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Stationary mKdV hierarchy and integrability
of the Dirac equations by quadratures
R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

Using the Lie’s infinitesimal method we establish that the Dirac equation in one
variable is integrable by quadratures if the potential V (x) is a solution of one of the
equations of the stationary mKdV hierarchy.

Consider the eigenvalue problem for the Dirac operator L = iσ1 d/dx− V (x)σ2,

(L − λ)u ≡ iσ1
du

dx
− (V (x)σ2 + λ)u = 0, (1)

where σ1, σ2 are 2 × 2 Pauli matrices, u = (u1(x), u2(x))T , V (x) is a real-valued
function and λ is a real parameter. We remind that Eq. (1) is one of two equations
composing the Lax pair for the mKdV equation,

vt + vxxx − 6v2vx = 0, (2)

integrable by the inverse scattering method (see, e.g., Refs. [1, 2]). Next, as the identity

(L − λ)(L + λ) = − d2

dx2
+ V 2 − σ3

dV

dx
− λ2,

holds, components of the vector-function u fulfill the stationary Schrödinger equation,

d2ui

dx2
+

(
(−1)i+1 dV

dx
− V 2 + λ2

)
ui = 0, i = 1, 2. (3)

The aim of the present Letter is to show that there exists an initimate connection
between integrability of system (1) (in what follows we will call it the Dirac equation)
by quadratures and solutions of the stationary mKdV hierarchy.

Integrability of system (1) will be studied with the use of its Lie symmetries. As
usual, we call a first-order differential operator

X = ξ(x)
d

dx
+ η(x),

where ξ is a real-valued function and η is a 2 × 2 matrix complex-valued function,
a Lie symmetry of system (1) if commutation relation

[L,X] = R(x)L, (4)

holds with some 2 × 2 matrix function R(x) (for details, see, e.g., Ref. [3]).
A simple computation shows that if X is a Lie symmetry of system (1), then an

operator X + r(x)L with a smooth function r(x) is its Lie symmetry as well. Hence
we conclude that without loss of generality we can look for Lie symmetries within the
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class of matrix operators X = η(x). Furthermore, inserting X = η(x) into Eq. (4)
and computing the commutator yield that the matrix η(x) is necessarily of the form

η =

∥∥∥∥∥
f(x) g(x)
h(x) −f(x)

∥∥∥∥∥ , (5)

where f(x), g(x), h(x) are arbitrary solutions of the following system of ordinary
differential equations,

df

dx
= iλ(g − h),

dg

dx
= 2iλf + 2gV,

dh

dx
= −2iλf − 2hV. (6)

With a solution of system (6) in hand we can integrate the initial equations (1) by
quadratures using the classical results by Elie Cartan [4]. Since these results are well-
known we will give them without derivation in the form of the following lemma.
Lemma 1. Let the functions f(x), g(x), h(x) satisfy system (6). Then the general
solution of the Dirac equation is given by the formulae

u1(x) = C1(R(x) + f(x))(h(x))−1/2(R2(x) − ∆)−1/2,

u2(x) = C1(h(x))1/2(R2(x) − ∆)−1/2,
(7)

where ∆ = f2(x) + g(x)h(x) is constant on the solution variety of system (6),

R(x) =




√
∆ tanh

(
C2 − iλ

√
∆

∫
dx

g(x)

)
, ∆ > 0,

(
C2 − iλ

∫
dx

g(x)

)−1

, ∆ = 0,

√−∆ tan
(
C2 + iλ

√−∆
∫

dx

g(x)

)
, ∆ < 0,

and C1, C2 are arbitrary complex constants.
However, solving system of ordinary differential equations (6) is by no means

easier than solving the initial Dirac equation. This is a common problem in applying
Lie symmetries to integration of ordinary differential equations. The key idea of our
approach is to restrict a priori the class within which Lie symmetries are looked for
and suppose that they are polynomials in λ with variable matrix coefficients.

Introducing the new dependent variables ψ1(x), ψ2(x),

f(x) =
i

4λ

(
−dψ1

dx
+ 2V ψ2

)
,

g(x) =
1
2
(ψ1(x) + ψ2(x)), h(x) =

1
2
(ψ1(x) − ψ2(x)),

(8)

we rewrite Eq. (6) in the following equivalent form,

d2ψ1

dx2
= −4λ2ψ1 + 2V

dψ2

dx
+ 2ψ2

dV

dx
,

dψ2

dx
= 2V ψ1. (9)

As mentioned above solutions of system (9) are looked for as polynomials in λ,
namely

ψ1(x) =
n∑

k=1

pk(x)(2λ)2k, ψ2(x) =
n∑

k=1

rk(x)(2λ)2k. (10)
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Inserting the expressions (10) into (9) and equating the coefficients by the powers
of λ yield pn = 0 and

drk
dx

= 2V pk, k = 1, . . . , n (11)

d2pk

dx2
= 2V

drk
dx

+ 2
dV

dx
rk − pk−1, k = 1, . . . , n− 1, (12)

where we set by definition p−1(x) = 0. Eliminating from Eqs. (11), (12) the functions
rk(x), we get recurrent relations for the functions pk(x),

pk−1(x) =
{
− d2

dx2
+ 4

dV

dx
D−1

x V + 4V 2

}
︸ ︷︷ ︸

Q

pk(x), k = n, n− 1, . . . , 0. (13)

Here D−1
x denotes integration by x.

A reader familiar with the theory of solitons will immediately recognize the opera-
tor Q as the recursion operator for the mKdV equation (2) (see, e.g., Refs. [5, 6]).
Acting repeatedly with this operator on the trivial symmetry S0 = 0 yields an infinite
number of higher symmetries S1, S2, . . . admitted by the mKdV equation [5]. Hence it
is not difficult to derive that the functions pk, k = 0, . . . , n−1 are linear combinations
of the higher symmetries S1, . . . , Sn with arbitrary constant coefficients Ci,

pn−k(x) =
k∑

i=1

CiSk+1−i, k = 1, . . . , n, (14)

where Si are determined by the recurrent relations

Si+1(x) = −d
2Si(x)
dx2

+ 4
dV

dx

∫ x

x0

V (y)Si(y)dy + 4V 2Si(x), i = 1, . . . , n− 1,

with S1
def= dV/dx.

The above formulae (14) give the general solution of the first n equations from
Eq. (13). Inserting these into the last equation yields equation for the function V (x)
of the form

n+1∑
k=1

CkSn+2−k = 0. (15)

As S1 = dV/dx, Eq. (15) is nothing else than an equation of the stationary mKdV
hierarchy, which is obtained from the higher mKdV equations by setting v(t, x) =
v(x+ Ct), C = const.

Integrating Eqs. (11) yields

rk(x) = 2
k∑

i=1

Ci

x∫
x0

V (y)Sk+1−i(y)dy + C̃k, k = 1, . . . , n, (16)

where C̃i are arbitrary complex constants.
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Thus, the formulae (10), (14), (15), (16) give the general solution of the system of
determining equations (11), (12) within the class of functions of the form (10). This
means, in particular, that provided the function V (x) is a solution of Eq. (15) with
some fixed n and C1, . . . , Cn, the Dirac equation possesses a Lie symmetry. Hence we
conclude that it is integrable by quadratures due to Lemma 1. Consequently, we have
proved the following remarkable fact.
Theorem 1. Let V (x) be a solution of an equation of the mKdV hierarchy of the
form (15). Then the Dirac equation (1) is integrable by quadratures.

Note that the equations of the stationary mKdV hierarchy are transformed to the
equations of the stationary KdV hierarchy with the help of the Miura transformation
and the latter are integrated in θ-functions with any n ∈ N [7].

There is a deep relationship of the above results with those obtained by Novikov
in Ref. [8], where it was established, in particular, that periodical solutions of the
stationary KdV hierarchy give rise to the integrable stationary Schrödinger equa-
tions (3). This relationship is established via the Lax representation for higher KdV
equations. Since we consider the stationary KdV equations, the Lax representation
reduces to the condition that there exists an Nth-order differential operator

Q =
N∑

i=0

qi(x)
di

dxi
,

commuting with the Schrödinger operator d2/dx2−W (x), provided W (x) is a solution
of the corresponding higher stationary KdV equation. Consequently, Q is the higher
symmetry of the Schrödinger equation in a sense of [3].

On the set of solutions of the Schrödinger equation (3) we can reduce the opera-
tor Q to a first-order Lie symmetry of the form (for more details, see Ref. [9])

Q̃ = ξ(x, λ)
d

dx
+ η(x, λ),

where ξ, η are polynomials in λ. This gives us the ansatz for a Lie symmetry used at
the beginning of this Letter.

Thus, the approach to integrating ordinary differential equations suggested here is
based on their high-order Lie symmetry. To the best of our knowledge, the high-order
Lie symmetries were not used until now for integrating ordinary differential equations.

It is important to note that within the framework of the Lie approach one always
deals with the set of solutions as a whole. This means that specific properties of subsets
of solutions (like periodicity) are not taken into account. To study these one needs
more subtle analytic methods. On the other hand, the Lie approach has the merit
of being a universal tool applicable to a wide range of ordinary differential equations
having the same algebraic-theoretical properties. For example, it is not difficult to
generalize the technique developed for integrating the Dirac equation (1) in order to
integrate an arbitrary system of ordinary differential equations of the form

iΩ1
du

dx
− (V (x)Ω3 + λ)u = 0, (17)

where Ω1, Ω2 are arbitrary finite- or infinite-dimensional constant matrices forming,
together with the matrix Ω3 = −i[Ω1,Ω2], a basis of the Lie algebra su(2). The result
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will be the same, namely, if V = V (x) is a solution of an equation of the stationary
mKdV hierarchy, then the system of ordinary differential equations (17) is integrable
by quadratures.

In conclusion let us demonstrate how the above procedure works for the simplest
case n = 1. With this choice of n, Eq. (15) reads

C2

C1

dV

dx
− d3V

dx3
+ 6V 2 dV

dx
= 0, (18)

which is exactly the stationary mKdV equation and is obtained from Eq. (2) via the
ansatz v(t, x) = V (C2x− C1t).

A simple computation yield the form of the coefficients of the Lie symmetry (5),

f(x) = − i

4λ

(
C1
d2V

dx2
− 2C1V

3 − C2 − 4C1λ
2)

)
,

g(x) =
1
2

(
C1
dV

dx
− C1V

2 − 1
2
C2 − 2C1λ

2

)
,

h(x) =
1
2

(
C1
dV

dx
+ C1V

2 +
1
2
C2 + 2C1λ

2

)
,

(19)

which satisfy the determining equations (6) inasmuch as the function V (x) is a solution
of the stationary mKdV equation.

Thus, the Dirac equation with potential V (x) satisfying the stationary mKdV
equation (18) is integrable by quadratures and its general solution is given by formu-
lae (7) and (19).

Note that due to the remark made at the very beginning of the paper components
of the function u fulfill the stationary Schrödinger equation (3). This is in a good
accordance with results of Ref. papers [9].
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