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On covariant realizations of the Euclid group
R.Z. ZHDANOV, V.I. LAHNO, W.I. FUSHCHYCH

We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups
within the class of first-order differential operators in arbitrary finite dimensions. It
is established that there are only two distinct realizations of the Lie algebra of the
group O(3) which are inequivalent within the action of a diffeomorphism group. Using
this result we describe a special subclass of realizations of the Euclid algebra which
are called covariant ones by analogy to similar objects considered in the classical
representation theory. Furthermore, we give an exhaustive description of realizations
of the Lie algebra of the group O(4) and construct covariant realizations of the Lie
algebra of the generalized Euclid group E(4).

1 Introduction

The standard approach to constructing linear relativistic motion equations contains
as a subproblem the one of describing inequivalent matrix representations of the
Poincaré group P(1,3). So that if one succeeds in obtaining an exhaustive (in some
sense) description of all inequivalent representations of the latter, then it is possible to
construct all possible Poincaré-invariant linear wave equations (for more details see,
e.g. [1-3]). It would be only natural to apply the same approach to describing nonli-
near relativistically-invariant models with the help of the Lie’s infinitesimal technique.
However, in the overwhelming majority of the papers devoted to symmetry classifi-
cation of nonlinear differential equations admitting some Lie transformation group G
the realization of the group was fixed a priory. As a result, only particular classes
of partial differential equations invariant with respect to a prescribed group G were
obtained. One of the possible reasons for this is that the problem of describing inequi-
valent realizations of a given Lie transformation group reduces to constructing general
solution of some over-determined system of nonlinear partial differential equations (in
contrast to the case of the classical matrix representation theory where one has to
solve nonlinear matriz equations).

We recall that given a fixed realization of a Lie transformation group G, the
problem of describing partial differential equations invariant under the group G is
reduced with the help of the infinitesimal Lie method to integrating some over-
determined linear system of partial differential equations (called determining equa-
tions) [4-7]. However, to solve the problem of constructing all differential equations
admitting the transformation group G whose realization is not fixed a priori one has

e to construct all inequivalent (in some sense) realizations of the Lie transforma-
tion group G,
e to solve the determining equations for each realization obtained.
And what is more, the first problem, in contrast to the second one, reduces to solving

nonlinear systems of partial differential equations. In this respect one should men-
tion the Lie’s classification of integrable ordinary differential equations based on his
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classification of complex Lie algebras of first-order differential operators in one and
two variables [8]. However, it seems impossible to give an exhaustive description of
all Lie algebras of first-order differential operators. Till now there is no complete
classification of them even for the case of first-order differential operators in three
variables, though a partial classification was obtained by Lie a century ago [8].

The classification problem is substantially simplified if we are looking for inequi-
valent realizations of a specific Lie algebra. It has been completely solved by Ri-
deau and Winternitz [9], Zhdanov and Fushchych [10] for the generalized Galilei
(Schrodinger) group Ga(1,1) acting in the space of two dependent and two inde-
pendent variables.

Yehorchenko [11] and Fushchych, Tsyfra and Boyko [12] have constructed new
(nonlinear) realizations of the Poincaré groups P(1,2) and P(1,3), correspondingly
(see also [13, 14]). Some new realizations of the Galilei group G(1, 3) were suggested in
[15]. A complete description of covariant realizations of the conformal group C(n,m)
in the space of n + m independent and one dependent variables was obtained by
Fushchych, Zhdanov and Lahno [16, 17] (see, also [18]). It has been established,
in particular, that any covariant realization of the Poincaré group P(n,m) with
max{n,m} > 3 in the case of one dependent variable is equivalent to the standard
realization. But given the condition max{n, m} < 3, there exist essentially new reali-
zations of the corresponding Poincaré groups.

The present paper is devoted mainly to classification of inequivalent realizations of
the Euclid group F(3), which is a semi-direct product of the three-parameter rotation
group O(3) and of the three-parameter Abelian translation group 7'(3), acting in the
space of three independent (x1,xz2,23) and n € N dependent (uq,...,u,) variables.
Being a subgroup of such fundamental groups as the Poincaré and Galilei groups, the
Euclid group plays an exceptional role in modern mathematical and theoretical physi-
cs, since it is admitted both by equations of relativistic and non-relativistic theories.
In particular, group F(3) is an invariance group of the Klein-Gordon—Fock, Maxwell,
heat, Schrodinger, Dirac, Weyl, Navier—Stokes, Lamé and Yang—Mills equations.

The paper is organized as follows. The second section contains the necessary notati-
ons, conventions and definitions used throughout the paper. In the third section we
give an exhaustive classification of inequivalent realizations of the Lie algebra of the
rotation group O(3) within the class of first-order differential operators. The fourth
section is devoted to description of covariant realizations of the Euclid algebra AE(3).
We give a complete classification of them and, furthermore, demonstrate how to reduce
the realizations of AE(3) realized on the sets of solutions of the Navier—Stokes, Lame,
Weyl, Maxwell and Dirac equations to one of the two canonical forms. In the forth
section the results obtained are applied to describe covariant realizations of the Lie
algebra of the generalized Euclid group AE(4).

2 Basic notations and definitions
It is a common knowledge that investigation of realizations of a Lie transformation

group G is reduced to study of realizations of its Lie algebra AG whose basis elements
are the first-order differential operators (Lie vector fields) of the form

Q = ga(ﬂj’ u)aﬂ:a + Th(x, U)au” (1)
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where £,, n; are some real-valued smooth functions of x = (z1,22, ...,2;,) € R™
and u = (ug,ug, ...,up) € R", 0, = %, Ou;, = aiuiv a=1,2,....m,i=1,2,...,n.
Hereafter, a summation over the repeated indices is understood.

In the above formulae we have two “sorts” of variables. The variables z1, za, ..., Tm
and uy, us, . . ., u, will be referred to as independent and dependent variables, respecti-
vely. The difference between these becomes essential when we consider AG as an
invariance algebra of some system of partial differential equations for uj(x), ..., u,(x).

Due to properties of the corresponding Lie transformation group G basis operators
Qu,a=1,...,N of a Lie algebra AG satisfy commutation relations

[Qa, Q) = C5Qey, a,b=1,... N, (2)

where [Qq, Qp] = QuQp» — QpQ. is the commutator.

In (2) C¢, = const € R are structure constants which determine uniquely the
Lie algebra AG. A fixed set of Lie vector fields (LVFs) Q, satisfying (2) is called
a realization of the Lie algebra AG.

Thus the problem of description of all realizations of a given Lie algebra AG
reduces to solving the relations (2) with some fixed structure constants C¢, within
the class of LVFs (1).

It is easy to check that the relations (2) are not altered with an arbitrary invertible
transformation of variables x, u

ya:fa(xau)a a=1,...,m,
B . ()

v; = gi(z,u), i=1,...,n,
where f,, g; are smooth functions. That is why we can introduce on the set of reali-
zations of a Lie algebra AG the following relation: two realizations (Q1,..., Qn)
and (@), ...,Q)) are called equivalent if they are transformed one into another by
means of an invertible transformation (3). As invertible transformations of the form
(3) form a group (called diffeomorphism group), the relation above is an equivalence
relation. It divides the set of all realizations of a Lie algebra AG into equivalence
classes Ay, ..., A,. Consequently, to describe all possible realizations of AG it suffices
to construct one representative of each equivalence class A;, j=1,...,r.

Definition 1. First-order linearly-independent differential operators

Py = €4 (@, u)0y, + 1 (2,0)0,,,

(4)
Jo = €D (2, u)0y, + 12 (2, 1)00,,

where the indices a, b take the values 1, 2, 3 and the index i takes the values 1,2,...,n,
form a realization of the Euclid algebra AE(3) provided the following commutation
relations are fulfilled:

[Pa,Pb] 207 (5>
[Jm Pb] = Eabcpm (6)

[J(17 Jb] = Eabede, (7)
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where

—_

, (abe) = cycle (123),
, (abc) = cycle (213),
0, in the remaining cases.

[y

Eabc = -

Definition 2. Realization of the Fuclid algebra within the class of LVFs (1) is called
covariant if coefficients of the basis elements P, satisfy the following condition:

(1) (1) (1) (1) (1)
B o oM
rank | &) &5y &3 Myl oo Mo || =3 (8)
(1) (1) (1) (1) (1)
31 32 33 M1 N3n

3 Realizations of the Lie algebra
of the rotation group O(3)

It is well-known from the classical representation theory that there are infinitely many
inequivalent matrix representations of the Lie algebra of the rotation group O(3) [1].
A natural equivalence relation on the set of matrix representations of AO(3) is defined
as follows

J, = VJ, V1

with an arbitrary constant nonsingular matrix V. If we represent the matrices J, as
the first-order differential operators (see, e.g. [7])

ja = _{Jau}aauaa (9>

where u is a vector-column of the corresponding dimension, then the above equivalence
relation means that the representations of the algebra AO(3) are looked within the
class of LVFs (9) up to invertible linear transformations

u—v="Vu.

It is proved below that provided realizations of AO(3) are classified within arbitrary
invertible transformations of variables

vi=F;(w), i=1,...,n, (10)

there are only two inequivalent realizations.

Theorem 1. Let first-order differential operators
ja :Uai(“)aum a = 17273 (11)

satisfy the commutation relations of the Lie algebra of the rotation group O(3) (7).
Then either all of them are equal to zero, i.e.

Ja :07 a = 15273 (12)
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or there exists a transformation (10) reducing these operators to one of the following
forms:

1. Ji = —sinug tanus0y, — coSu10y,,
J2 = —cosuy tan ug0y, + sin uq Oy, , (13)
T3 = auﬁ

2. J1 = —sinug tanugdy, — cosu1 0y, + sinug sec ug0y,,
J2 = —cosuy tanugdy, + sinugdy, + cosug sec ugdy,, (14)
T3 = Oy, -

Proof. If at least one of the operators J, (say J3) is equal to zero, then due to the
commutation relations (7) two other operators Ja, J3 are also equal to zero and we
arrive at the formulae (12).

Let J3 be a non-zero operator. Then, using a transformation (10) we can always
reduce the operator J5 to the form J3 = 0,, (we should write J35 but to simplify
the notations we omit hereafter the primes). Next, from the commutation relations
(T3, 1] = To, [ T3, To) = —J1 it follows that coefficients of the operators [J;, Ja satisfy
the system of ordinary differential equations with respect to vy,

N2ivy = N3iy,  M3ivy = —MN2ie T=1,...,m.
Solving the above system yields
N2 = ficosvy + g;sinvy, 13 = g;cosvy — fisinvy, (15)
where f;, g; are arbitrary smooth functions of vy,...,v,, i =1,...,n.
Case 1. f; = g; =0, j > 2. In this case operators J;, J> read
Ji = feosv10y,, J2=—fsinvi0,,

with an arbitrary smooth function f = f(va,...,v,).
Inserting the above expressions into the remaining commutation relation [J1, J2| =
Js and computing the commutator on the left-hand side we arrive at the equality
2 = —1 which can not be satisfied by a real-valued function.

Case 2. Not all f;, g;, j > 2 are equal to 0. Making a change of variables
wi =v1+V(ve,...,v,), wj=v;, j=2,...,n

we transform operators J,, a = 1,2, 3 with coefficients (15) as follows

n
J1 = [sinwi0y, + Z(fj cos wy + g; sinwi )0, ,
=2

- i - 16
J2 = fcoswi0y, + Z(gj coswy — fjsinwi )0, , (16)

Jj=2

j3 = awl-

Here f, f;j, g; are some functions of wa, ..., wy,.
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Subcase 2.1. Not all f] are equal to 0. Making a transformation
2 =wi, zj=Wjlwa,...,wn), j=2,...,n

where Wj is a particular solution of partial differential equation

> fi0w,Wa =1

=2
and Ws, ..., W, are functionally-independent first integrals of partial differential
equation

n ~

> fi0uw,W =0,

j=2

we reduce the operators (16) to be
n

J1 = Fsinz,0,, + cos 210, + ZGj sin 210,

§=2
o 17
J2 = Fcos210,, —sinz10,, + Z G cos 210y, (1)
j=2
\73 = 821
Substituting operators (17) into the commutation relation [, J2] = J5 and
equating coefficients of the linearly-independent operators 0., ,...,0,, we arrive at
the following system of partial differential equations for the functions F, Gy, ..., Gy:

F,-F*=1, G,—-FG;=0, j=2,...,n

Integrating the above equations yields

cs
F=tan(z +¢), Gj=——2—o
(22 + 1) 7 cos(zg + 1)’
where ¢y, ..., c, are arbitrary smooth functions of z3,...,2,, j =2,...,n
Changing, if necessary, zo by 2o +c1(23, ..., 2,) we may put ¢; equal to zero. Next,

making a transformation
ya:Zaa a’:1)2737
Yp = Zi(23,...,2n), k=4,...,n

where Zj, are functionally-independent first integrals of partial differential equation

zn: G;0:,7 =0,
j=3

we can put G, =0, k=4,...,n
With these remarks the operators (1 7) take the form
Jh = siny; tanya0y, + cosy10y, + (f(p)'yz + g0y, ),

COb yl

Jo = cosyy tanya0y, — siny10y, + (f8y2 + g0y,), (18)

j3 = ayla

where f, g are arbitrary smooth functions of ys, ..., yn.
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If g = 0, then making a transformation

sin yo N
T Uk = Yk,
Veos?ya + f?

where k = 3,...,n, we reduce the operators (18) to the form (13).

U1 = y1 — arctan Uy = — arctan

cosyo’

If in (18) g # 0, then changing ys to 95 = [¢ 'dys and y2 to o = —ys we
transform the above operators to become

siny sin ¥
Ji1 = —sing; tan 205, — (cos 71—« 3{1 ) Oz, + Ll

cosgn ) P cosgy U
. . L Cos Y1 cos Y1 (19)
Jo = —cos gy tan a0y, + | singh + « — | 0y, + —=0y,,
coS ¥ coS ¥
T3 = 0y, .
Here « is an arbitrary smooth function of g3, ..., 7.

Finally, making the transformation
=G+ f, @3=g, G3=h, =G

where k = 3,...,n and f(J2,...,9n), 9(T2,---,Tn), R(Y2,...,¥n) satisfy the compa-
tible over-determined system of nonlinear partial differential equations

fy, =sin ftang, fz, =sinys — asin ftang — cos 2 cos f tan g,
9§, = cos f, gg, = sin f cosfo — accos f,

hg, = —sin fsecg, hg, = (cos f cosya + asin f)secg,

reduces operators (19) to the form (14).

Subcase 2.2. f; =0, j = 2,...,n. Substituting the operators (16) under f; = 0
into the commutation relation [J1, J2] = J3 and equating coefficients of the linearly-
independent operators 0, ,...,0,, yield system of algebraic equations

_.f2:17 fg]:Oa .7:275’”

As the function f is a real-valued one, the system obtained is inconsistent.

Thus we have proved that the formulae (13)—(12) give all possible inequivalent
realizations of the Lie algebra (7) within the class of first-order differential opera-
tors (11). The theorem is proved. |

If we realize the rotation group as the group of transformations of the space of
spherical functions, then the basis elements of its Lie algebra are exactly of the form
(13) [1]. Hence it follows that the realization space V of the Lie algebra (13) is a di-
rect sum of subspaces Vy;41 of spherical functions of the order [. Furthermore, if we
consider O(3) as the group of transformations of the space of generalized spherical
functions [1], then the operators (14) are the basis elements of the corresponding Lie
algebra.
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4 Realizations of the algebra AFE(3)

First we will prove an auxiliary assertion giving inequivalent realizations of Lie algeb-
ras of the translation T'(3) group within the class of LVFs.

Lemma 1. Let mutually commuting LVFs
Pa = &) (2.0)0, + g3 (2, 0)0,,

where a,b=1,..., N, satisfy the relation

1 1 1 1
e oo Y b
rank : : : : : = N. (20)
1 1 1 1
) EVN N1 oo e

Then there exists a transformation of the form (3) reducing operators P, to become
P/ =0,,,a=1,...,N.
Proof. To avoid unessential technicalities we will give the detailed proof of the lemma
for the case N = 3.

Given a condition N = 3, relation (20) reduces to the form (8). Due to the latter
P, #0 for all a = 1,2, 3. It is well-known that a non-zero operator

b = 5}1})(% )0y, + 773)(33’“)81”

can always be reduced to the form P = 9,, by a transformation (3) with m = 3.
If we denote by Pj, P; the operators P», P5 written in the new variables y, v, then
owing to the commutation relations (5) they commute with the operator P| = 0y, .
Hence, we conclude that their coefficients are independent of .

Furthermore due to the condition (8) at least one of the coefficients £é(21), '2(31),
77;(11), cey 7]/2(71) of the operator P is not equal to zero.

Summing up, we conclude that the operator Py is of the form

1 1
P2/ = fé(b )(yQa Ys, 'U)ayb + 77/2(1 )(yQa Y3, v)ﬁvi 7é 07
not all the functions 55(21), ;(31), 77;(11), oy 77/2(71) being identically equal to zero.
Making a transformation
z1 =Y + F(y27y33v)5
Zo = G(y27 Y3, ’U)7
z3 = wO(yQ, Ys, U),

wizwi(y27y3av)7 i:]-v"',nv

(21)

where the functions F', G are particular solutions of differential equations

1 1 1 1
5,2(2)(927y37U)Fy2 +§;(2)(y27y3;71)Fy3 + "7;(1 )(ZUQ;ZJB’U)FW + g;(l )(92793#1) = 07
1 1 1
5/2(2)(1927937U)Gy2 ‘1’5;(2)(92793;71)61113 + 77/2(1 )(y25y37v)Gui =1

and wq, w1, . ..,w, are functionally-independent first integrals of the Euler-Lagrange
system
dys _ dys _ duvy dvy,
o T o o T T T Tay
2(2) 2(3) 772(1) 772(n)
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which has exactly n+ 1 functionally-independent integrals, we reduce the operator P
to the form Py = 0,,. It is easy to check that the transformation (21) does not alter
form of the operator P;. Being rewritten in the new variables z, w it reads P}’ = 9., .

As the right-hand sides of (21) are functionally-independent by construction, the
transformation (21) is invertible. Consequently, operators P, are equivalent to opera-
tors P, where P’ = 0,,, Py = 0., and

Py = &l (z5,w)0, + 4" (23, w)d,, # 0.

(Coefficients of the above operator are independent of z1, zo because of the fact that

it commutes with the operators P;’, Py'.) And what is more, due to (8) at least one

of the coefficients fé’él), ngl(l), Cee n&(l) of the operator Py is not identically equal to

zero.
Making a transformation
71 = z1 + F(z3,w),
Zy = 29 + G(z3,w),
Z3 = H(z3,w),
W; = Qi(z3,w), i=1,...,n,

where F'; G, H are particular solutions of partial differential equations

ilil?sl)(z& w)F, +773( )(237W)F = 5”(1)(237 )

357 (2, )Gy + 1 (25,0) G, = =58 (25, w),

D (23, w) Hoy + 0yt (23, w) Hy, = 1,
and Qq,...,Q, are functionally-independent first integrals of the Euler-Lagrange
system

dz _ dwn o dwn

Y )

we reduce the operators P/, a = 1,2,3 to the form P! = 0z, , a = 1,2, 3, the same
as what was to be proved.

Note 1. In the papers [9, 17] mentioned above a classification of realizations of the
groups Ga(1, 1), C(n, m) was carried out under assumption that mutually commuting
LVFs

Qazgaa(x)ama, a=1,...,N
can be simultaneously reduced by the map

to the form Q/, = J,, .
It is not difficult to become convinced of the fact that this is possible if and only
if the condition

rank ||€aaHa loz 1 — =N (23)
holds.
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The sufficiency of the above statement is a consequence of Lemma 1. The necessi-
ty follows from the fact that function-rows of coefficients of operators Q,..., Q%
transformed according to formulae (22) are obtained by multiplying function-rows of
coefficients of the operators Q1,...,Qn by a Jacobi matrix of the map (22), i.e.

ftlngaﬁfaasg, a=1,...,.N, a=1,...,n

which leaves the relation (23) invariant.

Consequently, in [9, 17] only covariant realizations of the corresponding Lie algeb-
ras were considered, which, generally speaking, do not exhaust a set of all possible
realizations.

Now we can prove a principal theorem giving a description of all inequivalent
covariant realizations of the Euclid algebra AE(3).

Theorem 2. Any covariant realization of the algebra AE(3) within the class of first-
order differential operators is equivalent to one of the following realizations:

1. Pa = 8wa7 Ja = _gabcxbawca a = 1a2a3; (24)
9. P,=08,,, a=1,2,3,

Jl = _x28x3 + -T?)amz + faml - fug Sinulazg -

— sin uy tan ugdy, — €S U1 0y,

(25)
Jo = =230y, + 2105, + fOr, — fu, COSUIOpy —
— cosuy tanugdy, + sinugd,,,
J3 = 71’1812 + xgazl + 3u1;
3. P,=0,, a=123,
J1 = =290, + 1305, + g0z, — (SiN U1 gy, + COSUT SEC USG5 ) Dy
— sin ug tan ugdy, — cosu10y, + sinuj sec uz0,,,
. 26
Jy = =230, + 2105, + g0z, — (COSUIGy, — SIN U SEC UGy, )Opy — (26)
— cos uy tan ug0y, + sinuq 0y, + cosuy sec u20y,,
J3z = —3:18@ + .1326;51 + 8u1.
Here f = f(ua,...,u,) is given by the formula
sin u 1
fasinu2+ﬂ<sinu21n2+l), (27)
COS Us
a, B are arbitrary smooth functions of ug, ..., u, and g = g(us,...,uy) is a solution
of the following linear partial differential equation:
€082 U Guyuy + Gusus — SN U COS Usp Gu, + 2082 Up g = 0. (28)

Proof. Due to Lemma 1 operators P, can always be reduced to the form P, = 0,
by means of a properly chosen transformation (3). Inserting the operators

P, = 3%, Jo = fab(x7u)aﬂcb =+ Wai(l’vu)aui
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into the commutation relations (6) and equating the coefficients of the linearly-
independent operators Oy,, Ozy; Opsy Ouys- - -, 0u, We arrive at the system of partial
differential equations for the functions &qp(x, u), 14 (2, u),

gacwb = —Eabc;, MNaiz, = 0; a, b,C: 1a2a3a 1= 1,7’l
Integrating the above system we conclude that the operators J, have the form
Ja = _‘(':abcxbaacC + jab(u)a:rb + ﬁai(u)aum a = 17 2> 37 (29)

where jqp, 7qp are arbitrary smooth functions.

Inserting (29) into the commutation relations (7) and equating coefficients of
Ouys- -+, Oy, show that the operators J, = 74:04,, @ = 1,2,3 have to fulfill (7) with
Jo — J,. Hence, taking into account Theorem 1 we conclude that any covariant
realization of the algebra AF(3) is equivalent to the following one:

Pa - axa,; L]a = _5‘:ab¢:xbaacC +jab(u)8xb + ja7 a = 172,37 (30)

operators J, being given by one of the formulae (12)—(14).
Making a transformation

Yo = Ta + Fo(u), vi=u;, a=12,3 1=1,...,n,
we reduce operators J, from (30) to be
Jr = —y28y3 + y3ay2 + Aalh + Bayz + Cays + 1,

Jo = —y30y, + Y10y, + F0y, + GOy, + Jo, (31)
Jz = —y13y2 + y26y1 + Hayz + Js,

where A, B, C, F', G, H are arbitrary smooth functions of vy, ..., v,.

Substituting the operators (31) into (7) and equating coefficients of linearly-inde-
pendent operators 0y,, Oy,, Oys, Oy, ..., 0y, result in the following system of partial
differential equations:

1) A =—C, 6) J3C — JLH = G,

2) J3F = —B, 7) TG~ JC=H—A-F,

3) JsA =B, 8) JsB=F—A—H, (32)
4) \F — JB = G, 9 A-—F—H=0

5) JoH — J3G = C,

Case 1. All operators [Jp, J2, J3 are equal to zero. Then, (32) reduces to the
system of linear algebraic equations

B=C=G=0, H-A-F=0, F-A-H=0, A-F—-H=0,

whence it follows immediately that A = F = G = 0. Substituting the above results
into formulae (31) we arrive at the realization (24).

Case 2. Suppose now that not all operators [J1, J2, J3 vanish. Then, they are given
either by formulae (13) or (14), where one should replace uy, ..., u, by v1,...,v,. As
for the both cases J5 = 0,,, a subsystem of equations 2, 3, 8, 9 forms a system of
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linear ordinary differential equations for functions A, B, F, H with respect to v;.
Integrating it we have
A = By + Bysin2v; — Bycos2v1, B = 2Bjcos2vi + 2Bs sin 201,

33
F = By + Bycos2vy — Bysin2vy, H = 2Bjsin2v; — 2B5 cos2vy, (33)

where By, B, By are arbitrary smooth functions of v, ..., v,.
Subcase 2.1. Let the operators Ji, Jo, J3 be of the form (13). Then, making
a transformation

21 = y1 + Ry cosvy + Rysinwy,

2o = Y2 + R cosvy — Ry sinwy,
z3=1ys + %(R%Q + tan ve Ra) cos 2v1 — %(le + tanvo Ry) sin 2vy +
+ %(tan vaRo — Ray,),
where the functions Ry, R are solutions of the system of partial differential equations
Ry, + 1tan vaR1 = —2Bs, Ray, + ltan vaRe = 2By,

2 2
we reduce the operators (31) with A, B, F, H given by (33) to the form

Jl = —22823 + 23822 + Avazl + 5823 + jl»
J2 = 723821 -+ 218z3 + ﬁﬁm + éazs + j27 (34)
J3 = —218z2 + Zgazl + J3.

Here ﬁ, C , G are arbitrary smooth functions of vy, ..., v,, and what is more, A does
not depend on v;.

Given such a form of operators J,, system (32) reduces to three differential equa-
tions

JoA=-C, J1A=G, JG-T5C=-2A (35)

Inserting expressions for the operators Ji, Jo from (13) into the first two equations
we have

C=—sinnd,,, G=—cosvi4,,.

Substituting the above formulae into the third equation of the system (35) we
conclude that it is equivalent to the differential equation

Ay, — tan "UQ/NL,Q +24 = 0,

whose general solution is given by (27). At last, inserting the results obtained into
(34) we get the formulae (25).
Subcase 2.2. Let the operators Ji, Ja, J3 be of the form (14). Then, making
a transformation
z1 = y1 + Ry cosvy + Rosinwy,

2o = Yo + Rocosvy — Ry sinwy,
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1
23 =ys + 5 (Ray, — secvaRyy, + tan vy Ra) cos 2v; —
1
— §(R1v2 + sec va Ray, + tanve Ry ) sin 2v1 +

1
+ i(tan va Ry —secvaR1y, — Ray, ),

where the functions Ry, R are solutions of the system of partial differential equations

2By = Ry, —secvaRy,, + tanva Ry,
2By = — Ry, — secvaRg,, — tanva Ry,

we reduce the operators (31) with A, B, F', H given by (33) to the form (34), where
/~1, C , G are arbitrary smooth functions, and what is more, A does not depend on ;.

Given such a form of the operators J,, system (32) reduces to three differential
equations (35). Inserting expressions for the operators J;, J2 from (13) into the first
two equations of (35) we have

C = —cosviA,, + sinv; secvaA,,, (36)
G = —sinv1 Ay, — cos vy secvaA,,.

Substituting the above formulae into the third equation of (35) after some algebra
we arrive at the conclusion that it is equivalent to equation (28). Inserting (36) into
(34) yields formulae (26).

Thus we have proved that if LVFs P,, J, realize a covariant realization of the
Euclid algebra AF(3), then they can be reduced to one of the forms (24)—(26) by
means of an invertible transformation (3). The theorem is proved. n

While proving Theorem 1, we have established, in particular, that any realization
of the Euclid algebra satisfying the condition (8) can be transformed to become

P, =0, Jo=—€abc®tOs, + Jab(v)0z, + Nai(w)0y,, a=1,2,3.
If we choose in the above formulae
Jab(u) =0, nei(uw) = —Agiju;, a,b=1,2,3, i=1,...,n,
where Agq;; = const, then the following realization
P,=0.,, Jo=—¢€aetpOs, + Tu, a=1,2,3 (37)

with Jo = —Aqiju;0,, is obtained.

A realization of the Euclid algebra with generators of the form (37) is called in the
classical linear representation theory a covariant realization. That is why it is natural
to preserve for a realization of the algebra AFE(3) within the class of LVFs obeying
(8) the same terminology.

As an illustration to Theorem 2 we will demonstrate how to reduce realizations of
the Euclid algebras realized on sets of solutions of the heat, wave, Laplace, Navier—
Stokes, Lame, Weyl, Dirac and Maxwell equations to one of the three canonical forms
(24)—(26). First of all, we note that the realization (24) is exactly the one realized
on the sets of solutions of the linear and nonlinear heat (Schrodinger), wave, Laplace
equations.
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Symmetry algebras of the Navier—Stokes and Lame equations contain as a subal-
gebra the Euclid algebra having basis elements (37), where (see, e.g. [6])

Jo = —Eabe 0p0p,, a=1,2,3. (38)
The change of variables
U1 = ug Sinuq COSuU2, Vg = U3COSUI COSUs, V3 = U3 Sin U

reduce these LVFs to the form (25) with f = 0.
Next, if we consider the Weyl equation as the system of four real equations for

four real-valued functions vy, ve, wy, wo, then on the set of its solutions realization
(37) of the algebra AF(3) is realized, where [3, 7]

1
T = 5(11)25'1;1 = 010w, + w10y, = V20u,),
1
J2 = 5(@2&;1 — 010y, + W20u, — w10u,), (39

1
T3 = §(w18v1 — 010w, + 1200, — w28@2)'

Making the change of variables

( LU L U2 us + Ui Uz . us)
V1 = Uy (SIn — sin — cos — + cOS — CO0S — sin —
2 2 2 2 2 2/’
( Ul Uz us LU u2 us)
Vo = Uy | COS — COS — €OS — — Sin — sin — sin —
2 2 2 2 2 2/’
( up . U2 us .Uy Uz . U3>
W1 = U4 | COS — Sin — cos — — sin — cos — sin —
2 2 2 2 2 2/’
( .W Uz us + up . Uz . Us)
Wo = Uy | SIN — COS — COS — 4+ cOS — Sin — sin —
2 2 2 2 2 2

reduces the above LVFs to the form (26) with g = 0.

On the solution set of the Maxwell equations the realization of the Euclid algebra
(37), where

Jo = —€abe (EvOp, + HyOm,), a=1,2,3,

is realized [19].
This realization is reduced to the form (26) under ¢ = 0 with the help of the
change of variables

FE1 = ugsinuq cos usg,

FEy = ug cos uy cosusg,

E3 = Ug sin Uz,

Hy = uy(cosuq sin ug + sin ug sin ug cosug) + us sinug cos ug,
Hy = uy(cos uy sin ug cos ug — sinug sinug) + w5 o8 up oS ug,

H3 = —U4 COS U COS U3 + U5 sin usg.

Taking the Dirac matrices v, in the Majorana representation we can represent the
Dirac equation as the system of eight real equations for eight real-valued functions
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WO 3, Y, abS (for details, see e.g. [7]). With this choice of y-matrices, on the
set of solutions of the Dirac equation realization of the Euclid algebra (37) with
1
T = -3 (d’?aw‘fr 7/’%‘%} - ﬁ&@pf - 1/’(1)31/;? + 7/1§3wg + z/z%@w% - lb%awg - ¢33¢g)7
1
J2 = 5( — Y700+ 70y1 + P00z — 1 ys — 30y0 + V501 + V502 — P3y3),
1
Tz = =5 (V1049 — P10y1 + V1053 — U0y + 1209 — V301 + V30,3 — 150y4)

is realized on the set of solutions of the Dirac equation.
Making the change of variables

’(/}0 ( Ul (%) us n Ul us )
= uy | cOs — cos — sin — + sin — sm 2 cos =
! 2 2 2 2 2
’(/}1 ( Ul U us Ul us )
= Uy sm—cos—sm——cos—sm—co —
! 2 2 2 2
’(/J2 =—u (cos all cos 2 cos s sin il sin u2 sin 3)
= —uy - = - _ - = il
! 2 2 2 2 2 2
P =—u (Sin U cos Y2 cos us + cos b sin e sin Ug)
= —uy - el - = = il
! 2 2 2 2 2 2/’
0 . Uy, U ., uz -+ ug Up Uz us + Ug
5 = Us | SIn — sin — sin — COS — COS — COS +
2 2 2 2
+ w7 | sin u cos vz sin Us 1 us cos il s1n cos s + s
. -1 2 _ -t 2
2 2 2 2
1 .U U U3 + ug Uq us + Ug
¥y = —us | sin — cos — cos ———— + cos — sm —2 gin
2 2 2 2
uy | sin U sin 42 cos Us 1 Us cos aal cos sm s + s
— uy k) z S rEs il il
2 2 2 2
2 Uy Uz u'erua uy Uz u3+u6
5 = —us (cos 5- cos 2 sin + sin <4 sin %2 cos )
Uy . U . u3 + ug (5 U3 + ug
“+ u7 | COS — SIn — sIn + sin — COS — cos
2 2 2 2
s = us | cos U sin e cos us + U — sin U cos e sin us + U
= 5 _— e _— —_— —
2 2 2 2 2 2 2
uy | cos il cos Y2 cos us 1 us sin U sin Y2 sin us + us
—uy hl 2 _ -1 2
2 2 2 2 2 2

reduces the above realization to the form (26) with g = 0.

5 Covariant realizations of the Lie algebra
of the group E(4)

We recall that the basis elements of the Lie algebra of the Euclid group E(4) fulfill
the following commutation relations:

[Pas Pp] =0, (40)

[J/Ll/y Pa] = 5/1,(XP1/ - 5uap/u (41)
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[Jag, JHV] = (5QMJ5,, + (5[3,,(]04“ — (50”,.]5“ — (SﬁMJaV, (42)

where «, 3, p,v =1,2,3,4.

Using the results of the previous sections and the fact that the Lie algebra of
the rotation group O(4) is the direct sum of two algebras AO(3) we will obtain
a description of covariant realizations of the Lie algebra (40)—(42) within the class of
LVFs

P,u = f,uu(xa u)afﬂu + 77#1‘(9% ’U,)au”
JMV = guua (337 u)a'va + Nuvi (-Ta u)aul

with J,, = —J,,. Here the indices u, v, a take the values 1,2,3,4 and the index i
takes the values 1,...,n.

As we consider covariant realizations, mutually commuting operators P, satisfy
(20) with N = 4. Hence due to Lemma 1 it follows that they can be reduced to the
form P, = 0., p = 1,2, 3,4. Next, using the commutation relations (41) we establish
that the operators J,,, have the following structure:

Juw = 1,0z, — 2,0z, + fuva(u)Oz, + guvi(u)0y, (43)

with arbitrary sufficiently smooth f. o, guvi-

In what follows we will restrict our considerations to the case when in (43) fu o =
0. This means geometrically that the transformation groups generated by the opera-
tors J,, in the space of independent variables are standard rotations in the planes
(x,,x,). With this restriction LVFEs J,,,, take the form

J;w = xuax“ - l',uamy + jltllv (44)
where

jpl/ = Guvi (u)aul (45)
and, furthermore, g,.;(v) = —guui(u).

Inserting LVFs (44) into (42) we come to conclusion that the operators J,,,, satisfy
the commutation relations of the Lie algebra of the rotation group O(4)

[jaﬁ7 LZU/} = 6aux7ﬁy + 55V\7a;t - 6(XV\7ﬁM - 55ujau- (46)

An exhaustive description of inequivalent realizations of the above Lie algebra
within the class of LVFs (45) is given below. It is based on results of Section 2 and
on the well-known fact that the algebra AO(4) is decomposed into the direct sum of
two algebras AO(3). This is achieved by choosing the basis of AO(4) in the following
way:

1/1
jai = 5 (igabcjbc + Ja4> ) (47>

where the indices a, b, ¢ take the values 1, 2, 3. Due to (46) LVFs J,, 7. fulfill the
following commutation relations:

[\7;_7 jb+] = Eabcjc+7 (48)
[T, Jy 1=0, (49)
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[ja_, jb_] = <€u,bct7c_a (50)

which is the same as what was required. Now we are ready to formulate an assertion
giving an exhaustive description of LVFs (45) satisfying commutation relations (46)
or, equivalently, (48)—(50).

Theorem 3. Any realization of the Lie algebra AO(4) within the class of LVFs (45)
is given by the formulae (47) and by one of the formulae 1-6 presented below.

1. J;f = —sinuy tanugdy, — cosud,,,
j;r = —cosuy tan uady, + sinuyOy,,
+ _
j3 - 6u17
J; = —sinugtanus0y, — cosu3z0y,,
Jy = —cosuztanugOy, + sinusgdy, ,
jgi = 8u3;
2. Ji" = —sinuy tanus0,, — cosu10y,,
j;r = —cosuy tan uady, + sinuyOy,,
+ _
j3 - 6u17
J; = —sinugtanusd,, — cosuz0y, — sinugsecusOy;,
Jy = —cosugtanuyOy, + sinuzdy, — cosus sec ugOy,,
\737 = 8U3§
3. j1+ = —sinug tan ugdy, — oS U0y, — Sl Uy SeC U2Dy,,
J5b = — cosuy tan ugd,, + sinud,, — cosuy sec ugdy,,
+ _
j3 - 8u17
J| = secugcosusly, + sinuzdy,, — tan ug cos uzdy,,
Jy = —secugsinugdy, + cosugdy, + tan ug sin ugdy,,
\737 = 8U3§
4. j1+ = —sinug tan ugdy, — oS8 U0y, — Sl Uy SeC U2Dy,,
J5b = — cosuy tan ugd,, + sinuyd,, — cosuy sec ugdy,,
+ _
j3 - 8u17
J; = —sinugtanusd,, — cosus0y, — sinug sec us0y,,
Jy = —cosug tan us0y, + sinugdy, — cosuy sec us0y,,
\737 = 8U4§
5. J;" = —sinuy tanus0,, — cosu10y, — sinu; sec 0y, ,
J5b = — cosuy tan ugd,,, + sinud,, — cosuy sec ugdy,,
+ _
j3 - 8u17

J; = ksinuysecus0,, — sinug tanus0,, — €os a0y, ,
J5 = ksinuy secus0y; — €08 Uy tan ug0y, + sin ugOy,
‘737 = 8u4;

6. J;" = —sinu; tanuyd,, — cosuy 0y, — sinu; sec ugd,,,

j;r = —cosu tanug0,, + sinu10,, — €O U1 SeC U0y,
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+ _
jg - 8u1>
J| = ugsinug sec us0y, — sinug tanus0,, — cos usOy,,
J5 = ug Sinug sec us 0y, — COS Uy tan us0y, + sin ua0y,,

‘-73_ = 6u4a

where k = const, k # 0.

Proof. We will give the principal steps of the proof omitting intermediate computa-
tions.

According to Theorem 1, there are two inequivalent realizations of the algebra
AO(3) with basis elements J;", 75", J5"

1. J" = —sinuy tanugdy, — cosuid,,,

J; = —cosuy tan uady, + sinuy0y,,

j3+ = au1§ (51)
2. Jfr = —sinu tanugdy, — coS U1 0y, — Sin U sec uzOy,,

J;F = — cosuy tan ugdy, + sinuydy, — cosu; sec uz0y,,

T =0u,.

To complete a classification of inequivalent realization of AO(4) we have to find all
triplets of operators J;, J5 ,J; which together with the operators (51) satisfy (49),
(50).

Analyzing the commutation relations (49) we arrive at the following expressions
for operators J;, Jy , J5 :

L Ty = failus, ... un)y,,
1=3

3 n
2. ja_ = Z fab(u4, ey un)Qb + me(wL, . ,un)&“,
b=1

i=4
where f;; are arbitrary smooth functions and
Q1 = secug cos uzOy, + sinugdy,, — tan us cos ugdy,,
Qs = —secug sinusd,, + cosuzdy, + tan ug sin uzdy,,
Q3 = au;g'
Note that the operators Q, fulfill the commutation relations of the algebra AO(3).
Hence, we conclude that for the case 1 from (51) the operators J, are given by
the formulae (51), where one should replace u; by w42, correspondingly.
Let us turn now to the second realization of the algebra AO(3) from (51).

Case 1. fo; =0, a =1,2,3,% =4,...,n. In this case we can reduce J, to the
form

J =7(ug,...,n)Q
with the help of equivalence transformation

3
X - X=VXV!, V:exp{ZFaQa}, (52)

a=1
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where F,, are some functions of uy,...,u,. Note that transformation (52) does not
change the form of the operators 7., since [J,}, Qp] =0, a,b =1,2,3.
From commutation relations (50) it follows that # = 1 and furthermore J, = Qa,

Js = Qs. Thus we get the following forms of the operators J :

Ji =secug cosuzly, + sinuz0y, — tan ug cos uzdy,,
J5 = —secugsinugd,, + cosugdy, + tan ug sin ugdy,,
T3 = 0Ous-

Case 2. Not all f,; vanish. Then the operators J; , J5 , J3 can be transformed
to become

To = falug, .. un)O1 + ga(a, ...y un) Qo + hg(tg, ..., un) Qs + Z,,

where ¢ = 1, 2,3, and

Z1 = —sinug tan ug0y, — €08 ug0y; — € Sin Uy SeC Us Dy s
Zy = —cos uq tanuz 0y, + sinug0y; — € cos uyg sec us0y,,,
ZS = au47

and € =0, 1.

Now using the transformation (52) we reduce the operator J; to the form Z5 =
Ou,- Next, from commutation relations

[»7377]17] =7, [«737“727} =-Jr

we get
3
J = Z (Gacosuy + H, sinug)Q, + 21,
a=1
3
Iy = Z (Hy cosuy — Gy sinug)Q, + 2o,
a=1
where G, H, are arbitrary smooth functions of us, ..., .
Making use of the equivalence transformation (52) with F, being functions of
Us, - . ., Up We can cancel coefficients G,,. The remaining commutation relation [J;~, J5 |

= J4 yields equations for Hy, Hy, H3
Hyyy —tanusH, = 0,
whence

H,=H, secus, a=1,2,3,

H, being arbitrary functions of we, . .., u,. Consequently, the operators J, read
3
J = Z sin uy4 sec U5ﬁaQa + 24,
a=1
3
Ty = Z cos ug secus Hy, Qg + 2o,
a=1

I3 = Zs.
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If € = 1, then using the transformation (52) with F;, being functions of ug, ..., un
we can cancel H,, thus getting J,” = Z,, a = 1,2,3. If ¢ = 0, then making use of the
transformation (52) with F,, being functions of u, ..., u, we can put H; = Hy = 0.

Provided Hs = 0, we get the realization which is reduced to that given by the
formulae 2 from the statement of the theorem.

Provided H; = const # 0, we get the formulae 5. At last, if H3 # const, then
performing a proper change of variables we arrive at the realization given by the
formulae 6 from the statement of the theorem. The theorem is proved. [ ]

It follows from the above theorem that formulae (47) and 1-6 of the statement of
Theorem 3 give six inequivalent realizations of the Lie algebra of the Euclid group
E(4) having the basis elements P, = 0., and (44), (45). To get all possible realizations
of the algebra in question belonging to the above class it is necessary to add to the
list of realizations of the algebra AO(4) obtained in Theorem 3 the following three
realizations of the operators 7, , J,':

1. J1+ = —sinuy tan ugdy, — coS U1 Oy,
j;r = —cosuy tan uady, + sinuy0y,,
j3+:au17 ja*:();

2. ._71Jr = —sinwu tan w0y, — coS U0y, — Sin U sec uz0y,,
J;b = — cosuy tan ugd,,, + sinuyd,, — cosuy sec usdy,,

j3+ = aup ja_ = 0;
3. Jr=0, J;7 =0,

where a = 1,2, 3. This yields nine inequivalent realizations of the Lie algebra of the
group E(4).

In particular, the basis generators of the Euclid groups realized on the sets of
solutions of the Dirac and self-dual Yang-Mills equations in the Euclidean space R*
are reduced to such a form that the generators of the rotation groups are given by
(44), (45), J,. being adduced in the formulae 4 of the statement of Theorem 3.

6 Concluding remarks

Summarizing the results of Sections 3 and 4 yields the following structure of realizati-
ons of the Lie algebra of rotation group by LVFs in n variables:

e If n=1, then there are no realizations.

e As there is no realization of AO(3) by real non-zero 2 x 2 matrices, the only
realization for the case n = 2 is given by (13). Furthermore, this realization is
essentially nonlinear (i.e., it is not equivalent to a realization of the form (9)).

e In the case n = 3 there are two more realizations (38) (which is equivalent to
(13)) and by formula (14). The latter realization is essentially nonlinear.

e Provided n > 3, there is no new realizations of AO(3) and, furthermore, any
realization can be reduced to a linear one (say, to (39)).

An evident (and very important) consequence of Theorem 1 is that there are only
two inequivalent classes of O(3)-invariant partial differential equations of order r.
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They are obtained via differential invariants of the order not higher than r of the Lie
algebras having the basis elements (13), (14). In particular, the Weyl, Maxwell, Dirac
equations are the special cases of the general system of first-order partial differential
equations in n > 8 dependent variables invariant with respect to the algebra (14). We
intend to devote one of our future publications to description of first-order differential
invariants of the Lie algebra of the Euclid group E(3) having the basis elements (13),
(14) and (37). Let us note that this problem has been completely solved provided
basis elements of AE(3) are given by formulae (12) [20].
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