:

Proposition 4.1.7. Let V be a Uq(g̃)-module and i ∈ I. Then, there exist unique m > 0,µ1, . . . ,µm ∈

wt`(V) ∩Pi,+ such that

(4.1.7) qch(V) =

m∑
j=1

ζ i
µ j
, wt`(V) =

m⊔
j = 1

wt`(ζ i
µ j

),

and Vγ =
⊕

j : εi(µ j) = γ
V(µ j) for all γ ∈ Ei.

For notational convenience, we set ζ i
µ = µ if µ is not i-dominant.

Definition 4.1.8. The element ζ i
µ is called the i-th expansion of µ. The decompositions (4.1.7) are

called the i-th sl2 decompositions of qch(V) and wt`(V), respectively. We will refer to each subset of
the form wt`(ζ i

µ) appearing in (4.1.7) as an i-stratum of wt`(V). We say that µ ∈ P is an i-root of
wt`(V) if wt`(ζ i

µ) is an i-stratum of wt`(V). Let [Vεi(µ) : µi] denote the multiplicity of µ as an i-root of
wt`(V). ♦
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The set Z[P] can be equipped with the following partial order: χ ≤ χ′ if χ(µ) ≤ χ′(µ) for all
µ ∈P . In particular, we write χ ≥ 0 if χ ∈ Z≥0[P]. Notice that (4.1.7) implies

(4.1.8)
∑
µ∈P

[Vεi(µ) : µi] ζ
i
µ(ν) = qch(V)(ν) for all ν ∈P .

Proposition 4.1.7 enables us to equip wt`(V) with a structure of I-colored quiver with multiplici-
ties. Let us first establish some terminology about such objects.

Definition 4.1.9. A quiver Γ is said to be I-colored if it is equipped with a function from its set of
arrows to I. Γ is said to be a quiver with multiplicities if is equipped with a function from its set of
vertices to Z>0. Given a quiver Γ, a vertex v which is connected to any other vertex of Γ by an oriented
path is called a root of Γ. If Γ has a unique root and the root has no incoming arrow, we shall say that
Γ is a tree. ♦

The structure of I-colored quiver with multiplicities on wt`(V) is constructed as follows. The
underlying set of vertices is wt`(V) itself and the multiplicity of µ is qch(V)(µ). Given µ, ν ∈ wt`(V),
there is an arrow of color i from µ to ν only if µ = ναi,a for some a ∈ F×. In that case, the number of
I-colored arrows from µ to ν is the number of i-strata of wt`(V) containing both µ and ν.

Definition 4.1.10. We refer to the above constructed quiver as the Frenkel-Mukhin quiver of V . Set
ci

V(µ) = qch(V)(µ) − [Vεi(µ) : µi]. ♦

Remark 4.1.11. By definition, if µ is not an i-root (in particular, if µ is not i-dominant), then ci
V(µ) =

qch(V)(µ). Since, when there is an i-colored arrow µ ν-i it implies that µ = ναi,a for some
a ∈ F×, we shall actually record the information about a in the quiver by drawing µ ν-

(i,a)
. Also,

if qch(V)(µ) = m and qch(V)(ν) = n, we draw mµ nν-
(i,a)

. ♦

Example 4.1.12. Let g = sl2 and i be the unique element of I. The Frenkel-Mukhin quiver of Vq(m, a)
is

µ0 µ1 µ2 ··· µm-
(i,aqm−1)

-
(i,aqm−3)

-
(i,aqm−5)

-
(i,aq1−m)

where µ0 = ωi,a,m. If a/b < {1, q±2}, then the Frenkel-Mukhin quiver of Vq(ωi,aωi,b) � Vq(1, a) ⊗
Vq(1, b) is

µ1

λ µ3

µ2

@
@@R

(i,b)

�
���

(i,a)

@
@@R(i,b) �

���
(i,a)

where λ = ωi,aωi,b. If a = b, then Vq(λ) � V(1, a)⊗2 and the quiver is

λ 2µ1 µ2-
(i,a)

-
(i,a)

.

If b = aq±2, then Vq(λ) � Vq(2, aq) and the quiver was given above. Notice that, in this case, the
quiver of the Weyl module Wq(λ) is the disjoint union of the quivers of Vq(λ) and Vq(1). We draw the
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case b = aq2:
λ µ1 µ2

1

-
(i,aq2)p p p p p p p pR(i,a)

-
(i,a)

p p p p p
p p p�
(i,aq2)

The two dashed arrows above are not in the Frenkel-Mukhin quiver since the trivial representation
is a submodule of Wq(λ) and, hence, 1 is in a different stratum than the other `-weights. However,
1 ∈ wt`(Wq(λ)). The reader is invited to compare this fact with Example 4.2.14 below. ♦

Example 4.1.13. Let g = sl2 and i be the unique element of I. Let also V have simple factors Vq(ωi,a)
and Vq(ω2

i,aωi,aq2). Set µ0 = ω2
i,aωi,aq2 and µ1 = µ0α

−1
i,a = ωi,a. Notice that Vq(µ0) � Vq(1, a)⊗Vq(2, aq).

Then, the Frenkel-Mukhin quiver quiver of V is

µ0

2µ1 µ2

µ3 2µ4

µ5

@
@@R

(i,aq2)�
��	

(i,a)

�
��	

(i,a) @
@@R(i,aq2)

�
��	 (i,a)

?
(i,a)

The above quiver is obtained from the quivers of Vq(µ1) and Vq(µ0) which can be computed using the
previous example and are given by:

µ1

µ3

�
��	

(i,a)
and

µ0

µ1 µ2

2µ4

µ5

@
@@R

(i,aq2)�
��	

(i,a)

@
@@R(i,aq2)

�
��	 (i,a)

?
(i,a)

respectively. ♦

Proposition 4.1.14. The Frenkel-Mukhin quiver of a simple finite-dimensional Uq(s̃l2)-module is a
tree where the root is the highest `-weight.

Proof. For evaluation modules this is easily seen from the formulas of Theorem 2.3.14. The general
case is easily deduced from Theorem 2.3.20.

Corollary 4.1.15. Let V be a finite-dimensional Uq(g̃)-module, µ ∈ wt`(V), and i ∈ I. If µ has no
incoming arrow of color i, then µ is an i-root and qch(V)(µ) = [Vεi(µ) : µi].
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Definition 4.1.16. Let χ ∈ Z[P], χ ≥ 0. A coloring of χ is a function from P to ZI
≥0,µ 7→ (ci

χ(µ))i∈I ,
such that ci

χ(µ) ≤ χ(µ) for all i ∈ I. The trivial coloring is the function given by ci
χ(µ) = 0 for all i ∈ I

and µ ∈ P . An element µ ∈ wt`(χ) is said to be admissible with respect to a given coloring of χ if
µ is i-dominant for all i ∈ I such that ci

χ(µ) < χ(µ). We shall simply say that µ is admissible when it
is clear which coloring has been chosen. A coloring of χ is said to be an admissible coloring if µ is
admissible for every µ ∈P . ♦

Suppose χ ∈ Z≥0[P] has been colored and let i ∈ I. Given µ ∈ wt`(χ), define a new colored
element χi

µ ∈ Z≥0[P] by

(4.1.9) χi
µ(ν) = max

{
χ(ν), ci

χ(ν) + (χ(µ) − ci
χ(µ)) ζ i

µ(ν)
}

and

(4.1.10) c j
χi
µ
(ν) =

c j
χ(ν) + δi j (χ(µ) − ci

χ(µ))ζ i
µ(ν), if ν ∈ wt`(χ),

δi j χ
i
µ(ν), otherwise.

One easily sees that χi
µ is a well-defined colored element and we have equality of colored elements:

(χi
µ) j
µ = (χ j

µ)i
µ for all i, j ∈ I

Notice also that χi
µ = χ if µ is not i-dominant and

χi
µ(ν) = (χ(µ) − ci

χ(µ)) ζ i
µ(ν) if ν < wt`(χ).

Definition 4.1.17. Let χ ∈ Z≥0[P] be colored. The colored element χi
µ is called the i-th expansion of

χ with respect to µ. The expansion of χ with respect to µ is the element χµ = (· · · (χi1
µ )i2
µ · · · )

in
µ where

n = |I| and i1, . . . , in is a choice of ordering on I. Given µ ∈ P, an expansion of χ with respect to
µ is an element of the form χµ = (· · · (χµ1

)µ2
· · · )µ j

for some choice of ordering µ1, . . . ,µm of the set
{µ ∈ wt`(χ) : wt(µ) = µ}. ♦

The Frenkel-Mukhin algorithm, which we now describe, is recursive procedure for approximating
the qcharacter of the simple Uq(g̃)-modules by successive expansion beginning from the highest `-
weight. It essentially tries to “guess” what the i-roots are (counted with multiplicities). Notice that, if
all the i-roots are found for some i, then the qcharacter can be reconstructed using (4.1.7).

Definition 4.1.18. Let λ ∈ P+, λ = wt(λ), and choose a total ordering µ0, µ1, . . . , µm of the finite set
wt(λ) such that µr < µs only if r > s (in particular, µ0 = wt(λ) and µm = w0(λ)). Define colored
elements χr, r ≥ 0, recursively by letting χ0 = λ be trivially colored and, for r ≥ 0, χr+1 = (χr)µr for
some choice of expansion with respect to µr. Set

FM(λ) = χm = ((· · · ((χ0)µ1)µ2) · · · )µm−1 .

The algorithm is said to have failed at step r < m if χr is not admissibly colored. ♦

A priori, FM(λ) depends on the choices of orderings made, but we shall not incorporate this
dependence in the notation. It easily follows from the definition of expansions that

(4.1.11) µ ∈ wt`(FM(λ)) only if µ ≤ λ

regardless of the choices of orderings made. The following is the main theorem of this subsection.
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Theorem 4.1.19. Let λ ∈ P+ and V = Vq(λ). If FM(λ)(µ) = qch(V)(µ) for all µ ∈ P+, then
FM(λ) = qch(V). In particular, this is the case if λ is minuscule.

Proof. Since the condition FM(λ)(µ) = qch(V)(µ) for all µ ∈P+ is obviously satisfied for minuscule
`-weights, the second statement is immediate from the first. The first statement clearly follows if we
prove that the following hold for all 0 ≤ r < m:

(ar) The algorithm does not fail at step r.

(br) χr(ν) ≤ qch(V)(ν) for all ν ∈P .

(cr) If ν ∈ wt`(V) is such that wt(ν) = µs for some s ≤ r, then χr(ν) = qch(V)(ν). In particular, all
arrows of the Frenkel-Mukhin quiver outgoing from ν reach elements in wt`(χr+1).

(dr) c j
χr (ν) = c j

V(ν) for all j ∈ I and ν ∈ wt`(χr).

The above statements will be be proved by induction on r ≥ 0 which clearly starts when r = 0. Thus,
assume r ≥ 0 and that (xr′) holds for x=a,b,c,d and r′ ≤ r.

Let µ ∈ wt`(χr) be such that wt(µ) = µr and suppose ci
χr

(µ) < χr(µ) for some i ∈ I. By (cr) and
(dr), we have ci

V(µ) < qch(V)(µ) and, hence, µ is i-dominant by Remark 4.1.11. This proves (ar+1).

Fix ν ∈ P and let us prove (xr+1) for ν with x=b,c,d. Suppose first that ν < wt`(ζ i
µ) for any

i ∈ I,µ ∈ wt`(χr) such that wt(µ) = µr. In this case χr+1(ν) = χr(ν) and ci
χr+1

(ν) = ci
χr

(ν) for all i ∈ I.
In particular, (br+1) and (dr+1) follow immediately while (cr+1) follows in case wt(ν) = µs with s ≤ r.
Suppose ν is as in (cr+1) with wt(ν) = µr+1. If ν ∈ P+, then FM(λ)(ν) = qch(V)(ν) by hypothesis.
Since no `-weight of weight µr+1 is obtained by the expansions performed after step r, we must have
χr+1(ν) = FM(λ)(ν). Otherwise, let i ∈ I be such that µ is not i-dominant. By Remark 4.1.11 and
(dr+1), we have qch(V)(ν) = ci

V(ν) = ci
χr+1

(ν). Since ci
χr+1

(ν) ≤ χr+1(ν) by definition of coloring of an
element, we conclude qch(V)(ν) ≤ χr+1(ν). Finally, by (br+1) we have qch(V)(ν) ≥ χr+1(ν) and (cr+1)
follows.

It remains to consider the case ν ∈ wt`(ζ i
µ) for some i ∈ I,µ ∈ wt`(χr) such that wt(µ) = µr.

In particular, µr − wt(ν) is a nonnegative multiple of αi and, hence, if j , i, the j-expansions with
respect to µr do not affect χr+1(ν) nor the coloring of χr+1 at ν. This implies (dr+1) with j , i. Also,
we can assume ν , µ, otherwise all statements follow by induction hypothesis on r. Moreover, µ is
i-dominant and qch(V)(µ) − ci

V(µ) = [Vεi(µ) : µi]. By (cr) and (dr) this is equal to χr(µ) − ci
χr

(µ). We
now study separately the cases ν ∈ wt`(χr) and ν < wt`(χr).

1) Assume ν ∈ wt`(χr). Then, by (dr), ci
χr

(ν) = ci
V(ν). This implies that all the i-strata containing ν

were already obtained at the step r − 1. In particular, ν cannot be an i-root and, hence, qch(V)(ν) =

ci
V(ν). Also, we must have [Vεi(µ) : µi] = 0 for all µ such that wt(µ) = µr. This implies χr+1(ν) = χr(ν)

and ci
χr+1

(ν) = ci
χr

(ν) = ci
V(ν) which immediately implies (br+1) and (dr+1). But then, qch(V)(ν) =

ci
V(ν) = ci

χr+1
(ν) ≤ χr+1(ν) ≤ qch(V)(ν), where we used (br+1) to obtain the second inequality and the

fact that χr+1 has well-defined coloring to obtain the first inequality. This implies (cr+1).

2) Assume ν < wt`(χr). Then, by (cr−1), all arrows incoming to ν must come from a j-root µ such that
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wt(µ) = µs with s ≥ r for some j ∈ I. This and (4.1.8) together imply

(4.1.12) qch(V)(ν) =
∑
µ∈Pi,+

wt(µ)=µs,s≥r

[Vεi(µ) : µi] ζ
i
µ(ν).

Since, we have already proved (dr+1) for j , i and, if s = r, no j-colored arrow incomes to ν, all
arrows incoming to ν must be i-colored. Moreover, ν < wt`(χr) also implies ci

χr
(V) = 0 and one easily

computes, using (4.1.9), that

(4.1.13) χr+1(ν) =
∑
µ∈Pi,+

wt(µ)=µr

(
χr(µ) − ci

χr
(µ)

)
ζ i
µ(ν) =

∑
µ∈P

wt(µ)=µr

[Vεi(µ) : µi] ζ
i
µ(ν).

Together with (4.1.12), this implies (br+1). Furthermore, by (4.1.10), we have ci
χr+1

(ν) = χr+1(ν). Let
us prove (cr+1). Thus, assume wt(ν) = µr+1 which implies µr+1 = µr − αi. Since there are no j-colored
arrows incoming to ν, ν must be j-dominant by Corollary 4.1.15. In particular, if ν is i-dominant, it
is dominant and, by hypothesis, FM(λ)(ν) = qch(V)(ν). The condition µr+1 = µr − αi implies that
FM(λ)(ν) = χr+1(ν) and (cr+1) follows in this case. Notice also that ν cannot be an i-root in this case
and, hence, we have ci

V(ν) = qch(V)(ν) = χr+1(ν) = ci
χr+1

(ν) proving (dr+1) as well. Now assume ν is
not i-dominant which, as we have seen, implies FM(λ)(ν) = χr+1(ν) = ci

χr+1
(ν) and qch(V)(ν) = ci

V(ν).
In particular, if we show (cr+1), (dr+1) also follows. The condition µr+1 = µr−αi together with ν < Pi,+

clearly ζ i
µ(ν) = 0 for all µ such that wt(µ) = µs with s > r. Therefore, (4.1.12) becomes identical to

(4.1.13) showing that qch(V)(ν) = χr+1(ν). Observe that the above argument actually shows that if
µr − wt(ν) = αi, then χr+1(ν) = FM(λ)(ν = qch(V)(ν) and (dr+1) holds. Therefore, it remains to prove
(dr+1) with j = i and ν such that µr − wt(ν) , αi. Since µr − wt(ν) = kαi for some k > 0, one easily
checks that if µ is such that wt(ν) = µs with s > r and µs , µr − lαi for all l ≥ 0, then there are no
arrows from µ to ν (just right µr − µs as a linear combination of simple roots). This implies that the
coloring and multiplicity of ν in FM(λ) can only be changed by performing i-expansions at µs with s
such that µs = µr − lαi with l < k. Repeating part of the arguments, one shows by induction on l ≥ 1
that no `-weight can be an i-root and, therefore, no change will be made by such expansions as well
(notice that the case l = 1 has been proved above). This completes the proof.

4.2. Applications of the Frenkel-Mukhin Algorithm and a Counter-example

In this subsection we give a few examples to illustrate both successful and failed applications of the
Frenkel-Mukhin algorithm.

Example 4.2.1. Let g = sl3, denote by i and j the distinct elements of I, and consider λ = ωi,aω j,b

for some a, b ∈ F×. In Example 3.2.9 we have seen that the modules Vq(λ) is `-minuscule for any
choice of a, b. In particular, FM(λ) = qch(Vq(λ)). Although we have already computed qch(Vq(λ))
in Example 3.2.9 without using the algorithm, let us use this example to illustrate the several steps
of the algorithm and draw the Frenkel-Mukhin quiver. Recall that ωi + ω j = θ and, hence, wt(θ) =

{θ, α j, αi, 0,−αi,−α j,−θ}. We choose the ordering µ0, . . . , µ6 of wt(θ) as written in the above list and
set χ0 = λ and χr+1 = (χr)µr as in the description of the algorithm.
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Since ζ i
λ = λ + λα−1

i,a and ζ j
λ = λ + λα−1

j,b, we get

χ1 = λ + λα−1
i,a + λα−1

j,b = λ + ω−1
i,aq2ω j,aqω j,b + ωi,aωi,bqω

−1
j,bq2 .

Set µ1 = λα−1
i,a and µ2 = λα−1

j,b. Then χ2 = (χ1)µ1
= (χ1) j

µ1
and χ3 = (χ2)µ2

= (χ2)i
µ2

. The actual
computation will now depend whether a/b ∈ {q±1, q±3} or not.

Let us first consider the case b = aq3 (which is similar to the case b = aq−3). In this case,
µ1 = ω−1

i,aq2ω j,aq2,2 and ζ j
µ1

= µ1 + µ1α
−1
j,aq3 + µ1α

−1
j,aq3α

−1
j,aq. Therefore,

χ2 = χ1 + ω−1
i,aq2ωi,aq4ω j,aqω

−1
j,aq5 + ωi,aq4ω−1

j,aq4,2.

Set µ3 = ω−1
i,aq2ωi,aq4ω j,aqω

−1
j,aq5 and µ4 = ωi,aq4ω−1

j,aq4,2. Proceeding, we have ζ i
µ2

= µ2 +µ2α
−1
i,a +µ2α

−1
i,aq4 +

µ2α
−1
i,aα

−1
i,aq4 . Notice that µ2α

−1
i,a = µ3 and that, by definition of (χ2)i

µ2
, the multiplicity of µ3 in χ3 is the

same as in χ2. Therefore,
χ3 = χ2 + ωi,aω

−1
i,aq6 + ω−1

i,aq2ω
−1
i,aq6ω j,aq.

Set µ5 = ωi,aω
−1
i,aq6 and µ6 = ω−1

i,aq2ω
−1
i,aq6ω j,aq. Next, we have χ4 = (χ3)µ3 . But the `-weights of χ3

with underlying classic weight µ3 = 0 are µ3 and µ5. Hence, χ4 = χ3. The only `-weight of χ4 with
underlying classic weight equal to µ4 is µ6 and, therefore, χ5 = (χ4) j

µ6
. Since ζ j

µ6
= µ6 + µ6α

−1
j,aq, we

get
χ5 = χ4 + ω−1

i,aq6ω
−1
j,aq3 .

Set µ7 = ω−1
i,aq6ω

−1
j,aq3 . Finally, the only `-weight of χ4 with classic weight µ5 is µ4 and χ6 = (χ5)i

µ4
.

Since ζ i
µ4

= µ4 + µ7, we get χ6 = χ5. This implies

FM(λ) = λ +

7∑
r=1

µr

which coincides with the formula obtained in Example 3.2.9. Here is the associated Frenkel-Mukhin
quiver:

λ

µ1 µ2

µ3 µ5

µ4 µ6

µ7

�
�

��	

(i,a) @
@
@@R

( j,aq3)

?

( j,aq3)

?

(i,aq4)

���
���

����

(i,a)

?

( j,aq)

HH
HHH

HHHHj
(i,aq4)

?

(i,a)

@
@
@@R

(i,aq4)

�
�

��	
( j,aq)
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Notice that the i-roots are λ,µ2, and µ4 while the j-roots are λ,µ1,µ5, and µ6.

The other cases are obtained similarly. We list the quivers for the case b = aq and a/b < {q±1, q±3}:

λ

µ1 µ2

2µ3 µ5

µ4 µ6

µ7

�
�

��	

(i,a) @
@
@@R

( j,aq)

?

( j,aq)

?

(i,aq2)

?

( j,aq)

?

(i,a)

@
@
@@R

(i,aq2)

�
�

��	
( j,aq)

λ

µ1 µ2

µ3 µ4 µ6

µ5 µ7

µ8

�
�
��	

(i,a) @
@
@@R

( j,b)

?

( j,aq)
@
@
@@R

( j,b)

?

(i,bq)
�
�

��	

(i,a)

?

( j,b)
�

�
��	

( j,aq)

@
@
@@R

(i,bq)
?

(i,a)

@
@
@@R

(i,bq)

�
�

��	
( j,aq)

In the left quiver, the i-roots are λ,µ2,µ3 (with multiplicity 2), and µ4 and the j-roots are λ,µ1,µ5, and
µ6. In the right quiver, the i-roots are λ,µ2,µ3, and µ5 and the j-roots are λ,µ1,µ6, and µ7. ♦

In the above example, the use of the algorithm was purely illustrative since we already knew the
qcharacter. We now exhibit a large and important class of `-minuscule modules for which we do not
have another general tool for computing the qcharacter other than the algorithm.

Definition 4.2.2. A Kirillov-Reshetikihin module is a Uq(g̃)-module of the form Vq(ωi,a,m) for some
i ∈ I, a ∈ F× and m ≥ 0. ♦

We shall say more about the importance of the Kirillov-Reshetikhin modules in Subsection 4.4.
For the moment, the importance we mention is the following theorem.

Theorem 4.2.3. The Kirillov-Reshetikhin modules are `-minuscule. In particular, their qcharacters
are given by the Frenkel-Mukhin algorithm.

Before proving Theorem 4.2.3, let us use it to prove Theorem 3.3.13.

Proof of Theorem 3.3.13. Recall that by Proposition 2.3.3 and Corollary 3.2.7, it suffices to prove
Theorem 3.3.13 for the fundamental modules which are Kirillov-Reshetikhin modules. In this case
the result follows immediately from Theorem 4.2.3 and (4.1.11).

Remark 4.2.4. Notice that, if g = sl2, the Kirillov-Reshetikhin module Vq(ωi,a,m) is nothing but
the evaluation module V(m, a). Therefore, Theorem 4.2.3 follows from the explicit formulas for the
qcharacters of such modules given in Theorem 2.3.14. We will use the sl2 case of Theorem 3.3.10
during the proof of Theorem 4.2.3. Since the proof of the sl2 case of Theorem 3.3.10 uses only the
sl2 case of Theorem 3.3.13 whose proof then uses only Theorem 2.3.14, our argument for proving the
general case of Theorem 4.2.3 is not circular. ♦
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We need some more terminology and a couple of preliminary technical lemmas.

Lemma 4.2.5. Let i ∈ I, a ∈ F×, and consider the group homomorphism f : Pi ×Ei →Pi ×Ei given
by f (x, y) = (ρi(α−1

i,a )x, y). Then, there exists a unique group homomorphism F : P → P such that
τi ◦ F = f ◦ τi and F(µ) = α−1

i,aµ for all µ ∈P .

Proof. It is clear that the group homomorphism F : P → P given by F(µ) = α−1
i,aµ satisfies

τi ◦ F = f ◦ τi. Since f is injective by Lemma 2.3.8, the uniqueness follows from Lemma 4.1.3.

Lemma 4.2.6. Let V be a Uq(g̃)-module and W be a Uq(h̃)-submodule of V . Then, for all j ∈ I, W j =∑
r ∈ Z

x−j,rW is a Uq(h̃)-submodule of V . Moreover, if V is finite-dimensional, then W j =
⊕

µ ∈P
W j ∩Vµ.

Proof. The first statement follows immediately from the defining relations kix−j,rk
−1
i = q−ci j

i x−j,r and
[hi,s, x−j,r] = −1

s [sci j]qi x
−
j,r+s with i, j ∈ I, r, s ∈ Z, s , 0 of Uq(g̃). The second is standard linear

algebra.

Lemma 4.2.7. Suppose g = sl2 and let I = {i}. Given a finite-dimensional Uq(g̃)-module V and
m ≥ 0, consider the Uq(h̃)-submodules of V: V≥m =

⊕
n ≥ m

Vnωi and V ′≥m =
∑

r ∈ Z
x−i,rV≥m. Then, if µ ∈P

is such that V ′≥m ∩ Vµ , {0}, there exists λ ∈ wt`(V) such that V≥m ∩ Vλ , {0} and µ ≤ λ.

Proof. If Vµ ∩ V≥m , {0} take λ = µ. Otherwise, we must have wt(µ) = kωi for some k < m and we
will show that there exists λ ∈ wt`(V) such that V≥m∩Vλ , {0} and µ < λ. In that case, let v ∈ V ′≥m∩Vµ

and observe that, by definition of V ′≥m, there must exist vr ∈ Vkωi+αi and cr ∈ F (all but finitely many
nonzero) such that v =

∑
r cr x−i,rvr.

Proceed by induction on the dimension of V≥m which clearly starts when V≥m = {0}. Choose a
highest-`-weight vector w ∈ V ∩ V≥m and consider the submodule W of V generated by v. If Wµ , 0
we are done by Theorem 3.3.13. Otherwise, notice that the image of w′ =

∑
r crvr in U = V/W is

nonzero. Indeed, if w′ ∈ W then v ∈ W as well. Therefore, the image U≥m of V≥m in U is nonzero
and U≥m =

∑
n≥m Unωi . Moreover, if we set U′≥m =

∑
r x−i,rU≥m, then the image of v in U belongs to

U′≥m and, hence, U′≥m ∩ Uµ , {0}. Since dim(U) < dim(V), the induction hypothesis completes the
proof.

Definition 4.2.8. Let µ =
∏

i∈I,a∈F×
ω

pi,a
i,a ∈ P . The support of µ is the set supp(µ) = {(i, a) ∈ I × F× :

pi,a , 0}. An element a ∈ F× is said to be a spectral parameter of µ if (i, a) ∈ supp(µ) for some
i ∈ I. A (quantum) spectral parameter base for supp(µ) is a subset {a1, . . . , am} of the set of spectral
parameters of µ such that a j/ak is not a power of q for all j, k and for every other spectral parameter a
of µ there exists j such that a j/a is a power of q. A spectral parameter a of µ is said to be a right-most
spectral parameter of µ if and a/b is not a negative power of q for every other spectral parameter b of
µ. If pi,a < 0 for every right-most spectral parameter a of µ, then µ is said to be right-negative. ♦

Remark 4.2.9. The choice for the terminology right-most is the following. Suppose supp(µ) has a
spectral parameter basis with a single element and let a1, . . . , am be the distinct spectral parameters.
Suppose they are ordered in such away that a j/ak is a negative power of q if and only if j < k. Then,
am is the right-most spectral parameter. Observe that the product of two right-negative `-weights is
also right-negative and that the inverse of the simple `-roots are right-negative. In particular, if µ is
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right-negative and ν ≤ µ, then ν is also right-negative. Evidently, a right-negative `-weight is not
dominant. Observe also that ωi,a,mα

−1
i,aqm−1 is right-negative for every i ∈ I, a ∈ F×, and m > 0. ♦

Using the above remark, Theorem 4.2.3 is an immediate corollary of the following lemma.

Lemma 4.2.10. Let i ∈ I, a ∈ F×, and m > 0. If µ ∈ wt`(Vq(ωi,a,m)) \ {ωi,a,m}, then µ ≤ ωi,a,mα
−1
i,aqm−1 .

Proof. Let v be a highest-`-weight vector for V = Vq(ωi,a,m) and let V i be Uq(g̃i)-submodule of V
generated by v which is irreducible by Lemma 2.2.13. In fact, it is isomorphic to the Uq(g̃i)-evaluation
module Vqi(a,m). It follows from Theorem 2.3.14 that

ωi,a,m

 s∏
r=1

α−1
i,aqm+1−2r

 ∈ wt`(V) for all 0 ≤ s ≤ m.

Notice that these are exactly the elements of wt`(ζ i
ωi,a,m

).

We will prove by induction on the height h of mωi − µ that, if µ ∈ wt`(Vq(ωi,a,m)) \ {ωi,a,m} is such
that wt(µ) = µ, then µ ≤ ωi,a,mα

−1
i,aqm−1 . This clearly proves the proposition. Notice that if h = 1, then

Vµ , 0 if and only if µ = mωi − αi and, moreover, Vµ is one-dimensional. Therefore, we must have
µ ≤ ωi,a,mα

−1
i,aqm−1 proving that induction starts. Thus, assume h > 1 and, by induction hypothesis, that

µ ≤ ωi,a,mα
−1
i,aqm−1 for all µ ∈ wt`(V) such that |mωi − wt(µ)| < h. Consider

W =
⊕

ν : |mωi − ν| < h
Vν

which is a Uq(h̃)-submodule of V by (2.3.1). Given j ∈ I, let W j be as in Lemma 4.2.6. In particular,

(4.2.1) W j =
⊕

µ ∈P
W j ∩ Vµ and

⊕
µ : |mωi − µ| = h

Vµ ⊆
∑
j∈I

W j.

Set W j
µ = W j ∩ Vµ. Let V =

⊕
γ ∈ E j

Vγ be the j-th elliptic decomposition of V and, given γ ∈ E j, let

W j
γ =

⊕
µ : ε j(µ) = γ

W j
µ =

⊕
µ : ε j(µ) = γ

W j ∩ Vγ.

In particular, we have W j =
⊕

γ ∈ E j

W j
γ.

Let µ ∈ wt`(V) be such that |mωi −wt(µ)| = h. It follows from the second part of (4.2.1) that there
exists j ∈ I such that W j

µ , {0}. Set γ = ε j(µ) and p = wt(µ)(h j) + 1. Consider (Vγ)≥p and (Vγ)′≥p
as defined in Lemma 4.2.7. Notice that (Vγ)≥p ∩ Vµ = {0} since ρ j is injective on ε−1

j (γ) by Lemma
4.1.3. We claim that (Vγ)≥p , {0}. Assuming this, it follows that (Vγ)′≥p ∩W j

µ , {0} and Lemma 4.2.7
implies that ρ j(µ) = λρ j(α−1

j,b) for some b ∈ F× and some λ ∈P j ∩ wt`(Vγ). Using that ρ j is injective
on ε−1

j (γ) once more, it follows that there exists unique ν ∈ P such that ρ j(ν) = λ and ε j(ν) = γ

(more precisely, ν = τ−1
j (λ, γ)). We must have Vν , {0} since, otherwise, (Vγ)λ would be {0}. By

Lemma 4.2.5, we must have µ = να−1
j,b. Evidently, the induction hypothesis applies to ν and the proof

is complete.
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It remains to prove that (Vγ)≥p , {0}. Suppose that was not the case, which is equivalent to saying
that wt(µ)(h j)ω j is a maximal weight of Vγ. Then, there must exist a vector w ∈ W j

γ which is a
highest-`-weight vector of `-weight ρ j(µ) for the action of Uq(g̃ j). Let N be the Uq(g̃ j)-submodule
of V generated by w which is a submodule of Vγ. On the other hand, since w ∈ W j, there exist
`-weight vectors wr ∈ V (all but finitely many nonzero) such that w =

∑
r x−j,rwr. Let M be the

Uq(g̃ j)-submodule of V generated by the vectors wr which contains N. However, the `-weight µr of
wr satisfies γr := ε j(µr) , γ since otherwise we would have wr ∈ (Vγ)≥p. This implies wr ∈ Vγr and,
therefore, M ⊆ ⊕

r
Vγr . In particular, we have {0} = M ∩ Vγ ⊇ N which yields a contradiction.

Example 4.2.11. Let g = sl3 and denote by i and j the distinct elements of I. In Example 3.1.6 we
computed the qcharacter of the fundamental modules Vq(ωi,a) while in Example 3.2.10 we computed
qch(Vq(ωi,a,2)). Now we use the algorithm to compute qch(Vq(ωi,a,3)). It will be more convenient to
work with λ = ωi,aq2,3 = ωi,aωi,aq2ωi,aq4 . Setting χ0 = λ, we have

χ1 = (χ0)i
λ = λ + λα−1

i,aq4 + λα−1
i,aq4α

−1
i,aq2 + λα−1

i,aq4α
−1
i,aq2α

−1
i,aq

= λ + ωi,aq,2ω
−1
i,aq6ω j,aq5 + ωi,aω

−1
i,aq5,2ω j,aq4,2 + ω−1

i,aq4,3ω j,aq3,3 = λ + µ1 + µ2 + µ3.

Let us choose µr = 3ωi − rαi for r = 1, 2, 3. Then, χr+1 = (χr)
j
µr

, where µr is defined above.
Now, ζ j

µ1
= µ1 + µ1α

−1
j,aq5 and χ2 = χ1 + µ1α

−1
j,aq5 . Also, ζ j

µ2
= µ2 + µ2α

−1
j,aq5 + µ2α

−1
j,aq5α

−1
j,aq3 and

χ3 = χ2 + µ2α
−1
j,aq5 + µ2α

−1
j,aq5α

−1
j,aq3 . Finally, ζ j

µ3
= µ3 + µ3α

−1
j,aq5 + µ3α

−1
j,aq5α

−1
j,aq3 + µ3α

−1
j,aq5α

−1
j,aq and

χ4 = χ3 + µ3α
−1
j,aq5 + µ3α

−1
j,aq5α

−1
j,aq3 + µ3α

−1
j,aq5α

−1
j,aq. One can now check that for any choice of ordering

of the remaining elements of wt(3ωi), the algorithm will not produce any further changes to χ4.
Therefore qch(Vq(λ)) = χ4. The Frenkel-Mukhin quiver is given by:

λ µ1 µ2 µ3

µ4 µ5 µ7

µ6 µ8

µ9

-
(i,aq4)

-
(i,aq2)

?

( j,aq5)

-
(i,a)

?

( j,aq5)

?

( j,aq5)

-
(i,aq2)

-
(i,a)

?

( j,aq3)

?

( j,aq3)

-
(i,a)

?

( j,aq)

The i-roots are λ,µ4,µ6, and µ9 while the j-roots are λ,µ1,µ2, and µ3. The reader should have no
difficult generalizing the above to obtain a formula for qch(Vq(ωi,a,m)) for all m ≥ 0. ♦

Example 4.2.12. Let us consider g of type B2 (so5). In this case we have a short simple root which
denote by αi and a long simple root which we denote by α j. Then qi = q2, q j = q,αi,a = ωi,aqi,2ω

−1
j,aq2,2,

and α j,a = ω j,aq,2ω
−1
i,aq. The fundamental weight ω j is minuscule and, therefore, qch(Vq(ω j,a)) is given

by 3.1.4. The fundamental weight ωi is not minuscule and we will use the algorithm to compute
qch(Vq(ωi,a)). We have ζ i

ωi,a
= ωi,a + ωi,aα

−1
i,a and χ1 = ζ i

ωi,a
. Setting µ1 = ωi,aα

−1
i,a = ω−1

i,aq2
i
ω j,aq2,2
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we proceed by computing χ2 = (χ1) j
µ1

. We have ζ j
µ1

= µ1 + µ1α
−1
j,aq3 + µ1α

−1
j,aq3α

−1
j,aq and χ2 = χ1 +

µ1α
−1
j,aq3+µ1α

−1
j,aq3α

−1
j,aq. The only `-weight of χ2 whose expansion will change χ2 is µ3 := µ1α

−1
j,aq3α

−1
j,aq =

ωi,aqiω
−1
j,aq4,2. The corresponding expansion is similar to the first step above and we get χ3 = χ2 +

µ3α
−1
i,aqi

. This completes the algorithm and the qcharacter can be read off the quiver:

ωi,a µ1

µ2

µ3 µ4

-
(i,a)

?

( j,aq3)

?

( j,aq)

-
(i,aqi)

♦

Example 4.2.13. All the above examples concerned `-minuscule modules. We now give an example
which is not `-minuscule and the algorithm returns the correct qcharacter. Let g = sl3, denote by i
and j the distinct elements of I, let a ∈ F×, and consider λ = ωi,aωi,aq,2 = ω2

i,aωi,aq2 . We will show that
Vq(λ) � Vq(ωi,a) ⊗ Vq(ωi,aq,2).

Recall in Examples 3.1.6 and 3.2.10 that qch(Vq(ωi,a)) = ωi,a + ω−1
i,aq2ω j,aq + ω−1

j,aq3 and

qch(Vq(ωi,aq,2)) = ωi,aq,2 + ωi,aω
−1
i,aq4ω j,aq3 + ωi,aω

−1
j,aq5 + ω−1

i,aq3,2ω j,aq2,2 + ω−1
i,aq2ω j,aqω

−1
j,aq5 + ω−1

j,aq4,2.

One quickly checks that wt`(Vq(ωi,a)⊗Vq(ωi,aq,2))∩P+ = {λ,µ}where µ = ω−1
i,aq2ω j,aqωi,aq,2 = λα−1

i,a =

ωi,aω j,aq. Hence, if Vq(ωi,a) ⊗ Vq(ωi,aq,2) were reducible it would have Vq(µ) as a simple factor. From
Example 3.2.9 we know that Vq(µ) � Vq(ωi,a) ⊗ Vq(ω j,aq) and, therefore, µα−1

i,a = ω−1
i,aq2ω

2
j,aq would be

an `-weight of Vq(ωi,a) ⊗ Vq(ωi,aq,2). A quick check above shows that this is not the case.

Since qch(Vq(λ))(µ) = 1, Theorem 4.1.19 implies that in order to check that FM(λ) = qch(Vq(λ))
it suffices to check that µ ∈ wt`(FM(λ)). It suffices to see that µ ∈ wt`(ζ i

λ) which is clear since the
Uq(g̃i)-module Vq(λi) is isomorphic to Vq(1, a) ⊗ Vq(2, aq). ♦

Next, we give an example for which the algorithm fails to return the correct qcharacter.

Example 4.2.14. Let g = sl3 and denote by i and j the distinct elements of I. Consider λ = ω2
i,aω j,aq3 .

Let us show that FM(λ) , qch(Vq(λ)). We claim that Vq(λ) � Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3). Indeed, recall
from Example 3.2.9 that qch(Vq(ωi,a)) = ωi,a + ω−1

i,aq2ω j,aq + ω−1
j,aq3 and

qch(Vq(ωi,aω j,aq3)) = ωi,aω j,aq3 + ω−1
i,aq2ω j,aqω j,aq3 + ωi,aωi,aq4ω−1

j,aq5

+ ω−1
i,aq6ωi,a + ωi,aq4ω−1

i,aq2ω j,aqω
−1
j,aq5

+ ω−1
i,aq2ω

−1
i,aq6ω j,aq + ωi,aq4ω−1

j,aq5ω
−1
j,aq3 + ω−1

i,aq6ω
−1
j,aq3 .

One easily checks that

wt`
(
Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3)

)
∩P+ = {λ,ωi,a}.
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Therefore, if Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3) were not simple, it would have Vq(ωi,a) as a simple factor and,
hence, there would be an inclusion wt`(Vq(ωi,a)) ⊆ wt`

(
Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3)

)
. However, one easily

checks that wt`(Vq(ωi,a)) ∩ wt`
(
Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3)

)
= {ωi,a}. This proves the claim and, hence,

qch(Vq(λ)) = qch(Vq(ωi,a)) qch(Vq(ωi,aω j,aq3)).

In particular, ωi,a ∈ wt`(Vq(λ)).

Let µ0 = wt(λ) = 2ωi +ω j, µ1 = µ0−αi = 2ω j, µ2 = µ0−α j = 3ωi−ω j, and µ3 = µ0−αi−α j = ωi.
Notice that if µ ∈ wt(µ0) \ {µ0}, then µ ≤ µr for some 1 ≤ r ≤ 4. Therefore, we can use the sequence
µ0, µ1, µ2, µ3, to compute the first four steps of the algorithm. In particular, ifωi,a does not appear after
the expansion with respect to µ2, it follows that ωi,a < wt`(FM(λ)) showing that FM(λ) , qch(Vq(λ)).
Thus, set χ0 = λ and notice that

χ1 = (χ0)µ0 = λ + 2λα−1
i,a + λα−2

i,a + λα−1
j,aq3

= λ + 2ωi,aω
−1
i,aq2ω j,aq2,2 + ω−2

i,aq2ω j,aqω j,aq2,2 + ω2
i,aωi,aq4ω−1

j,aq5 .

The only `-weight of classic weight µ1 in χ1 is µ1 := ωi,aω
−1
i,aq2ω j,aq2,2 which is not i-dominant. There-

fore, χ2 = (χ1) j
µ1

. One easily checks that ωi,a < wt`(ζ
j
µ1

) and, hence, ωi,a < wt`(χ2). Notice also
that no new `-weight of classic weight µ2 is obtained in step 1 and, therefore, the only `-weight
of classic weight µ2 in χ2 is µ2 = ω2

i,aωi,aq4ω−1
j,aq5 which is not j-dominant. Since µ2 = λα−1

j,aq3 and
ωi,a = λα−1

j,aqα
−1
i,a , ωi,a < wt`(ζ i

µ2
) and, therefore, ωi,a < wt`(χ3) as claimed.

Let us draw a piece of the Frenkel-Mukhin quiver to illustrate the reason for the above failure.

λ

2µ1 µ2

µ3 ωi,a 2µ4 µ5

µ6 2µ7 µ8 µ9

µ10

�
�
�

�
��	

(i,a)
@
@
@
@
@@R

( j,aq3)

�
�

�
�

��	

(i,a)

HHH
HHH

HHH
HHHj

( j,aq3)

pppppppppppp?
( j,aq)

@
@
@
@
@@R

(i,aq4)

?

(i,a)

HH
HHHH

HHH
HHHHj?

( j,aq)

pppppppppppp?
( j,aq3)

�
�

�
�
��	 (i,a)

��
���

���
�����

( j,aq) �
�

�
�

��	

(i,a)

?

(i,aq4)

�
�

�
�

��	

(i,a)

@
@
@
@
@@R

(i,aq4)

?

(i,a)

Above we drew the arrows corresponding to the expansions of λ,µ1,µ2,µ3, and ωi,a. Comparing with
Example 4.1.12, we see that the failure arose because there exists a sub-quotient of the Uq(g̃ j)-module
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generated by Vq(λ)µ1
which is a local Weyl module instead of an irreducible module. Notice that the

`-weight coming from the expansion ofωi,a is µ6 which is also obtained from the expansion of µ3 and,
hence, µ6 ∈ wt`(FM(λ)). One can carry out the algorithm and show that FM(λ) = qch(Vq(λ)) − ωi,a.
However, it should be noticed that the coloring of the element χ obtained at the moment we need to
expand with respect to µ6 is not admissible. Indeed, ci

χ(µ6) = 0 (since no prior expansion with respect
to color i will generate µ6) and µ6 = ω−1

i,aq2ω j,aq is not i-dominant. ♦

4.3. Braid group and fundamental modules

We have seen that the qcharacters are not invariant under the braid group action. In this subsection,
we show that if g is not of exceptional type, the fundamental representations satisfy a weaker type of
invariance. In particular, we will obtain an algorithm for computing their qcharacters as an expression
involving the braid group action. We begin with the following lemma.

Lemma 4.3.1. Let V be a finite-dimensional Uq(g̃)-module and µ ∈ wt`(V). Suppose there exist a
nonzero v ∈ Vµ and j ∈ I such that x+

j,sv = 0 for all s ∈ Z. Then, µ j(u) is a polynomial of degree
wt(µ)(h j) and (x−j )wt(µ)(h j)v ∈ VT j(µ)\{0}. Also, if the q j-factorization of µ j is given by

µ j =

k∏
r=1

ω j,ar ,mr ,

then µα−1
j,arqmr−1

j

∈ wt`(V) for all 1 ≤ r ≤ k. Furthermore, for all s ∈ Z, we have

x−j,sv ∈
k∑

r=1

mr−1∑
p=0

Vµα−1

j,arqmr−1−2p
j

,

and
dim(Vµα−1

j,arqmr−1
j

) ≥ |{1 ≤ s ≤ k : arq
mr
j = asq

ms
j }|.

Similar statements (mutatis-mutandis) hold if we replace the hypothesis x+
j,sv = 0 for all s ∈ Z by

x−j,sv = 0 for all s ∈ Z.

Proof. Assume first that v is an eigenvector for the action of Uq(h̃). The first statement is then clear
since v will generate a highest-`-weight module for Uq(g̃ j) with highest `-weight µ j. The second
statement is proved as in Proposition 3.1.2. To prove the third statement, let V ′ be the Uq(g̃ j)-module
generated by v. Then, V ′ is isomorphic to a sub-quotient of the Weyl module for Uq j(s̃l2) with highest-
`-weight µ j. I particular, the `-weights of V ′ of underlying classic weight (wt(µ)(h j)− 2)ω j are of the
form ρ j(µα−1

j,arqmr−1−2p
j

) with 0 ≤ p < mr. Since Vµ ⊆ Vγ where γ = ε j(µ) ∈ E j, a computation analogous

to that closing the proof of Proposition 4.1.4 completes the proof of the third statement. Notice that,
if arq

mr
j = asq

ms
j , then ρ j(ω j,ar ,mrα

−1
j,arqmr−1

j

)ω j,as,ms = ω j,ar ,mrρ j(ω j,as,msα
−1
j,asq

ms−1
j

) and, hence,

qch(Vq j(mr, ar) ⊗ Vq j(ms, as))(ρ j(ω j,ar ,mrα
−1
j,arqmr−1

j
)ω j,as,ms) = 2.

The last statement is easily deduced from this. The passage from an eigenvector to a generalized
eigenvector is standard linear algebra.
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For the remainder of the subsection we suppose g is not of exceptional type. Given λ ∈ P and a
Uq(g̃)-module V , set

wt`(Vλ) = {λ ∈ wt`(V) : wt(λ) = λ}.

Theorem 4.3.2. Let i ∈ I, a ∈ F× and assume that λ ∈ wt`(Vq(ωi,a)) is such that wt(λ) = λ ∈ P+.
Then,

dim(Vq(ωi,a)λ) = dim(Vq(ωi,a)Tw(λ)) and Tw(wt`(Vq(ωi,a)λ)) = wt`(Vq(ωi,a)w(λ))

for all w ∈ Wλ. Suppose further that λ , ωi,a. Then, there exist µ ∈ wt`(Vq(ωi,a)), b, c ∈ F×, and j ∈ I
such that µ j(u) = (1 − bu)(1 − cu), and

(4.3.1) λ = µα−1
j,b.

Moreover, if c , bq−2
j , then µα−1

j,c ∈ wt`(Vq(ωi,a)) and, if c = b, then dim(Vq(ωi,a)λ) ≥ 2.

Proof. To simplify notation, set V = Vq(ωi,a). We prove the first two statements by induction on `(w),
which clearly starts if `(w) = 0. Thus, assume that

dim(Vλ) = dim(VTw(λ)) and Tw(wt`(Vλ)) = wt`(Vw(λ))

and let w′ = r jw where j is such that `(w′) = `(w) + 1. In particular, w−1(α j) ∈ Q+ by Proposition
1.1.21(iii). By Lemma 1.1.24, either λ = 0 or λ = ωr for some r ∈ I. Since W0 contains only
the identity, we can assume λ = ωr. Since w−1(α j) ∈ Q+, we have (ωr,w−1(α j)) > 0 which implies
w−1(α j)−αr ∈ Q+ which, together with Lemma 1.1.24(ii), impliesωi−(ωr+w−1(α j)) < Q+. Therefore,
ωr + w−1(α j) < wt(ωi) or, equivalently, w(ωr) + α j < wt(ωi). Thus,

(4.3.2) x+
j,sV(ωi,a)w(λ) = 0 for all s ∈ Z.

Similarly one proves that x−j V(ωi,a)w′(λ) = 0. It follows from (4.3.2) and Lemma 4.3.1 that (Tw(λ)) j(u)
is a polynomial of degree w(λ)(h j) and that (x−j )w(λ)(h j) maps VTw(λ) isomorphically to VTw′ (λ). This
proves that dim(VTw(λ)) = dim(VTw′ (λ)) which in turn implies that T j(wt`(Vw(λ))) = wt`(Vw′(λ)), since
dim(Vw(λ)) = dim(Vw′(λ)). This completes the inductive step.

Now assume λ , ωi. Then, there exists j ∈ I and µ ∈ wt`(V) such that wt(µ) = λ + α j and∑
s∈Z

x−j,sVµ ∩ Vλ , {0}.

In particular, Vλ+α j , 0. Let us show that (λ+α j)(h j) = 2 which is clear if λ = 0. Otherwise, if λ = ωr

for some r, it suffices to show that r , j. This follows from Lemma 1.1.24(ii) since ωr + α j ∈ wt(ωi)
implies ωi − (ωr + α j) ∈ Q+. It now follows from Lemma 1.1.24(iii) that

x+
j,sVλ+α j = 0 for all s ∈ Z.

In particular, since (λ + α j)(h j) = 2, it follows that µ j(u) = (1 − bu)(1 − cu) for some b, c ∈ F×. It
then follows from Lemma 4.3.1 that either λ = µα−1

j,b or λ = µα−1
j,c . Without loos of generality, we

assume that it is the former. Moreover, if c , bq−2, then ρ j(µα−1
j,c) is an `-weight of the irreducible

Uq(g̃ j)-module with Drinfeld polynomial ρ j(µ) and, hence, µα−1
j,c ∈ wt`(V). Similarly, if b = c, the

dimension of the `-weight space associated to ρ j(µα−1
j,c) in the irreducible Uq(g̃ j)-module with Drinfeld

polynomial ρ j(µ) is 2 and the last statement follows.
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Remark 4.3.3. Notice that it follows from Theorem 4.3.2 and Corollary 3.1.3 that if µ ∈ wt`(Vq(ωi,a)),
then µ ≤ ωi,a. Therefore, Theorem 4.3.2 gives an alternate proof of Theorem 3.3.13 in case g is not
of exceptional type. ♦

Example 4.3.4. Theorem 4.3.2 actually provides an algorithm for computing qch(Vq(ωi,a)). Let us
give the simplest example with ωi not minuscule. Thus, let g be of type Dn and i = 2 (so ωi = θ).
Notice that wt(ω2) = W (ω2) ∪ {0} = R ∪ {0}. Therefore, we need to obtain the `-weights with
classical weight 0. If λ is such an element, by Theorem 4.3.2, it must be of the form µα−1

i,b for some
j ∈ I, b ∈ F×, and µ ∈ wt`(Vq(ω2,a)) such that wt(µ) = α j. Moreover, µ = Tw(ω2,a) for some w ∈ Wω2 .
Set

w j = (r j−1 · · · r1)(r j+1 · · · rn−2rn−1rn)(rn−2 · · · r2) for 1 ≤ j ≤ n − 2,
wn−1 = (rn−2 · · · r1)rn(rn−2 · · · r2), and wn = (rn−2 · · · r1)rn−1(rn−2 · · · r2).

One then checks that w j ∈ Wω2 and w j(ω2) = α j. Setting µ j = Tw j(ω2,a), it follows that, if λ ∈
wt`(Vq(ω2,a)0), then λ = µ jα

−1
j,b for some j ∈ I and where b is a root of the polynomial ρ j(µ j). One

easily computes that

Tw j(ω2,a) =


ω−1

j−1,aq j+1ω j,aq jω j,aq2n−4− jω−1
j+1,aq2n−3− j , if j ≤ n − 3,

ω−1
n−3,aqn−1ω

2
n−2,aqn−2ωn−1,aqn−1ω−1

n,aqn−1 , if j = n − 2,

ω−1
n−2,aqnω j,aqn−1ω j,aqn−3 , if j = n − 1, n.

Set

λ j =

ω−1
j−1,aq j+1ω j−1,aq2n− j−3ω j,aq jω−1

j,aq2n− j−2 = µ jα
−1
j,aq2n−4− j , if 1 ≤ j ≤ n − 2,

ω j,aqn−3ω−1
j,aqn+1 = µ jα

−1
j,aqn−1 , if j = n − 1, n.

By Theorem 4.3.2, λ j ∈ wt`(Vq(ω2,a)) for all j = 1, . . . , n, and qch(Vq(ω2,a))(λn−2) ≥ 2. Notice
also that µ jα

−1
j,aq j = λ j+1 if 1 ≤ j < n − 2 and µ jα

−1
j,aqn−3 = λn−2 if j = n − 1, n. It follows that

wt`(Vq(ω2,a)0) = {λ1, . . . , λn}. We claim that

qch(Vq(ω2,a)) =
∑

w∈Wω2

Tw(ω2,a) +
∑
j,n−2

λ j + 2λn−2.

In other words, we are left to show that qch(Vq(ω2,a))(λ j) ≤ 1 if j , n−2 and qch(Vq(ω2,a))(λn−2) ≤ 2.
This can be seen as a consequence of the fact that the Frenkel-Mukhin algorithm works for Vq(ω2,a).
Indeed, the only `-weight of classic weight 0 coming from the expansion with respect to µ j is λ j with
multiplicity 1 if j , n − 2 and with multiplicity 2 if j = n − 2. ♦

Remark 4.3.5. Notice that it follows from the computations above that dim(Vq(ω2,a)0) = n + 1 =

dim(Vq(ω2)0)+1 (since V(ω2) is the adjoint representation). This shows that Vq(ω2,a) is reducible as a
Uq(g)-module and implies that there cannot be an algebra map Uq(g̃)→ Uq(g). Indeed, if such a map
existed we would have an irreducible Uq(g̃)-module with highest-`-weight λ such that wt(λ) = ω2

and dim(Vq(λ)) = dim(Vq(ω2)). But the condition wt(λ) = ω2 implies λ = ωi,a for some a ∈ F×
contradicting our computations above. For all other simple Lie algebras, except sln and so5, there
exists i ∈ I such that Vq(ωi,a) is reducible as a Uq(g)-module showing that there cannot be analogues
of evaluation modules. For so5, there are no λ ∈ P+ such that wt(λ) = θ = 2ω2 and Vq(λ) is
irreducible as Uq(g)-module and we reach the same conclusion. ♦
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4.4. Bibliographical notes

1. Frenkel-Mukhin algorithm

Our presentation of the Frenkel-Mukhin algorithm and the results of Subsection 4.1 is essentially
an extended version of the original one given in [36]. However, we make use of the theory of blocks
and elliptic characters, which was not available when [36] was published, to give further insights
into the theory of qcharacters. In particular, our versions of Propositions 4.1.4 and 4.1.7 are reinter-
pretations (and also a refinement) of [36, Lemma 3.4]. Also, our map τJ is a reinterpretation of its
namesake from [36] and our Lemmas 4.1.3 and 4.2.5 correspond to Lemmas 3.3 and 3.6 of [36]. In
particular, this gives a reinterpretation of the variables Z j,a used in [36] in terms of the groups of J-
elliptic characters EJ. Proposition 4.1.4 is contained in an unpublished joint work with D. Hernandez.

Theorem 4.2.3 was first proved by E. Frenkel and E. Mukhin in [36] in the special case of fun-
damental representations which, together with Corollary 3.2.7, implies Theorem 3.3.13. The proof
presented here is essentially the one given by Hernandez in [47]. Evidently, the connection with the
theory of blocks and elliptic characters was not used in the original proofs. Theorem 4.1.19 was orig-
inally stated in [36] only for `-minuscule modules. It was remarked in [51] that the proof could be
easily modified to obtain the statement presented here. Thus, the proof we gave above is essentially
an extended version of the original proof of [36]. By now, a much larger class of modules than that of
Kirillov-Reshetikhin modules is known to have qcharacters given by the Frenkel-Mukhin algorithm.
For instance, all minimal affinizations in the case that the underlying simple Lie algebra is of type
An, Bn, or G2 are known to be `-minuscule. This was probed by Hernandez in [48] where some con-
ditions for other types were also obtained. Very recently, E. Mukhin and C. Young obtained a purely
combinatorial description of Drinfeld polynomials for which the Frenkel-Mukhin algorithm works
[68]. They also introduced a new class of modules, called the class of snake modules and proved that,
if the underlying simple Lie algebra is of type An or Bn, then the Drinfeld polynomial of the snake
modules satisfy this combinatorial condition. Although in type An this does not enlarge the class of
modules for which it is known that the Frenkel-Mukhin algorithm works, for type Bn that is the case.
In particular, the snake modules include all Kirillov-Reshetikhin modules, minimal affinizations, and
modules associated to skew Young diagrams.

The terminology Frenkel-Mukhin quiver and several others used above such as i-stratum have
never been used in the literature. We introduced the terms here hoping to make the presentation
clearer.

The first example of failure of the Frenkel-Mukhin algorithm was given by W. Nakai and T.
Nakanishi in the case that g is an algebra of type C3 [71]. The nature of the failure is very similar to
the one of Example 4.2.14: the algorithm fails to generate a dominant `-weight and, as a consequence,
it eventually becomes non-admissibly colored. The paper [71] also brings some of the above given
examples illustrated via the tableaux description. The work of Nakai and Nakanishi also relates the
theory of qcharacters to the study of Jacobi-Trudi determinants [69, 70]. Example 4.2.14 was first
given by D. Hernandez and B. Leclerc in [51]. However, the irreducibility of the tensor product
Vq(ωi,a) ⊗ Vq(ωi,aω j,aq3) was deduced as an application of the main result of [51] – a relation of the
tensor structure of our category of modules with the theory of cluster algebras. Since we did not
establish such relation here, we deduced the irreducibility of this tensor product in a more elementary
manner. One can similarly consider an algorithm for computing qcharacters starting from the lowest
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`-weigh instead of the highest `-weight. It is interesting to notice that Example 4.2.14 is not a counter-
example for the lowest `-weight version of the algorithm!

2. Kirillov-Reshetikhin modules

The Kirillov-Reshetikhin modules were not originally defined as presented here. In [65], A. N.
Kirillov and N. Reshetikhin predicted the existence of certain modules for the Yangians (rather than
quantum affine algebras) whose characters (and of their tensor products) were conjectured to satisfy
certain fermionic formulas. Their work was based on mathematical physics considerations related to
the Bethe Ansatz. It was later realized that, transported to the context of quantum affine algebras, these
modules are nothing but the modules Vq(ωi,a,m). Moreover, the Kirillov-Reshetikhin modules are the
minimal affinizations of the Uq(g)-module Vq(mωi). Therefore, the class of minimal affinizations can
be regarded as a generalization of the class of Kirillov-Reshetikhin modules. The original work of
Kirillov and Reshetikhin was concerned with describing the simple factors of the Kirillov-Reshetikhin
modules when regarded as modules for Uq(g) instead of Uq(g̃). The aforementioned conjectural
fermionic formulas give a combinatorial way of answering this. The conjecture became known as
the Kirillov-Reshetikhin conjecture and many papers were written establishing particular cases of the
conjecture as well as connections with other concepts such as the ones of Q-systems and T -systems.
The latter moves the problem from one on classic characters to one on qcharacters. A general proof
of the Kirillov-Reshetikhin conjecture was then obtained by Hernandez in [47, 49] using the theory of
T -systems and other combinatorial aspects of the theory of qcharacters such as the Frenkel-Mukhin
algorithm. From a purely theoretical point of view, Theorems 4.2.3 and 4.1.19 give the answer to
the conjecture since the multiplicity of the simple factors are detremined by the character which can
be read off the qcharacter and the qcharacter of a tensor product is the product of the qcharacters.
However, in practical terms, it is not a simple task to do that even after obtaining an explicit formula
for the qcharacters of the Kirillov-Reshetikhin modules from the Frenkel-Mukhin algorithm. Because
of this, there is a lot of work in the direction of obtaining formulas for the multiplicities of the simple
factors of the minimal affinizations when regarded as Uq(g)-modules directly, i.e., independently of
the knowledge of the qcharacter: [11, 16, 21, 22, 41, 42, 78, 79] (see also [15] and references therein).

3. Other algorithms

The results of Subsection 4.3 were obtained in a joint work with V. Chari [19]. Formulas as in
Example 4.3.4 were obtained for all fundamental representations and all non-exceptional g in [20].
The results from [19] were extended to the root of unity setting in [58] and we should soon extend the
ones from [20] as well.

There is another algorithm available for computing qcharacters which is known to work for sim-
ply laced g and any element of P+. Namely, recall that the qcharacters can be encoded in a ring
homomorphism from the Grothendieck ring Gq of our category of modules to the integral group
ring Z[P]. In [73], under the assumption that g is simply laced, Nakajima defined certain poly-
nomials similar to Kazhdan-Lusztig polynomials that arise in the study of category O by studying
cohomology of certain quiver varieties which are now known as Nakajima’s quiver varieties (the
original Kazhdan-Lusztig polynomials arise from the cohomology of Schubert varieties - Nakajima’s
varieties are very closely related to Lusztig’s quiver varieties). This lead him to define a function
χq,t : Gq ⊗ZZ[t, t−1]→ Z[P]⊗ZZ[t, t−1] called the t-analogue of the qcharacter ring homomorphism.
It turns out that at t = 1 this function specializes to the qcharacter ring homomorphism. Moreover,
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the definition of χq,t was axiomatized in a purely combinatorial manner leading to an algorithm for
computing the qcharacters of the irreducible and local Weyl modules. This algorithm was used in
[74] to give explicit formulas for the t-analogues of the qcharacters of the local Weyl modules when
g is of type A or D. The formulas were presented in terms of tableaux and a connection with the
theory of crystals was discovered. The algorithm was also used with the help of a supercomputer to
compute the t-analogues of the qcharacters of the fundamental modules when g is of type E in [75].
In [44, 45], Hernandez proved a conjecture of Nakajima saying that the existence of the function χq,t

could be established using only its axiomatic description (without the use of geometry). This allowed
him to extend the concepts of t-analogues of qcharacters as well as the Kazhdan-Lusztig like polyno-
mials to general g. However, due to the lack of a definition of the quiver varieties in general, a proof
that the algorithm indeed gives the qcharacters of the irreducible modules when g is not simply laced
is still missing.

Even if a general formula/algorithm is found, it does not mean that finding other formulas is
an uninteresting task. For instance, in the classic theory of characters, there are three very famous
formulas: Weyl’s formula (which indirectly gives the whole character via the Weyl group action on
P), Kostant’s formula (which gives the dimension of each weight-space directly via the Weyl group
action on P and Kostant’s partition function), and Freudental’s formula (which is algorithmic, but
easier for implementing on computers or for performing small computations than the previous two).
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