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On covariant realizations of the Euclid group
R.Z. ZHDANOV, V.I. LAHNO, W.I. FUSHCHYCH

We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups
within the class of first-order differential operators in arbitrary finite dimensions. It
is established that there are only two distinct realizations of the Lie algebra of the
group O(3) which are inequivalent within the action of a diffeomorphism group. Using
this result we describe a special subclass of realizations of the Euclid algebra which
are called covariant ones by analogy to similar objects considered in the classical
representation theory. Furthermore, we give an exhaustive description of realizations
of the Lie algebra of the group O(4) and construct covariant realizations of the Lie
algebra of the generalized Euclid group E(4).

1 Introduction
The standard approach to constructing linear relativistic motion equations contains
as a subproblem the one of describing inequivalent matrix representations of the
Poincaré group P (1, 3). So that if one succeeds in obtaining an exhaustive (in some
sense) description of all inequivalent representations of the latter, then it is possible to
construct all possible Poincaré-invariant linear wave equations (for more details see,
e.g. [1–3]). It would be only natural to apply the same approach to describing nonli-
near relativistically-invariant models with the help of the Lie’s infinitesimal technique.
However, in the overwhelming majority of the papers devoted to symmetry classifi-
cation of nonlinear differential equations admitting some Lie transformation group G
the realization of the group was fixed a priory. As a result, only particular classes
of partial differential equations invariant with respect to a prescribed group G were
obtained. One of the possible reasons for this is that the problem of describing inequi-
valent realizations of a given Lie transformation group reduces to constructing general
solution of some over-determined system of nonlinear partial differential equations (in
contrast to the case of the classical matrix representation theory where one has to
solve nonlinear matrix equations).

We recall that given a fixed realization of a Lie transformation group G, the
problem of describing partial differential equations invariant under the group G is
reduced with the help of the infinitesimal Lie method to integrating some over-
determined linear system of partial differential equations (called determining equa-
tions) [4–7]. However, to solve the problem of constructing all differential equations
admitting the transformation group G whose realization is not fixed a priori one has

• to construct all inequivalent (in some sense) realizations of the Lie transforma-
tion group G,

• to solve the determining equations for each realization obtained.

And what is more, the first problem, in contrast to the second one, reduces to solving
nonlinear systems of partial differential equations. In this respect one should men-
tion the Lie’s classification of integrable ordinary differential equations based on his
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classification of complex Lie algebras of first-order differential operators in one and
two variables [8]. However, it seems impossible to give an exhaustive description of
all Lie algebras of first-order differential operators. Till now there is no complete
classification of them even for the case of first-order differential operators in three
variables, though a partial classification was obtained by Lie a century ago [8].

The classification problem is substantially simplified if we are looking for inequi-
valent realizations of a specific Lie algebra. It has been completely solved by Ri-
deau and Winternitz [9], Zhdanov and Fushchych [10] for the generalized Galilei
(Schrödinger) group G2(1, 1) acting in the space of two dependent and two inde-
pendent variables.

Yehorchenko [11] and Fushchych, Tsyfra and Boyko [12] have constructed new
(nonlinear) realizations of the Poincaré groups P (1, 2) and P (1, 3), correspondingly
(see also [13, 14]). Some new realizations of the Galilei group G(1, 3) were suggested in
[15]. A complete description of covariant realizations of the conformal group C(n,m)
in the space of n + m independent and one dependent variables was obtained by
Fushchych, Zhdanov and Lahno [16, 17] (see, also [18]). It has been established,
in particular, that any covariant realization of the Poincaré group P (n,m) with
max{n,m} ≥ 3 in the case of one dependent variable is equivalent to the standard
realization. But given the condition max{n,m} < 3, there exist essentially new reali-
zations of the corresponding Poincaré groups.

The present paper is devoted mainly to classification of inequivalent realizations of
the Euclid group E(3), which is a semi-direct product of the three-parameter rotation
group O(3) and of the three-parameter Abelian translation group T (3), acting in the
space of three independent (x1, x2, x3) and n ∈ N dependent (u1, . . . , un) variables.
Being a subgroup of such fundamental groups as the Poincaré and Galilei groups, the
Euclid group plays an exceptional role in modern mathematical and theoretical physi-
cs, since it is admitted both by equations of relativistic and non-relativistic theories.
In particular, group E(3) is an invariance group of the Klein–Gordon–Fock, Maxwell,
heat, Schrödinger, Dirac, Weyl, Navier–Stokes, Lamé and Yang–Mills equations.

The paper is organized as follows. The second section contains the necessary notati-
ons, conventions and definitions used throughout the paper. In the third section we
give an exhaustive classification of inequivalent realizations of the Lie algebra of the
rotation group O(3) within the class of first-order differential operators. The fourth
section is devoted to description of covariant realizations of the Euclid algebra AE(3).
We give a complete classification of them and, furthermore, demonstrate how to reduce
the realizations of AE(3) realized on the sets of solutions of the Navier–Stokes, Lamè,
Weyl, Maxwell and Dirac equations to one of the two canonical forms. In the forth
section the results obtained are applied to describe covariant realizations of the Lie
algebra of the generalized Euclid group AE(4).

2 Basic notations and definitions

It is a common knowledge that investigation of realizations of a Lie transformation
group G is reduced to study of realizations of its Lie algebra AG whose basis elements
are the first-order differential operators (Lie vector fields) of the form

Q = ξα(x, u)∂xα
+ ηi(x, u)∂ui

, (1)
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where ξα, ηi are some real-valued smooth functions of x = (x1, x2, . . . , xm) ∈ R
m

and u = (u1, u2, . . . , un) ∈ R
n, ∂xα

= ∂
∂xα

, ∂ui
= ∂

∂ui
, α = 1, 2, . . . ,m, i = 1, 2, . . . , n.

Hereafter, a summation over the repeated indices is understood.
In the above formulae we have two “sorts” of variables. The variables x1, x2, . . . , xm

and u1, u2, . . . , un will be referred to as independent and dependent variables, respecti-
vely. The difference between these becomes essential when we consider AG as an
invariance algebra of some system of partial differential equations for u1(x), . . . , un(x).

Due to properties of the corresponding Lie transformation group G basis operators
Qa, a = 1, . . . , N of a Lie algebra AG satisfy commutation relations

[Qa, Qb] = CcabQc, a, b = 1, . . . , N, (2)

where [Qa, Qb] ≡ QaQb −QbQa is the commutator.
In (2) Ccab = const ∈ R are structure constants which determine uniquely the

Lie algebra AG. A fixed set of Lie vector fields (LVFs) Qa satisfying (2) is called
a realization of the Lie algebra AG.

Thus the problem of description of all realizations of a given Lie algebra AG
reduces to solving the relations (2) with some fixed structure constants Ccab within
the class of LVFs (1).

It is easy to check that the relations (2) are not altered with an arbitrary invertible
transformation of variables x, u

yα = fα(x, u), α = 1, . . . ,m,
vi = gi(x, u), i = 1, . . . , n,

(3)

where fα, gi are smooth functions. That is why we can introduce on the set of reali-
zations of a Lie algebra AG the following relation: two realizations 〈Q1, . . ., QN 〉
and 〈Q′

1, . . . , Q
′
N 〉 are called equivalent if they are transformed one into another by

means of an invertible transformation (3). As invertible transformations of the form
(3) form a group (called diffeomorphism group), the relation above is an equivalence
relation. It divides the set of all realizations of a Lie algebra AG into equivalence
classes A1, . . . , Ar. Consequently, to describe all possible realizations of AG it suffices
to construct one representative of each equivalence class Aj , j = 1, . . . , r.

Definition 1. First-order linearly-independent differential operators

Pa = ξ
(1)
ab (x, u)∂xb

+ η
(1)
ai (x, u)∂ui

,

Ja = ξ
(2)
ab (x, u)∂xb

+ η
(2)
ai (x, u)∂ui

,
(4)

where the indices a, b take the values 1, 2, 3 and the index i takes the values 1, 2, . . . , n,
form a realization of the Euclid algebra AE(3) provided the following commutation
relations are fulfilled:

[Pa, Pb] = 0, (5)

[Ja, Pb] = εabcPc, (6)

[Ja, Jb] = εabcJc, (7)



298 R.Z. Zhdanov, V.I. Lahno, W.I. Fushchych

where

εabc =


1, (abc) = cycle (123),

−1, (abc) = cycle (213),
0, in the remaining cases.

Definition 2. Realization of the Euclid algebra within the class of LVFs (4) is called
covariant if coefficients of the basis elements Pa satisfy the following condition:

rank

∥∥∥∥∥∥∥
ξ
(1)
11 ξ

(1)
12 ξ

(1)
13 η

(1)
11 . . . η

(1)
1n

ξ
(1)
21 ξ

(1)
22 ξ

(1)
23 η

(1)
21 . . . η

(1)
2n

ξ
(1)
31 ξ

(1)
32 ξ

(1)
33 η

(1)
31 . . . η

(1)
3n

∥∥∥∥∥∥∥ = 3. (8)

3 Realizations of the Lie algebra
of the rotation group O(3)

It is well-known from the classical representation theory that there are infinitely many
inequivalent matrix representations of the Lie algebra of the rotation group O(3) [1].
A natural equivalence relation on the set of matrix representations of AO(3) is defined
as follows

Ja → V JaV
−1

with an arbitrary constant nonsingular matrix V . If we represent the matrices Ja as
the first-order differential operators (see, e.g. [7])

Ja = −{Jau}α∂uα
, (9)

where u is a vector-column of the corresponding dimension, then the above equivalence
relation means that the representations of the algebra AO(3) are looked within the
class of LVFs (9) up to invertible linear transformations

u → v = V u.

It is proved below that provided realizations of AO(3) are classified within arbitrary
invertible transformations of variables

vi = Fi(u), i = 1, . . . , n, (10)

there are only two inequivalent realizations.

Theorem 1. Let first-order differential operators

Ja = ηai(u)∂ui
, a = 1, 2, 3 (11)

satisfy the commutation relations of the Lie algebra of the rotation group O(3) (7).
Then either all of them are equal to zero, i.e.

Ja = 0, a = 1, 2, 3 (12)
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or there exists a transformation (10) reducing these operators to one of the following
forms:

1. J1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J3 = ∂u1 ;
(13)

2. J1 = − sinu1 tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = − cosu1 tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = ∂u1 .

(14)

Proof. If at least one of the operators Ja (say J3) is equal to zero, then due to the
commutation relations (7) two other operators J2, J3 are also equal to zero and we
arrive at the formulae (12).

Let J3 be a non-zero operator. Then, using a transformation (10) we can always
reduce the operator J3 to the form J3 = ∂v1 (we should write J ′

3 but to simplify
the notations we omit hereafter the primes). Next, from the commutation relations
[J3,J1] = J2, [J3,J2] = −J1 it follows that coefficients of the operators J1, J2 satisfy
the system of ordinary differential equations with respect to v1,

η2iv1 = η3i, η3iv1 = −η2i. i = 1, . . . , n.

Solving the above system yields

η2i = fi cos v1 + gi sin v1, η3i = gi cos v1 − fi sin v1, (15)

where fi, gi are arbitrary smooth functions of v2, . . . , vn, i = 1, . . . , n.
Case 1. fj = gj = 0, j ≥ 2. In this case operators J1, J2 read

J1 = f cos v1∂v1 , J2 = −f sin v1∂v1

with an arbitrary smooth function f = f(v2, . . . , vn).
Inserting the above expressions into the remaining commutation relation [J1,J2] =

J3 and computing the commutator on the left-hand side we arrive at the equality
f2 = −1 which can not be satisfied by a real-valued function.

Case 2. Not all fj , gj , j ≥ 2 are equal to 0. Making a change of variables

w1 = v1 + V (v2, . . . , vn), wj = vj , j = 2, . . . , n

we transform operators Ja, a = 1, 2, 3 with coefficients (15) as follows

J1 = f̃ sinw1∂w1 +
n∑
j=2

(f̃j cosw1 + g̃j sinw1)∂wj
,

J2 = f̃ cosw1∂w1 +
n∑
j=2

(g̃j cosw1 − f̃j sinw1)∂wj
,

J3 = ∂w1 .

(16)

Here f̃ , f̃j , g̃j are some functions of w2, . . . , wn.
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Subcase 2.1. Not all f̃j are equal to 0. Making a transformation

z1 = w1, zj = Wj(w2, . . . , wn), j = 2, . . . , n,

where W2 is a particular solution of partial differential equation
n∑
j=2

f̃j∂wj
W2 = 1

and W3, . . . ,Wn are functionally-independent first integrals of partial differential
equation

n∑
j=2

f̃j∂wj
W = 0,

we reduce the operators (16) to be

J1 = F sin z1∂z1 + cos z1∂z2 +
n∑
j=2

Gj sin z1∂zj
,

J2 = F cos z1∂z1 − sin z1∂z2 +
n∑
j=2

Gj cos z1∂wj
,

J3 = ∂z1 .

(17)

Substituting operators (17) into the commutation relation [J1,J2] = J3 and
equating coefficients of the linearly-independent operators ∂z1 , . . . , ∂zn

we arrive at
the following system of partial differential equations for the functions F,G2, . . . , Gn:

Fz2 − F 2 = 1, Gjz2 − FGj = 0, j = 2, . . . , n.

Integrating the above equations yields

F = tan(z2 + c1), Gj =
cj

cos(z2 + c1)
,

where c1, . . . , cn are arbitrary smooth functions of z3, . . . , zn, j = 2, . . . , n.
Changing, if necessary, z2 by z2 +c1(z3, . . . , zn) we may put c1 equal to zero. Next,

making a transformation

ya = za, a = 1, 2, 3,
yk = Zk(z3, . . . , zn), k = 4, . . . , n,

where Zk are functionally-independent first integrals of partial differential equation
n∑
j=3

Gj∂zj
Z = 0,

we can put Gk = 0, k = 4, . . . , n.
With these remarks the operators (17) take the form

J1 = sin y1 tan y2∂y1 + cos y1∂y2 +
sin y1
cos y2

(f∂y2 + g∂y3),

J2 = cos y1 tan y2∂y1 − sin y1∂y2 +
cos y1
cos y2

(f∂y2 + g∂y3),

J3 = ∂y1 ,

(18)

where f , g are arbitrary smooth functions of y3, . . . , yn.
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If g ≡ 0, then making a transformation

ũ1 = y1 − arctan
f

cos y2
, ũ2 = − arctan

sin y2√
cos2 y2 + f2

, ũk = yk,

where k = 3, . . . , n, we reduce the operators (18) to the form (13).
If in (18) g �≡ 0, then changing y3 to ỹ3 =

∫
g−1dy3 and y2 to ỹ2 = −y2 we

transform the above operators to become

J1 = − sin ỹ1 tan ỹ2∂ỹ1 −
(

cos ỹ1 − α
sin ỹ1
cos ỹ2

)
∂ỹ2 +

sin ỹ1
cos ỹ2

∂ỹ3 ,

J2 = − cos ỹ1 tan ỹ2∂ỹ1 +
(

sin ỹ1 + α
cos ỹ1
cos ỹ2

)
∂ỹ2 +

cos ỹ1
cos ỹ2

∂ỹ3 ,

J3 = ∂ỹ1 .

(19)

Here α is an arbitrary smooth function of ỹ3, . . . , ỹn.
Finally, making the transformation

ũ1 = ỹ1 + f, ũ2
2 = g, ũ3 = h, ũk = ỹk,

where k = 3, . . . , n and f(ỹ2, . . . , ỹn), g(ỹ2, . . . , ỹn), h(ỹ2, . . . , ỹn) satisfy the compa-
tible over-determined system of nonlinear partial differential equations

fỹ2 = sin f tan g, fỹ3 = sin ỹ2 − α sin f tan g − cos ỹ2 cos f tan g,
gỹ2 = cos f, gỹ3 = sin f cos ỹ2 − α cos f,
hỹ2 = − sin f sec g, hỹ3 = (cos f cos ỹ2 + α sin f) sec g,

reduces operators (19) to the form (14).
Subcase 2.2. fj = 0, j = 2, . . . , n. Substituting the operators (16) under fj = 0

into the commutation relation [J1,J2] = J3 and equating coefficients of the linearly-
independent operators ∂z1 , . . . , ∂zn

yield system of algebraic equations

−f2 = 1, fgj = 0, j = 2, . . . , n.

As the function f is a real-valued one, the system obtained is inconsistent.
Thus we have proved that the formulae (13)–(12) give all possible inequivalent

realizations of the Lie algebra (7) within the class of first-order differential opera-
tors (11). The theorem is proved.

If we realize the rotation group as the group of transformations of the space of
spherical functions, then the basis elements of its Lie algebra are exactly of the form
(13) [1]. Hence it follows that the realization space V of the Lie algebra (13) is a di-
rect sum of subspaces V2l+1 of spherical functions of the order l. Furthermore, if we
consider O(3) as the group of transformations of the space of generalized spherical
functions [1], then the operators (14) are the basis elements of the corresponding Lie
algebra.
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4 Realizations of the algebra AE(3)

First we will prove an auxiliary assertion giving inequivalent realizations of Lie algeb-
ras of the translation T (3) group within the class of LVFs.
Lemma 1. Let mutually commuting LVFs

Pa = ξ
(1)
ab (x, u)∂xb

+ η
(1)
ai (x, u)∂ui

,

where a, b = 1, . . . , N , satisfy the relation

rank

∥∥∥∥∥∥∥∥
ξ
(1)
11 . . . ξ

(1)
1N η

(1)
11 . . . η

(1)
1n

...
...

...
...

...
...

ξ
(1)
N1 . . . ξ

(1)
NN η

(1)
N1 . . . η

(1)
Nn

∥∥∥∥∥∥∥∥ = N. (20)

Then there exists a transformation of the form (3) reducing operators Pa to become
P ′
a = ∂ya

, a = 1, . . . , N .
Proof. To avoid unessential technicalities we will give the detailed proof of the lemma
for the case N = 3.

Given a condition N = 3, relation (20) reduces to the form (8). Due to the latter
Pa �= 0 for all a = 1, 2, 3. It is well-known that a non-zero operator

P1 = ξ
(1)
1b (x, u)∂xb

+ η
(1)
1i (x, u)∂ui

can always be reduced to the form P ′
1 = ∂y1 by a transformation (3) with m = 3.

If we denote by P ′
2, P ′

3 the operators P2, P3 written in the new variables y, v, then
owing to the commutation relations (5) they commute with the operator P ′

1 = ∂y1 .
Hence, we conclude that their coefficients are independent of y1.

Furthermore due to the condition (8) at least one of the coefficients ξ′(1)22 , ξ′(1)23 ,
η
′(1)
21 , . . ., η′(1)2n of the operator P ′

2 is not equal to zero.
Summing up, we conclude that the operator P ′

2 is of the form

P ′
2 = ξ

′(1)
2b (y2, y3, v)∂yb

+ η
′(1)
2i (y2, y3, v)∂vi

�= 0,

not all the functions ξ′(1)22 , ξ′(1)23 , η′(1)21 , . . ., η′(1)2n being identically equal to zero.
Making a transformation

z1 = y1 + F (y2, y3, v),
z2 = G(y2, y3, v),
z3 = ω0(y2, y3, v),
wi = ωi(y2, y3, v), i = 1, . . . , n,

(21)

where the functions F , G are particular solutions of differential equations

ξ
′(1)
22 (y2, y3, v)Fy2 + ξ

′(1)
22 (y2, y3, v)Fy3 + η

′(1)
2i (y2, y3, v)Fui

+ ξ
′(1)
21 (y2, y3, v) = 0,

ξ
′(1)
22 (y2, y3, v)Gy2 + ξ

′(1)
22 (y2, y3, v)Gy3 + η

′(1)
2i (y2, y3, v)Gui

= 1

and ω0, ω1, . . . , ωn are functionally-independent first integrals of the Euler–Lagrange
system

dy2

ξ
′(1)
22

=
dy3

ξ
′(1)
23

=
dv1

η
′(1)
21

= · · · =
dvn

η
′(1)
2n

,
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which has exactly n+1 functionally-independent integrals, we reduce the operator P ′
2

to the form P ′′
2 = ∂z2 . It is easy to check that the transformation (21) does not alter

form of the operator P ′
1. Being rewritten in the new variables z, w it reads P ′′

1 = ∂z1 .
As the right-hand sides of (21) are functionally-independent by construction, the

transformation (21) is invertible. Consequently, operators Pa are equivalent to opera-
tors P ′′

a , where P ′′
1 = ∂z1 , P ′′

2 = ∂z2 and

P ′′
3 = ξ

′′(1)
3b (z3, w)∂yb

+ η
′′(1)
3i (z3, w)∂vi

�= 0.

(Coefficients of the above operator are independent of z1, z2 because of the fact that
it commutes with the operators P ′′

1 , P ′′
2 .) And what is more, due to (8) at least one

of the coefficients ξ′′(1)33 , η′′(1)31 , . . ., η′′(1)3i of the operator P ′′
3 is not identically equal to

zero.
Making a transformation

Z1 = z1 + F (z3, w),
Z2 = z2 +G(z3, w),
Z3 = H(z3, w),
Wi = Ωi(z3, w), i = 1, . . . , n,

where F , G, H are particular solutions of partial differential equations

ξ
′′(1)
33 (z3, w)Fz3 + η

′′(1)
3i (z3, w)Fwi

= −ξ′′(1)31 (z3, w),

ξ
′′(1)
33 (z3, w)Gz3 + η

′′(1)
3i (z3, w)Gwi

= −ξ′′(1)32 (z3, w),

ξ
′′(1)
33 (z3, w)Hz3 + η

′′(1)
3i (z3, w)Hwi

= 1,

and Ω1, . . . ,Ωn are functionally-independent first integrals of the Euler–Lagrange
system

dz3

ξ
′′(1)
33

=
dw1

η
′′(1)
31

= · · · =
dwn

η
′′(1)
3n

,

we reduce the operators P ′′
a , a = 1, 2, 3 to the form P ′′′

a = ∂Za
, a = 1, 2, 3, the same

as what was to be proved.
Note 1. In the papers [9, 17] mentioned above a classification of realizations of the
groups G2(1, 1), C(n,m) was carried out under assumption that mutually commuting
LVFs

Qa = ξaα(x)∂xα
, a = 1, . . . , N

can be simultaneously reduced by the map

yα = fα(x), α = 1, . . . , n (22)

to the form Q′
a = ∂ya

.
It is not difficult to become convinced of the fact that this is possible if and only

if the condition

rank ‖ξaα‖N n
a=1α=1 = N (23)

holds.
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The sufficiency of the above statement is a consequence of Lemma 1. The necessi-
ty follows from the fact that function-rows of coefficients of operators Q′

1, . . . , Q
′
N

transformed according to formulae (22) are obtained by multiplying function-rows of
coefficients of the operators Q1, . . . , QN by a Jacobi matrix of the map (22), i.e.

ξ′aα = ξaβfαxβ
, a = 1, . . . , N, α = 1, . . . , n

which leaves the relation (23) invariant.
Consequently, in [9, 17] only covariant realizations of the corresponding Lie algeb-

ras were considered, which, generally speaking, do not exhaust a set of all possible
realizations.

Now we can prove a principal theorem giving a description of all inequivalent
covariant realizations of the Euclid algebra AE(3).

Theorem 2. Any covariant realization of the algebra AE(3) within the class of first-
order differential operators is equivalent to one of the following realizations:

1. Pa = ∂xa
, Ja = −εabcxb∂xc

, a = 1, 2, 3; (24)

2. Pa = ∂xa
, a = 1, 2, 3,

J1 = −x2∂x3 + x3∂x2 + f∂x1 − fu2 sinu1∂x3 −
− sinu1 tanu2∂u1 − cosu1∂u2 ,

J2 = −x3∂x1 + x1∂x3 + f∂x2 − fu2 cosu1∂x3 −
− cosu1 tanu2∂u1 + sinu1∂u2 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 ;

(25)

3. Pa = ∂xa
, a = 1, 2, 3,

J1 = −x2∂x3 + x3∂x2 + g∂x1 − (sinu1gu2 + cosu1 secu2gu3)∂x3 −
− sinu1 tanu2∂u1 − cosu1∂u2 + sinu1 secu2∂u3 ,

J2 = −x3∂x1 + x1∂x3 + g∂x2 − (cosu1gu2 − sinu1 secu2gu3)∂x3 −
− cosu1 tanu2∂u1 + sinu1∂u2 + cosu1 secu2∂u3 ,

J3 = −x1∂x2 + x2∂x1 + ∂u1 .

(26)

Here f = f(u2, . . . , un) is given by the formula

f = α sinu2 + β

(
sinu2 ln

sinu2 + 1
cosu2

− 1
)
, (27)

α, β are arbitrary smooth functions of u3, . . . , un and g = g(u2, . . . , un) is a solution
of the following linear partial differential equation:

cos2 u2 gu2u2 + gu3u3 − sinu2 cosu2 gu2 + 2 cos2 u2 g = 0. (28)

Proof. Due to Lemma 1 operators Pa can always be reduced to the form Pa = ∂xa

by means of a properly chosen transformation (3). Inserting the operators

Pa = ∂xa
, Ja = ξab(x, u)∂xb

+ ηai(x, u)∂ui
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into the commutation relations (6) and equating the coefficients of the linearly-
independent operators ∂x1 , ∂x2 , ∂x3 , ∂u1 , . . . , ∂un

we arrive at the system of partial
differential equations for the functions ξab(x, u), ηai(x, u),

ξacxb
= −εabc, ηaixb

= 0, a, b, c = 1, 2, 3, i = 1 . . . , n.

Integrating the above system we conclude that the operators Ja have the form

Ja = −εabcxb∂xc
+ jab(u)∂xb

+ η̃ai(u)∂ui
, a = 1, 2, 3, (29)

where jab, η̃ab are arbitrary smooth functions.
Inserting (29) into the commutation relations (7) and equating coefficients of

∂u1 , . . . , ∂un
show that the operators Ja = η̃ai∂ui

, a = 1, 2, 3 have to fulfill (7) with
Ja → Ja. Hence, taking into account Theorem 1 we conclude that any covariant
realization of the algebra AE(3) is equivalent to the following one:

Pa = ∂xa
, Ja = −εabcxb∂xc

+ jab(u)∂xb
+ Ja, a = 1, 2, 3, (30)

operators Ja being given by one of the formulae (12)–(14).
Making a transformation

ya = xa + Fa(u), vi = ui, a = 1, 2, 3, i = 1, . . . , n,

we reduce operators Ja from (30) to be

J1 = −y2∂y3 + y3∂y2 +A∂y1 +B∂y2 + C∂y3 + J1,

J2 = −y3∂y1 + y1∂y3 + F∂y2 +G∂y3 + J2,

J3 = −y1∂y2 + y2∂y1 +H∂y3 + J3,

(31)

where A, B, C, F , G, H are arbitrary smooth functions of v1, . . . , vn.
Substituting the operators (31) into (7) and equating coefficients of linearly-inde-

pendent operators ∂y1 , ∂y2 , ∂y3 , ∂v1 , . . . , ∂vn
result in the following system of partial

differential equations:

1) J2A = −C, 6) J3C − J1H = G,

2) J3F = −B, 7) J1G− J2C = H −A− F,

3) J3A = B, 8) J3B = F −A−H,

4) J1F − J2B = G, 9) A− F −H = 0.
5) J2H − J3G = C,

(32)

Case 1. All operators J1, J2, J3 are equal to zero. Then, (32) reduces to the
system of linear algebraic equations

B = C = G = 0, H −A− F = 0, F −A−H = 0, A− F −H = 0,

whence it follows immediately that A = F = G = 0. Substituting the above results
into formulae (31) we arrive at the realization (24).

Case 2. Suppose now that not all operators J1, J2, J3 vanish. Then, they are given
either by formulae (13) or (14), where one should replace u1, . . . , un by v1, . . . , vn. As
for the both cases J3 = ∂v1 , a subsystem of equations 2, 3, 8, 9 forms a system of
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linear ordinary differential equations for functions A, B, F , H with respect to v1.
Integrating it we have

A = B0 +B1 sin 2v1 −B2 cos 2v1, B = 2B1 cos 2v1 + 2B2 sin 2v1,
F = B0 +B2 cos 2v1 −B1 sin 2v1, H = 2B1 sin 2v1 − 2B2 cos 2v1,

(33)

where B0, B1, B2 are arbitrary smooth functions of v2, . . . , vn.
Subcase 2.1. Let the operators J1, J2, J3 be of the form (13). Then, making

a transformation

z1 = y1 +R1 cos v1 +R2 sin v1,
z2 = y2 +R2 cos v1 −R1 sin v1,

z3 = y3 +
1
2
(R2v2 + tan v2R2) cos 2v1 − 1

2
(R1v2 + tan v2R1) sin 2v1 +

+
1
2
(tan v2R2 −R2v2),

where the functions R1, R2 are solutions of the system of partial differential equations

R1v2 +
1
2

tan v2R1 = −2B2, R2v2 +
1
2

tan v2R2 = 2B1,

we reduce the operators (31) with A, B, F , H given by (33) to the form

J1 = −z2∂z3 + z3∂z2 + Ã∂z1 + C̃∂z3 + J1,

J2 = −z3∂z1 + z1∂z3 + Ã∂z2 + G̃∂z3 + J2,

J3 = −z1∂z2 + z2∂z1 + J3.

(34)

Here Ã, C̃, G̃ are arbitrary smooth functions of v1, . . . , vn, and what is more, Ã does
not depend on v1.

Given such a form of operators Ja, system (32) reduces to three differential equa-
tions

J2Ã = −C̃, J1Ã = G̃, J1G̃− J2C̃ = −2Ã. (35)

Inserting expressions for the operators J1, J2 from (13) into the first two equations
we have

C̃ = − sin v1Ãv2 , G̃ = − cos v1Ãv2 .

Substituting the above formulae into the third equation of the system (35) we
conclude that it is equivalent to the differential equation

Ãv2v2 − tan v2Ãv2 + 2Ã = 0,

whose general solution is given by (27). At last, inserting the results obtained into
(34) we get the formulae (25).

Subcase 2.2. Let the operators J1, J2, J3 be of the form (14). Then, making
a transformation

z1 = y1 +R1 cos v1 +R2 sin v1,
z2 = y2 +R2 cos v1 −R1 sin v1,
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z3 = y3 +
1
2

(R2v2 − sec v2R1v3 + tan v2R2) cos 2v1 −

− 1
2
(R1v2 + sec v2R2v3 + tan v2R1) sin 2v1 +

+
1
2
(tan v2R2 − sec v2R1v3 −R2v2),

where the functions R1, R2 are solutions of the system of partial differential equations

2B1 = R2v2 − sec v2R1v3 + tan v2R2,

2B2 = −R1v2 − sec v2R2v3 − tan v2R1,

we reduce the operators (31) with A, B, F , H given by (33) to the form (34), where
Ã, C̃, G̃ are arbitrary smooth functions, and what is more, Ã does not depend on v1.

Given such a form of the operators Ja, system (32) reduces to three differential
equations (35). Inserting expressions for the operators J1, J2 from (13) into the first
two equations of (35) we have

C̃ = − cos v1Ãv2 + sin v1 sec v2Ãv3 ,

G̃ = − sin v1Av2 − cos v1 sec v2Ãv3 .
(36)

Substituting the above formulae into the third equation of (35) after some algebra
we arrive at the conclusion that it is equivalent to equation (28). Inserting (36) into
(34) yields formulae (26).

Thus we have proved that if LVFs Pa, Ja realize a covariant realization of the
Euclid algebra AE(3), then they can be reduced to one of the forms (24)–(26) by
means of an invertible transformation (3). The theorem is proved.

While proving Theorem 1, we have established, in particular, that any realization
of the Euclid algebra satisfying the condition (8) can be transformed to become

Pa = ∂xa
, Ja = −εabcxb∂xc

+ jab(u)∂xb
+ η̃ai(u)∂ui

, a = 1, 2, 3.

If we choose in the above formulae

jab(u) = 0, ηai(u) = −Λaijuj , a, b = 1, 2, 3, i = 1, . . . , n,

where Λaij = const, then the following realization

Pa = ∂xa
, Ja = −εabcxb∂xc

+ Ja, a = 1, 2, 3 (37)

with Ja = −Λaijuj∂ui
is obtained.

A realization of the Euclid algebra with generators of the form (37) is called in the
classical linear representation theory a covariant realization. That is why it is natural
to preserve for a realization of the algebra AE(3) within the class of LVFs obeying
(8) the same terminology.

As an illustration to Theorem 2 we will demonstrate how to reduce realizations of
the Euclid algebras realized on sets of solutions of the heat, wave, Laplace, Navier–
Stokes, Lamè, Weyl, Dirac and Maxwell equations to one of the three canonical forms
(24)–(26). First of all, we note that the realization (24) is exactly the one realized
on the sets of solutions of the linear and nonlinear heat (Schrödinger), wave, Laplace
equations.
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Symmetry algebras of the Navier–Stokes and Lamè equations contain as a subal-
gebra the Euclid algebra having basis elements (37), where (see, e.g. [6])

Ja = −εabc vb∂vc
, a = 1, 2, 3. (38)

The change of variables

v1 = u3 sinu1 cosu2, v2 = u3 cosu1 cosu2, v3 = u3 sinu2

reduce these LVFs to the form (25) with f = 0.
Next, if we consider the Weyl equation as the system of four real equations for

four real-valued functions v1, v2, w1, w2, then on the set of its solutions realization
(37) of the algebra AE(3) is realized, where [3, 7]

J1 =
1
2
(w2∂v1 − v1∂w2 + w1∂v2 − v2∂w1),

J2 =
1
2
(v2∂v1 − v1∂v2 + w2∂w1 − w1∂w2),

J3 =
1
2
(w1∂v1 − v1∂w1 + v2∂w2 − w2∂v2).

(39)

Making the change of variables

v1 = u4

(
sin

u1

2
sin

u2

2
cos

u3

2
+ cos

u1

2
cos

u2

2
sin

u3

2

)
,

v2 = u4

(
cos

u1

2
cos

u2

2
cos

u3

2
− sin

u1

2
sin

u2

2
sin

u3

2

)
,

w1 = u4

(
cos

u1

2
sin

u2

2
cos

u3

2
− sin

u1

2
cos

u2

2
sin

u3

2

)
,

w2 = u4

(
sin

u1

2
cos

u2

2
cos

u3

2
+ cos

u1

2
sin

u2

2
sin

u3

2

)
reduces the above LVFs to the form (26) with g = 0.

On the solution set of the Maxwell equations the realization of the Euclid algebra
(37), where

Ja = −εabc (Eb∂Ec
+Hb∂Hc

) , a = 1, 2, 3,

is realized [19].
This realization is reduced to the form (26) under g = 0 with the help of the

change of variables

E1 = u6 sinu1 cosu2,

E2 = u6 cosu1 cosu2,

E3 = u6 sinu2,

H1 = u4(cosu1 sinu3 + sinu1 sinu2 cosu3) + u5 sinu1 cosu2,

H2 = u4(cosu1 sinu2 cosu3 − sinu1 sinu3) + u5 cosu1 cosu2,

H3 = −u4 cosu2 cosu3 + u5 sinu2.

Taking the Dirac matrices γµ in the Majorana representation we can represent the
Dirac equation as the system of eight real equations for eight real-valued functions
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ψ0
1 , . . . , ψ

3
1 , ψ0

2 , . . . , ψ
3
2 (for details, see e.g. [7]). With this choice of γ-matrices, on the

set of solutions of the Dirac equation realization of the Euclid algebra (37) with

J1 = −1
2
(
ψ3

1∂ψ0
1
+ ψ2

1∂ψ1
1
− ψ1

1∂ψ2
1
− ψ0

1∂ψ3
1
+ ψ3

2∂ψ0
2

+ ψ2
2∂ψ1

2
− ψ1

2∂ψ2
2
− ψ0

2∂ψ3
2

)
,

J2 =
1
2
( − ψ2

1∂ψ0
1
+ ψ3

1∂ψ1
1
+ ψ0

1∂ψ2
1
− ψ1

1∂ψ3
1
− ψ2

2∂ψ0
2
+ ψ3

2∂ψ1
2
+ ψ0

2∂ψ2
2
− ψ1

2∂ψ3
2

)
,

J3 = −1
2
(
ψ1

1∂ψ0
1
− ψ0

1∂ψ1
1
+ ψ3

1∂ψ2
1
− ψ2

1∂ψ3
1
+ ψ1

2∂ψ0
2
− ψ0

2∂ψ1
2
+ ψ3

2∂ψ2
2
− ψ2

2∂ψ3
2

)
is realized on the set of solutions of the Dirac equation.

Making the change of variables

ψ0
1 = u4

(
cos

u1

2
cos

u2

2
sin

u3

2
+ sin

u1

2
sin

u2

2
cos

u3

2

)
,

ψ1
1 = u4

(
sin

u1

2
cos

u2

2
sin

u3

2
− cos

u1

2
sin

u2

2
cos

u3

2

)
,

ψ2
1 = −u4

(
cos

u1

2
cos

u2

2
cos

u3

2
− sin

u1

2
sin

u2

2
sin

u3

2

)
,

ψ3
1 = −u4

(
sin

u1

2
cos

u2

2
cos

u3

2
+ cos

u1

2
sin

u2

2
sin

u3

2

)
,

ψ0
2 = u5

(
sin

u1

2
sin

u2

2
sin

u3 + u6

2
− cos

u1

2
cos

u2

2
cos

u3 + u6

2

)
+

+ u7

(
sin

u1

2
cos

u2

2
sin

u3 + u8

2
− cos

u1

2
sin

u2

2
cos

u3 + u8

2

)
,

ψ1
2 = −u5

(
sin

u1

2
cos

u2

2
cos

u3 + u6

2
+ cos

u1

2
sin

u2

2
sin

u3 + u6

2

)
−

− u7

(
sin

u1

2
sin

u2

2
cos

u3 + u8

2
− cos

u1

2
cos

u2

2
sin

u3 + u8

2

)
,

ψ2
2 = −u5

(
cos u1

2 cos u2
2 sin u3+u6

2 + sin u1
2 sin u2

2 cos u3+u6
2

)
+ u7

(
cos

u1

2
sin

u2

2
sin

u3 + u8

2
+ sin

u1

2
cos

u2

2
cos

u3 + u8

2

)
,

ψ3
2 = u5

(
cos

u1

2
sin

u2

2
cos

u3 + u6

2
− sin

u1

2
cos

u2

2
sin

u3 + u6

2

)
−

− u7

(
cos

u1

2
cos

u2

2
cos

u3 + u8

2
− sin

u1

2
sin

u2

2
sin

u3 + u8

2

)
reduces the above realization to the form (26) with g = 0.

5 Covariant realizations of the Lie algebra
of the group E(4)

We recall that the basis elements of the Lie algebra of the Euclid group E(4) fulfill
the following commutation relations:

[Pα, Pβ ] = 0, (40)

[Jµν , Pα] = δµαPν − δναPµ, (41)
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[Jαβ , Jµν ] = δαµJβν + δβνJαµ − δανJβµ − δβµJαν , (42)

where α, β, µ, ν = 1, 2, 3, 4.
Using the results of the previous sections and the fact that the Lie algebra of

the rotation group O(4) is the direct sum of two algebras AO(3) we will obtain
a description of covariant realizations of the Lie algebra (40)–(42) within the class of
LVFs

Pµ = ξµν(x, u)∂xν
+ ηµi(x, u)∂ui

,

Jµν = ξµνα(x, u)∂xα
+ ηµνi(x, u)∂ui

with Jµν = −Jνµ. Here the indices µ, ν, α take the values 1, 2, 3, 4 and the index i
takes the values 1, . . . , n.

As we consider covariant realizations, mutually commuting operators Pµ satisfy
(20) with N = 4. Hence due to Lemma 1 it follows that they can be reduced to the
form Pµ = ∂xµ

, µ = 1, 2, 3, 4. Next, using the commutation relations (41) we establish
that the operators Jµν have the following structure:

Jµν = xν∂xµ
− xµ∂xν

+ fµνα(u)∂xα
+ gµνi(u)∂ui

(43)

with arbitrary sufficiently smooth fµνα, gµνi.
In what follows we will restrict our considerations to the case when in (43) fµνα ≡

0. This means geometrically that the transformation groups generated by the opera-
tors Jµν in the space of independent variables are standard rotations in the planes
(xµ, xν). With this restriction LVFs Jµν take the form

Jµν = xν∂xµ
− xµ∂xν

+ Jµν , (44)

where

Jµν = gµνi(u)∂ui
(45)

and, furthermore, gµνi(u) = −gνµi(u).
Inserting LVFs (44) into (42) we come to conclusion that the operators Jµν satisfy

the commutation relations of the Lie algebra of the rotation group O(4)

[Jαβ , Jµν ] = δαµJβν + δβνJαµ − δανJβµ − δβµJαν . (46)

An exhaustive description of inequivalent realizations of the above Lie algebra
within the class of LVFs (45) is given below. It is based on results of Section 2 and
on the well-known fact that the algebra AO(4) is decomposed into the direct sum of
two algebras AO(3). This is achieved by choosing the basis of AO(4) in the following
way:

J±
a =

1
2

(
1
2
εabcJbc ± Ja4

)
, (47)

where the indices a, b, c take the values 1, 2, 3. Due to (46) LVFs J−
a , J+

a fulfill the
following commutation relations:

[J +
a ,J +

b ] = εabcJ +
c , (48)

[J +
a , J−

b ] = 0, (49)



On covariant realizations of the Euclid group 311

[J−
a , J−

b ] = εabcJ−
c , (50)

which is the same as what was required. Now we are ready to formulate an assertion
giving an exhaustive description of LVFs (45) satisfying commutation relations (46)
or, equivalently, (48)–(50).
Theorem 3. Any realization of the Lie algebra AO(4) within the class of LVFs (45)
is given by the formulae (47) and by one of the formulae 1–6 presented below.

1. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J +
3 = ∂u1 ,

J−
1 = − sinu3 tanu4∂u3 − cosu3∂u4 ,

J−
2 = − cosu3 tanu4∂u3 + sinu3∂u4 ,

J−
3 = ∂u3 ;

2. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J +
3 = ∂u1 ,

J−
1 = − sinu3 tanu4∂u3 − cosu3∂u4 − sinu3 secu4∂u5 ,

J−
2 = − cosu3 tanu4∂u3 + sinu3∂u4 − cosu3 secu4∂u5 ,

J−
3 = ∂u3 ;

3. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,

J +
3 = ∂u1 ,

J−
1 = secu2 cosu3∂u1 + sinu3∂u2 − tanu2 cosu3∂u3 ,

J−
2 = − secu2 sinu3∂u1 + cosu3∂u2 + tanu2 sinu3∂u3 ,

J−
3 = ∂u3 ;

4. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,

J +
3 = ∂u1 ,

J−
1 = − sinu4 tanu5∂u4 − cosu4∂u5 − sinu4 secu5∂u6 ,

J−
2 = − cosu4 tanu5∂u4 + sinu4∂u5 − cosu4 secu5∂u6 ,

J−
3 = ∂u4 ;

5. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,

J +
3 = ∂u1 ,

J−
1 = k sinu4 secu5∂u3 − sinu4 tanu5∂u4 − cosu4∂u5 ,

J−
2 = k sinu4 secu5∂u3 − cosu4 tanu5∂u4 + sinu4∂u5 ,

J−
3 = ∂u4 ;

6. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,
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J +
3 = ∂u1 ,

J−
1 = u6 sinu4 secu5∂u3 − sinu4 tanu5∂u4 − cosu4∂u5 ,

J−
2 = u6 sinu4 secu5∂u3 − cosu4 tanu5∂u4 + sinu4∂u5 ,

J−
3 = ∂u4 ,

where k = const, k �= 0.
Proof. We will give the principal steps of the proof omitting intermediate computa-
tions.

According to Theorem 1, there are two inequivalent realizations of the algebra
AO(3) with basis elements J +

1 , J +
2 , J +

3

1. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J +
3 = ∂u1 ;

2. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,

J +
3 = ∂u1 .

(51)

To complete a classification of inequivalent realization of AO(4) we have to find all
triplets of operators J−

1 ,J−
2 ,J−

3 which together with the operators (51) satisfy (49),
(50).

Analyzing the commutation relations (49) we arrive at the following expressions
for operators J−

1 , J−
2 , J−

3 :

1. J−
a =

n∑
i=3

fai(u3, . . . , un)∂ui
,

2. J−
a =

3∑
b=1

fab(u4, . . . , un)Qb +
n∑
i=4

fai(u4, . . . , un)∂ui
,

where fij are arbitrary smooth functions and

Q1 = secu2 cosu3∂u1 + sinu3∂u2 − tanu2 cosu3∂u3 ,

Q2 = − secu2 sinu3∂u1 + cosu3∂u2 + tanu2 sinu3∂u3 ,

Q3 = ∂u3 .

Note that the operators Qa fulfill the commutation relations of the algebra AO(3).
Hence, we conclude that for the case 1 from (51) the operators J−

a are given by
the formulae (51), where one should replace ui by ui+2, correspondingly.

Let us turn now to the second realization of the algebra AO(3) from (51).
Case 1. fai = 0, a = 1, 2, 3, i = 4, . . . , n. In this case we can reduce J−

1 to the
form

J−
1 = r̃(u4, . . . , n)Q1

with the help of equivalence transformation

X → X̃ = VXV−1, V = exp

{
3∑
a=1

FaQa

}
, (52)
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where Fa are some functions of u4, . . . , un. Note that transformation (52) does not
change the form of the operators J +

a , since [J +
a ,Qb] = 0, a, b = 1, 2, 3.

From commutation relations (50) it follows that r̃ = 1 and furthermore J−
2 = Q2,

J−
3 = Q3. Thus we get the following forms of the operators J−

a :

J−
1 = secu2 cosu3∂u1 + sinu3∂u2 − tanu2 cosu3∂u3 ,

J−
2 = − secu2 sinu3∂u1 + cosu3∂u2 + tanu2 sinu3∂u3 ,

J−
3 = ∂u3 .

Case 2. Not all fai vanish. Then the operators J−
1 , J−

2 , J−
3 can be transformed

to become

J−
a = fa(u4, . . . , un)Q1 + ga(u4, . . . , un)Q2 + ha(u4, . . . , un)Q3 + Za,

where a = 1, 2, 3, and

Z1 = − sinu4 tanu5∂u4 − cosu4∂u5 − ε sinu4 secu5∂u6 ,

Z2 = − cosu4 tanu5∂u4 + sinu4∂u5 − ε cosu4 secu5∂u6 ,

Z3 = ∂u4 ,

and ε = 0, 1.
Now using the transformation (52) we reduce the operator J−

3 to the form Z3 =
∂u4 . Next, from commutation relations

[J−
3 ,J−

1 ] = J−
2 , [J−

3 ,J−
2 ] = −J−

1

we get

J−
1 =

3∑
a=1

(Ga cosu4 +Ha sinu4)Qa + Z1,

J−
2 =

3∑
a=1

(Ha cosu4 −Ga sinu4)Qa + Z2,

where Ga, Ha are arbitrary smooth functions of u5, . . . , un.
Making use of the equivalence transformation (52) with Fa being functions of

u5, . . . , un we can cancel coefficients Ga. The remaining commutation relation [J−
1 ,J−

2 ]
= J−

3 yields equations for H1, H2, H3

Hau5 − tanu5Ha = 0,

whence

Ha = H̃a secu5, a = 1, 2, 3,

H̃a being arbitrary functions of u6, . . . , un. Consequently, the operators J−
a read

J−
1 =

3∑
a=1

sinu4 secu5H̃aQa + Z1,

J−
2 =

3∑
a=1

cosu4 secu5H̃aQa + Z2,

J−
3 = Z3.
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If ε = 1, then using the transformation (52) with Fa being functions of u6, . . . , un
we can cancel H̃a, thus getting J−

a = Za, a = 1, 2, 3. If ε = 0, then making use of the
transformation (52) with Fa being functions of u6, . . . , un we can put H̃1 = H̃2 = 0.

Provided H̃3 = 0, we get the realization which is reduced to that given by the
formulae 2 from the statement of the theorem.

Provided H̃3 = const �= 0, we get the formulae 5. At last, if H̃3 �= const, then
performing a proper change of variables we arrive at the realization given by the
formulae 6 from the statement of the theorem. The theorem is proved.

It follows from the above theorem that formulae (47) and 1–6 of the statement of
Theorem 3 give six inequivalent realizations of the Lie algebra of the Euclid group
E(4) having the basis elements Pµ = ∂xµ

and (44), (45). To get all possible realizations
of the algebra in question belonging to the above class it is necessary to add to the
list of realizations of the algebra AO(4) obtained in Theorem 3 the following three
realizations of the operators J−

a , J +
a :

1. J +
1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J +
3 = ∂u1 , J−

a = 0;
2. J +

1 = − sinu1 tanu2∂u1 − cosu1∂u2 − sinu1 secu2∂u3 ,

J +
2 = − cosu1 tanu2∂u1 + sinu1∂u2 − cosu1 secu2∂u3 ,

J +
3 = ∂u1 , J−

a = 0;
3. J +

a = 0, J−
a = 0,

where a = 1, 2, 3. This yields nine inequivalent realizations of the Lie algebra of the
group E(4).

In particular, the basis generators of the Euclid groups realized on the sets of
solutions of the Dirac and self-dual Yang–Mills equations in the Euclidean space R

4

are reduced to such a form that the generators of the rotation groups are given by
(44), (45), Jµν being adduced in the formulae 4 of the statement of Theorem 3.

6 Concluding remarks
Summarizing the results of Sections 3 and 4 yields the following structure of realizati-
ons of the Lie algebra of rotation group by LVFs in n variables:

• If n=1, then there are no realizations.

• As there is no realization of AO(3) by real non-zero 2 × 2 matrices, the only
realization for the case n = 2 is given by (13). Furthermore, this realization is
essentially nonlinear (i.e., it is not equivalent to a realization of the form (9)).

• In the case n = 3 there are two more realizations (38) (which is equivalent to
(13)) and by formula (14). The latter realization is essentially nonlinear.

• Provided n > 3, there is no new realizations of AO(3) and, furthermore, any
realization can be reduced to a linear one (say, to (39)).

An evident (and very important) consequence of Theorem 1 is that there are only
two inequivalent classes of O(3)-invariant partial differential equations of order r.
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They are obtained via differential invariants of the order not higher than r of the Lie
algebras having the basis elements (13), (14). In particular, the Weyl, Maxwell, Dirac
equations are the special cases of the general system of first-order partial differential
equations in n ≥ 8 dependent variables invariant with respect to the algebra (14). We
intend to devote one of our future publications to description of first-order differential
invariants of the Lie algebra of the Euclid group E(3) having the basis elements (13),
(14) and (37). Let us note that this problem has been completely solved provided
basis elements of AE(3) are given by formulae (12) [20].
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