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Розглядається ефективний та простий пiдхiд до побудови анзацiв для
нелiйнiйного рiвняння Шредiнгера та нелiнiйного хвильового рiвнян-
ня, а також умови їх редукцiї до звичайних диференцiальних рiв-
нянь. Представлено повний опис анзацiв деякого типу. Обговорюється
зв’язок мiж розв’язками та лiєвською й умовною симетрiєю цих рiв-
нянь.

We consider construction of ansatzes for nonlinear Schrödinger and wave
equations, and conditions of their reduction to ordinary differential
equations. Complete description of ansatzes of certain types is presented.
The relationship between solutions and both Lie and conditional symmetry
of these equations is discussed.

1. Introduction.We are going to use here a straightforward method for
construction of exact solutions for partial differential equations (PDE)
which sometimes allows to obtain a wider class of exact solutions than
the classical Lie method of similarity reduction [1–3]. The idea of this
approach focuses on a notion of ansatz – a special substitution which
reduces a PDE to another PDE with less number of independent variables
or to an ordinary differential equation (ODE) [1, 4, 5]. The Lie method
provides ansatzes using subalgebras of an invariance algebra of an equa-
tion [1, 2, 3, 6]. We tried to search for ansatzes directly, substituting some
general form of ansatz to an equation and then considering conditions
of its reduction. This technique is used intensively for two-dimensional
equations (see, e.g., [7–13]), and we succeeded to apply it for a four-
dimensional equation. The general idea is obvious but the main diffi-
culties here are investigation of compatibility and solution of reduction
conditions, which present nontrivial problems.
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2. Nonlinear Schrödinger equation. First let us consider the nonli-
near Schrödinger equation

2iut + �u− uF (|u|) = 0. (1)

Here u is a complex-valued function, u = u(t, �x), �x is a n-dimensional
vector of space variables, |u| =

√
uu∗, an asterisk designates complex

conjugation, �u = ∂2u/∂x2
a, a = 1, . . . , n.

Eq.(1) with an arbitrary function F is invariant under the Galilei
algebra with basis operators

∂t, ∂a, Jab = xa∂b − xb∂a, M = i(u∂u − u∗∂u∗),

Ga = t∂a + ixa(u∂u − u∗∂u∗), a, b = 1, . . . , n.
(2)

Solutions obtained from the algebra (2) by means of the Lie method
are well-known [14–16] and all of them are of the form

u = exp{if(t, �x)}ϕ(ω). (3)

Such form of a substitution is the most general reducing an arbitrary
nonlinear equation (1) to an ODE. The expression (3) where f , ω are
some unknown real functions of t and �x will be an ansatz for Eq.(1) if its
substitution reduces (1) to an ODE for a complex function depending
on the new variable ω only. Whence we get conditions on the functions
f and ω:

2ft + fafa = S(ω), �f = T (ω),

ωt + faωa = X(ω), �ω = Y (ω), ωaωa = Z(ω),
(4)

where S, T , X, Y , Z are arbitrary smooth functions.
For n = 2, n = 3 we had found the general solution of the system (4)

up to equivalency of substitutions (3).
For the purpose of reduction of Eq.(1) it is sufficient to consider

the system (4) only up to equivalence of the ansatzes (3). We shall call
ansatzes equivalent if they lead to the same solutions of the equation.
We deal here with real functions f and ω, so Z(ω) in (4) must be

nonnegative. Whence we can reduce the equation ωaωa = Z(ω) by local
transformations to the same form with Z(ω) = 0 or Z(ω) = 1.

1) Z(ω) = 0. In this case ωa = 0, ω = ω(t) and we can put ω = t. The
system (4) can be written as

2ft + fafa = S(t), �f = T (t).
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It is evident that the ansatzes of form (3) are equivalent up to trans-
formations f → f + r(ω), so we can put S(t) = 0. We come to the
system

2ft + fafa = 0, �f = T (t), (5)

and the following theorem gives a necessary condition of its compatibility.

Theorem 1. The system (5) can be compatible only if

T (t) = θ′(t)/θ(t), θ(n+1) = 0.

Proof of this theorem can be carried out using differential consequen-
ces of (5) and the Hamilton-Cayley theorem. It is rather cumbersome,
and its complete version can be found in [17].

2) Z(ω) = 1. It had been established in [18] that when n = 3, �ω =
N/ω, N = 0, 1, 2 (N = 0, 1 for n = 2). Up to equivalency of ansatzes
we can put X(ω) = 0.

Theorem 2. The system of equations

2ft + fafa = S(ω), �f = T (ω),

faωa + ωt = 0, ωaωa = 1, �ω = N/ω,
(6)

where N = 0, 1 with n = 2, N = 0, 1, 2 with n = 3 is compatible
iff T (ω) = 0; S(ω) = c1ω + c2, N = 0; S(ω) = c1/ω

2 + c2, N = 1;
S(ω) = c1, N = 2; c1, c2 are arbitrary constants.

Theorem 3. The system (4) is invariant with respect to the operators

∂a, Jab = xa∂b − xb∂a, Ĝa = t∂a + xa∂f . (7)

Thus, we can search for its general solution up to transformations
generated by operators (7):

xa → αabxb + βa, xa → gat+ xa, (8)

αab, βa, ga are constants, αacαcb = δab (the Kronecker symbol).
Further we adduce all solutions of the system (4), which are nonequi-

valent up to transformations (8).
I. Z(ω) = 0, ω = t:

1) n = 3, f =
1
2

{
x2

1

t+A1
+

x2
2

t+A2
+

x2
3

t+A3

}
; (9)
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2) n = 2, 3, f =
1
2

{
x2

1

t+B1
+

x2
2

t+B2

}
; (10)

3) n = 2, 3, f =
x2

1

2t+ c1
;

4) n = 2, 3, f = c2x1 + c3 − 1
2
c22t.

II. Z(ω) = 1:

1) n = 2, 3, ω = x1 + at2, f = −2atx1 − 4
3
a2t3 + bt;

2) n = 2, 3, ω = (x2
1 + x2

2)
1/2, f = c tan−1 x1

x2
+ dt;

3) n = 3, ω = (x2
1 + x2

2 + x2
3)

1/2, f = et.

Here Ai, Bi, Ci, a, b, c, d, e are arbitrary constants.
The ansatz (3) reduces Eq.(1) to the following ODE:

−2S(ω)ϕ+ iT (ω)ϕ+ 2iX(ω)ϕ̇+ Y (ω)ϕ̇+ Z(ω)ϕ̈ = ϕF (|ϕ|). (11)
It follows from compatibility conditions of the system (4) that two

types of Eq.(11) are possible:

1) If ωaωa = Z(ω) = 0, we take ω = t and Eq.(11) will be of the form

i(2ϕ̇+ T (t)ϕ) = ϕF (|ϕ|), (12)

where T =
m∑

i=1

1
t+Bi

, m may take values from 1 to n; or T = 0.

Eq.(12) can be easily solved in quadratures: if T �= 0 then

ϕ = r exp
i

2

{
m∑

i=1

x2
l

t+Bl
−
∫
F (r)dt

}
,

r = C[(t+B1) . . . (t+Bm)]1/2

or if T = 0, f = c1x1 + c2 − 1
2
c21t then

ϕ = c exp i
{
c1x1 − 1

2
F (c)t+ c2 − c21

t

2

}
.
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2) If ωaωa = Z(ω) = 1 then Eq.(11) will be of the form

−2S(ω)ϕ+
N

ω
ϕ̇+ ϕ̈ = ϕF (|ϕ|). (13)

Eq.(13) in general obviously cannot be solved in quadratures. Some
of its particular solutions were given in [14–16].

3. Nonlinear wave equation. We can apply the results for the Schrö-
dinger equation (1) to describe all ansatzes of the form

u = f(x)ϕ(ω) (14)

with ω = αµxµ, αµαµ = 0 for a nonlinear wave equation

�u = λuk, (15)

where u = u(x0, x1, x2, x3) is a real function; k �= 1, λ are parameters;
the summation over repeated Greek indices is as follows: xµxµ ≡ x2

0 −
x2

1 − x2
2 − x2

3.
Further for simplicity of presentation we shall take ω = x0 + x3. In

this case the ansatz (14) will reduce Eq.(15) to an ODE if f(x) satisfies
the following conditions:

�f = fkT (ω), 2(f0 − f3) = fkY (ω). (16)

Here Y (ω) must not vanish. By means of a substitution of the form
f → γ(ω)f (ansatzes (14) are equivalent up to such substitutions) we
can get the system (16) with Y = 2/(1 − k). Then from the second
equation of (16) we get

f =
[
Φ(ω, x1, x2) +

1
2
(x0 − x3)

]1/(1−k)

. (17)

Substitution of (17) into the first equation of (16) gives the following
system for the function Φ:

Φ11 + Φ22 = T (ω)(1 − k), 2Φω − Φ2
1 − Φ2

2 = 0.

Using the results for the system (4) we get solutions for different
T (ω) with which the system (16) can be compatible:

Φ = −1
2

m∑
i=1

x2
i

ω +Bi
, T =

1
k − 1

m∑
i=1

1
ω +Bi

; (m = 1 or 2)

Φ = B1x1 +B2 +
B2

1

2
ω, T = 0; Bi are constants.
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Now Eq.(15) can be reduced to the ODE ϕ′ 2
1 − k

+T (ω)ϕ = λϕk, which

is solvable in quadratures: e.g., let T =
1

k − 1

2∑
i=1

1
ω +Bi

. Then

ϕ =
√
ρ

[
λ(1 − k)2

2

∫
ρ

k−1
2 dω

] 1
1−k

, ρ = (ω +B1)(ω +B2).

These results can be easily generalized for the cases when ω is a
solution of the system �ω = 0, ωµωµ = 0 (see e.g. [19]) or when u =
u(x0, x1, . . . , xn), n > 3.
Reduction and solutions for Eq.(15) when u is a complex function are

considered in [20].

4. Relation between symmetry and reduction of partial diffe-
rential equations. In general an ansatz which reduces a PDE to ano-
ther PDE with less number of independent variables or to an ODE cor-
responds to some Q-conditional symmetry of that equation. The notion
of conditional symmetry was introduced in [21], and many examples of
such symmetries for considered equations are given in [7–13].

Definition. Let us consider a PDE

F (x1, u, u
1
, . . . , u

r
) = 0, (18)

where x is a vector of independent variables, U is some function, u
k

is a set of k-th order partial derivatives. We shall say that Eq.(18)
is Q-conditionally invariant with respect to a set of operators {Qa =
ξab(x, u)∂b + ηa(x, u)∂u} if the system containing Eq.(18) and the addi-
tional conditions

La = ξab(x, u)ub − ηa(x, u) = 0 (19)

is compatible and invariant with respect to these operators.

Operators of conditional invariance can be defined up to an arbitrary
multiplier,and such invariance is essential when Qa are not proportional
to some operators of Lie invariance.
It can be proved that in the case ofQ-conditional invariance a solution

of the system (19) gives an ansatz which will reduce Eq.(18). Very
often investigation of reduction conditions or Q-conditional invariance
gives more ansatzes than the classical Lie method. However, all ansatzes
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described above correspond to Lie symmetry operators of Eqs. (1) and
(15). So we proved that ansatzes (3) and (14) yield no essential Q-
conditional invariance for these equations. This fact does not disprove
the idea that the direct method of reduction is more general than the
classical Lie method, though it is usually more difficult to apply.

[1] Lie S. // Math. Ann. – 1884. – 24. – P. 52–89.

[2] Ovsyannikov L.V. Group analysis of differential equations. – New York:
Academic Press, 1982.

[3] Olver P. Applications of Lie groups to differential equations. – New York:
Springer Publishers, 1989.

[4] Fushchych W.I. Symmetry in problems of mathematical physics // Theoretical-
algebraical investigations in mathematical physics. – Kyiv: Institute of
Mathematics, 1981. – P. 6–28.

[5] Fushchych W.I., Serov N.I. The symmetry and some exact solutions of the non-
linear many-dimensional Liouville, d’Alembert and eikonal equations // J. Phys.
A. – 1983. – 22. – P. 3645–3656.

[6] Fushchych W.I., Barannik L.F. and Barannik A.F. Subgroup analysis of the
Galilei and Poincare group and reduction of nonlinear equations. – Kyiv:
Naukova Dumka, 1991.

[7] Bluman G.W., Cole J.D. The general similarity solution of the heat equation
// J. Math. Mech. – 1969. – 18. – P. 1025–1042.

[8] Fushchych W.I., Serov N.I. On conditional invariance of the nonlinear d’Alem-
bert // Symmetry and solutions of equations of mathematical physics. – Kyiv:
Institute of Mathematics, 1988. – P. 98–102.

[9] Fushchych W.I. On symmetry and some exact solutions of some many-
dimensional equations of mathematical physics // Symmetry and solutions of
nonlinear equations of mathematical physics. – Kyiv: Institute of Mathematics,
1987. – P. 4–16

[10] Olver P.J., Rosenau P. Group-invariant solutions of differential equations //
SIAM J. Appl. Math. – 1987. – 18. – P. 263–278.

[11] Clarkson P.A., Kruskal M.D. New similarity reductions of the Boussinesq
equation // J. Math. Phys. – 1989. – 30. – P. 2201–2213.

[12] Levi D., Winternitz P. Non-classical symmetry reduction - example of the
Boussinesq equation // J. Phys. A. – 1989. – 22. – P. 2915–2924.

[13] Fushchych W.I. Conditional symmetry of mathematical physics equations //
Ukr. Math. Zhurn. – 1991. – 43. – P. 1456–1470.



Ansatzes and exact solutions for nonlinear 87

[14] Fushchych W.I., Serov N.I. On some exact solutions of the three-dimensional
non-linear Schrödinger equation // J. Phys. A. – 1987. – 20. – P. 1929–1933.

[15] Tajiri M. Similarity reductions of the 1 and 2 dimensional non-linear Schrödinger
equations // J. Phys. Soc. Japan. – 1983. – 52. – P. 1908–1917.

[16] Gagnon L., Winternitz P. Lie symmetries of a generalized non-linear Schrödinger
equation. 1. The symmetry group and its subgroups // J. Phys. A. – 1988. –
21. – P. 1493–1511.

[17] Fushchych W.I., Yegorchenko I.A. Non-Lie ansätze and conditional symmetry
of nonlinear Schrödinger equation // Ukr. Math. Zhurn. – 1991. – 43. – P. 1620–
1628.

[18] Collins C.B. Complex potential equations. I // Math. Proc. Camb. Phil. Soc. –
1976. – 80. – P. 165–184.

[19] Fushchych W.I., Zhdanov R.Z., Revenko I.V. Compatibility and Solutions of
Nonlinear d’Alembert and Hamilton Equations. – Kyiv, 1990. – (Preprint /
Institute of Mathematics; 90.39).

[20] Fushchych W.I, Yegorchenko I.A. The symmetry and exact solutions of the
nonlinear d’Alembert equation for complex fields // J. Phys. A. – 1989. – 22.
– P. 2643–2652.

[21] Fushchych W.I., Nikitin A.G. Symmetries of Maxwell’s equations. – Dordrecht:
Reidel Publishers, 1987.




