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The Schrödinger equation
with variable potential

W.I. FUSHCHYCH, Z.I. SYMENOH, I.M. TSYFRA

We study symmetry properties of the Schrödinger equation with the potential as
a new dependent variable, i.e., the transformations which do not change the form of
the class of equations. We also consider systems of the Schrödinger equations with
certain conditions on the potential. In addition we investigate symmetry properties of
the equation with convection term. The contact transformations of the Schrödinger
equation with potential are obtained.

1 Introduction

Let us consider the following generalization of the Schrödinger equation

i
∂ψ

∂t
+ ∆ψ +W (t, �x, |ψ|)ψ + Va(t, �x )

∂ψ

∂xa
= 0, (1)

where ∆ =
∂2

∂xa∂xa
, a = 1, n, ψ = ψ(t, �x ) is an unknown complex function, W =

W (t, �x, |ψ|) and Va = Va(t, �x ) are potentials of interaction.
When Va = 0 in (1), the standard Schrödinger equation is obtained. Symmetry

properties of this equation were thoroughly investigated (see, e.g., [1–4]). For arbitrary
W (t, �x ), equation (1) admits only the trivial group of identical transformations �x→
�x ′ = �x, t→ t′ = t, ψ → ψ′ = ψ [1, 3].

In [5–7], a method for extending the symmetry group of equation (1) was suggested.
The idea lies in the fact that, in equation (1), we assume that W (t, �x, |ψ|) is a new
dependent variable on equal conditions with ψ. This means that equation (1) is
regarded as a nonlinear equation even in the case where the potential W does not
depend on ψ. Indeed, equation (1) is a set of equations when V is a certain set of
arbitrary smooth functions.

2 2. Symmetry of the Schrödinger equation
with potential

Using this idea, we obtain the invariance algebra of the Schrödinger equation with
potential, i.e.,

i
∂ψ

∂t
+ ∆ψ +W (t, �x, |ψ|)ψ = 0. (2)
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Theorem 1. Equation (2) is invariant under the infinite-dimensional Lie algebra
with infinitesimal operators of the form

Jab = xa∂xb
− xb∂xa

,

Qa = Ua∂xa
+
i

2
U̇axa (ψ∂ψ − ψ∗∂ψ∗) +

1
2
Üaxa∂W ,

QA = 2A∂t + Ȧxc∂xc
+
i

4
Äxcxc (ψ∂ψ − ψ∗∂ψ∗)−

− nȦ

2
(ψ∂ψ + ψ∗∂ψ∗) +

(
1
4
...

A xcxc − 2WȦ

)
∂W ,

QB = iB (ψ∂ψ − ψ∗∂ψ∗) + Ḃ∂W , Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ ,

(3)

where Ua(t), A(t), B(t) are arbitrary smooth functions of t, over the index c we
mean summation from 1 to n, a, b = 1, n, and over the repeated index a there is no
summation. The upper dot stands for the derivative with respect to time.

Note that the invariance algebra (3) includes the operators of space (Ua = 1) and
time (A = 1/2) translations, the Galilei operator (Ua = t), the dilation (A = t) and
projective (A = t2/2) operators.

Proof of Theorem 1. We seek the symmetry operators of equation (2) in the class
of first-order differential operators of the form:

X = ξµ(t, �x, ψ, ψ∗)∂xµ
+ η(t, �x, ψ, ψ∗)∂ψ +

+ η∗(t, �x, ψ, ψ∗)∂ψ∗ + ρ(t, �x, ψ, ψ∗,W )∂W .
(4)

Using the invariance condition [1, 8, 9] of equation (2) under operator (4) and the
fact that W = W (t, �x, |ψ|), i.e., ψ ∂W∂ψ = ψ∗ ∂W

∂ψ∗ , we obtain the system of determining
equations:

ξjψ = ξjψ∗ = 0, ξ0a = 0, ξaa = ξbb , ξab + ξba = 0, ξ00 = 2ξaa ,

ηψ∗ = 0, ηψψ = 0, ηψa = (i/2)ξa0 ,
η∗ψ = 0, η∗ψ∗ψ∗ = 0, η∗ψ∗a = −(i/2)ξa0 ,

iη0 + ηcc − ηψWψ + 2Wξnnψ +Wη + ρψ = 0,
−iη∗0 + η∗cc − η∗ψ∗Wψ∗ + 2Wξnnψ

∗ +Wη∗ + ρψ∗ = 0,
ρψ = ρψ∗ = 0,

(5)

where an index j varies from 0 to n, a, b = 1, n, over the repeated index c we mean
the summation from 1 to n, and over the indices a, b there is no summation.

We solve system (5) and obtain the following result:

ξ0 = 2A, ξa = Ȧxa + Cabxb + Ua, a = 1, n,

η =
i

2

(
1
2
Äxcxc + U̇cxc +B

)
ψ, η∗ = − i

2

(
1
2
Äxcxc + U̇cxc + E

)
ψ∗,

ρ =
1
2

(
1
2
...

A xcxc + Ücxc + Ḃ

)
− n

2
iÄ− 2WȦ,

where A, Ua, B are arbitrary functions of t, E = B − 2inȦ + C1, Cab = −Cba and
C1 are arbitrary constants. The theorem is proved.
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The operators QB generate the finite transformations:

t′ = t, �x ′ = �x,

ψ′ = ψ exp(iB(t)α), ψ∗′
= ψ∗ exp(−iB(t)α),

W ′ = W + Ḃ(t)α,

(6)

where α is a group parameter, B(t) is an arbitrary smooth function.
Using the Lie equations, we obtain that the following transformations correspond

to the operators Qa:

t′ = t, x′a = Ua(t)βa + xa, x′b = xb (b �= a),

ψ′ = ψ exp
(
i

4
U̇aUaβ

2
a +

i

2
U̇axaβa

)
,

ψ∗′
= ψ∗ exp

(
− i

4
U̇aUaβ

2
a −

i

2
U̇axaβa

)
,

W ′ = W +
1
2
Üaxaβa +

1
4
ÜaUaβ

2
a,

(7)

where βa (a = 1, n ) are group parameters, Ua = Ua(t) are arbitrary smooth functions,
there is no summation over the index a. In particular, if Ua(t) = t, then the opera-
tors Qa are the standard Galilei operators

Ga = t∂xa
+
i

2
xa (ψ∂ψ − ψ∗∂ψ∗) . (8)

For the operators QA, it is difficult to write out the finite transformations in the
general form. We consider several particular cases:

(a) A(t) = t. Then

QA = 2t∂t + xc∂xc
− n

2
(ψ∂ψ + ψ∗∂ψ∗) − 2W∂W

is a dilation operator generating the transformations

t′ = t exp(2λ), x′c = xc exp(λ),

ψ′ = exp
(
−n

2
λ
)
ψ, ψ∗′

= exp
(
−n

2
λ
)
ψ∗,

W ′ = W exp(−2λ),

(9)

where λ is a group parameter.
(b) A(t) = t2/2. Then

QA = t2∂t + txc∂xc
+
i

4
xcxc (ψ∂ψ − ψ∗∂ψ∗) − n

2
t (ψ∂ψ + ψ∗∂ψ∗) − 2tW∂W

is the operator of projective transformations:

t′ =
t

1 − µt
, x′c =

xc
1 − µt

,

ψ′ = ψ(1 − µt)n/2 exp
(

ixcxcµ

4(1 − µt)

)
,

ψ∗′
= ψ∗(1 − µt)n/2 exp

( −ixcxcµ
4(1 − µt)

)
, W ′ = W (1 − µt)2,

(10)

µ is an arbitrary parameter.
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Consider the example. Let

W =
1
�x 2 =

1
xcxc

. (11)

We describe how new potentials are generated from potential (11) under transforma-
tions (6), (7), (9), (10).

(i) QB :

W =
1

xcxc
→W ′ =

1
xcxc

+B(t)α→W ′′ =
1

xcxc
+B(t)(α+ α′) → · · · ,

where B(t) is an arbitrary smooth function, α and α′ are arbitrary real parameters.
(ii) Qa:

W =
1

xcxc
→W ′,

W ′ =
1

(xa − Ua(t)βa)2 + xbxb
+

1
4
ÜaUaβ

2
a +

1
2
Üaβa(xa − Uaβa),

W ′ →W ′′,

W ′′ =
1

(xa − Ua(t)(βa + β′
a))2 + xbxb

+
1
4
ÜaUa(β2

a + β′2
a )+

+
1
2
Üa(βa + β′

a)(xa − Ua(βa + β′
a)) +

1
2
ÜaUaβaβ

′
a → · · · ,

where Ua are arbitrary smooth functions, βa and β′
a are real parameters, there is no

summation over a but there is summation over b (b �= a). In particular, if Ua(t) = t,
then we have the standard Galilei operator (8) and

W =
1

xcxc
→W ′ =

1
(xa − tβa)2 + xbxb

→

→W ′′ =
1

(xa − t(βa + β′
a))2 + xbxb

→ · · ·

(iii) QA for A(t) = t or A(t) = t2/2 do not change the potential, i.e.,

W =
1

xcxc
→W ′ =

1
xcxc

→W ′′ =
1

xcxc
→ · · ·

3 The Schrödinger equation and conditions
for the potential

Consider several examples of the systems in which one of the equations is equation (2)
with potential W = W (t, �x ), and the second equations is a certain condition for the
potential W . We find the invariance algebras of these systems in the class of operators

X = ξµ(t, �x, ψ, ψ∗,W )∂xµ
+ η(t, �x, ψ, ψ∗,W )∂ψ +

+ η∗(t, �x, ψ, ψ∗,W )∂ψ∗ + ρ(t, �x, ψ, ψ∗,W )∂W .
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(i) Consider equation (2) with the additional condition for the potential, namely
the Laplace equation.

i
∂ψ

∂t
+ ∆ψ +W (t, �x )ψ = 0,

∆W = 0.
(12)

System (12) admits the infinite-dimensional Lie algebra with the infinitesimal opera-
tors

P0 = ∂t, Pa = ∂xa
, Jab = xa∂xb

− xb∂xa
,

Qa = Ua∂xa
+
i

2
U̇axa (ψ∂ψ − ψ∗∂ψ∗) +

1
2
Üaxa∂W , a = 1, n,

D = xc∂xc
+ 2t∂t − n

2
(ψ∂ψ + ψ∗∂ψ∗) − 2W∂W ,

A = t2∂t + txc∂xc
+
i

4
xcxc (ψ∂ψ − ψ∗∂ψ∗) − n

2
t (ψ∂ψ + ψ∗∂ψ∗) − 2Wt∂W ,

QB = iB(ψ∂ψ − ψ∗∂ψ∗) + Ḃ∂W , Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ ,

(13)

where Ua(t) (a = 1, n ) and B(t) are arbitrary smooth functions. In particular,
algebra (13) includes the Galilei operator (8).

(ii) The condition for the potential is the heat equation.

i
∂ψ

∂t
+ ∆ψ +W (t, �x )ψ = 0,

W0 + λ∆W = 0.
(14)

The maximal invariance algebra of system (14) is

P0 = ∂t, Pa = ∂xa
, Jab = xa∂xb

− xb∂xa
,

D = 2t∂t + xc∂xc
− n

2
(ψ∂ψ + ψ∗∂ψ∗) − 2W∂W ,

Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ , Z3 = it (ψ∂ψ − ψ∗∂ψ∗) + ∂W .

(iii) The condition for the potential is the wave equation.

i
∂ψ

∂t
+ ∆ψ +W (t, �x )ψ = 0,

�W = 0.
(15)

The maximal invariance algebra of system (15) is

P0 = ∂t, Pa = ∂xa
, Jab = xa∂xb

− xb∂xa
, Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ ,

Z3 = it (ψ∂ψ − ψ∗∂ψ∗) + ∂W , Z4 = it2 (ψ∂ψ − ψ∗∂ψ∗) + 2t∂W .

(iv) The condition for the potential is the Hamilton–Jacobi equation.

i
∂ψ

∂t
+ ∆ψ +W (t, �x )ψ = 0,

∂W

∂t
− λ

∂W

∂xa

∂W

∂xa
= 0.

(16)
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The maximal invariance algebra is

P0 = ∂t, Pa = ∂xa
, Jab = xa∂xb

− xb∂xa
,

Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ , Z3 = it(ψ∂ψ − ψ∗∂ψ∗) + ∂W .

(v) Consider very important and interesting case in (1+1)-dimensional space-time
where the condition for the potential is the KdV equation.

i
∂ψ

∂t
+
∂2ψ

∂x2
+W (t, x)ψ = 0,

∂W

∂t
+ λ1W

∂W

∂x
+ λ2

∂3W

∂x3
= F (|ψ|), λ1 �= 0.

(17)

For an arbitrary F (|ψ|), system (17) is invariant under the Galilei operator and
the maximal invariance algebra is the following:

P0 = ∂t, P1 = ∂x, Z = i (ψ∂ψ − ψ∗∂ψ∗) ,

G = t∂x +
i

2

(
x+

2
λ1
t

)
(ψ∂ψ − ψ∗∂ψ∗) +

1
λ1
∂W .

(18)

For F = C = const, system (17) admits the extension, namely, it is invariant under
the algebra 〈P0, P1, G, Z1, Z2〉, where P0, P1, G have the form (18) and Z1 = ψ∂ψ,
Z2 = ψ∗∂ψ∗ .

The Galilei operator G generates the following transformations:

t′ = t, x′ = x+ θt, W ′ = W +
1
λ1
θ,

ψ′ = ψ exp
(
i

2
θx+

i

λ1
θt+

i

4
θ2t

)
,

ψ∗′
= ψ∗ exp

(
− i

2
θx− i

λ1
θt− i

4
θ2t

)
,

where θ is a group parameter. Here, it is important that λ1 �= 0, since otherwise,
system (17) does not admit the Galilei operator.

4 Finite-dimensional subalgebras
Algebra (3) is infinite-dimensional. We select certain finite-dimensional subalgebras
from it. In particular, we give the examples of functions Ua(t) and B(t), for which the
subalgebra generated by the operators

P0, Pa, Jab, Qa, QB , Z1, Z2 (19)

is finite-dimensional.
(a) Ua(t) = exp(γt). In this case, subalgebra (19) has the form

P0, Pa, Jab, Z1, Z2,

Qa = eγt
(
∂xa

+
i

2
γxa (ψ∂ψ − ψ∗∂ψ∗) +

1
2
γ2xa∂W

)
, a = 1, n,

QB = eγt (iψ∂ψ − iψ∗∂ψ∗ + γ∂W ) .
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(b) Ua(t) = C1 cos(νt) + C2 sin(νt). Then subalgebra (19) has the form:

P0, Pa, Jab, Z1, Z2,

Q(1)
a = cos(νt)∂xa

− i

2
ν sin(νt)xa (ψ∂ψ − ψ∗∂ψ∗) − 1

2
ν2 cos(νt)xa∂W ,

Q(2)
a = sin(νt)∂xa

+
i

2
ν cos(νt)xa (ψ∂ψ − ψ∗∂ψ∗) − 1

2
ν2 sin(νt)xa∂W ,

X1 = i sin(νt) (ψ∂ψ − ψ∗∂ψ∗) + ν cos(νt)∂W ,
X2 = i cos(νt) (ψ∂ψ − ψ∗∂ψ∗) − ν sin(νt)∂W .

(c) Ua(t) = C1t
k+C2t

k−1 + · · ·+Ckt+Ck+1. Then subalgebra (19) has the form:

P0, Pa, Jab, Z1, Z2,

Q(1)
a = tk∂xa

+
i

2
ktk−1xa (ψ∂ψ − ψ∗∂ψ∗) +

1
2
k(k − 1)tk−2xa∂W ,

Q(2)
a = tk−1∂xa

+
i

2
(k − 1)tk−2xa (ψ∂ψ − ψ∗∂ψ∗) +

1
2
(k − 1)(k − 2)tk−3xa∂W ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Q(k)
a = t∂xa

+
i

2
xa (ψ∂ψ − ψ∗∂ψ∗) ,

Q
(1)
B = it (ψ∂ψ − ψ∗∂ψ∗) + ∂W ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Q

(2k−2)
B = it2k−2 (ψ∂ψ − ψ∗∂ψ∗) + (2k − 2)t2k−3∂W .

5 The Schrödinger equation with convection term
Consider equation (1) for W = 0, i.e., the Schrödinger equation with convection term

i
∂ψ

∂t
+ ∆ψ = Va

∂ψ

∂xa
, (20)

where ψ and Va (a = 1, n ) are complex functions of t and �x. For extension of
symmetry, we again regard the functions Va as dependent variables. Note that the
requirement that the functions Va are complex is essential for symmetry of (20).

Let us investigate symmetry properties of (20) in the class of first-order differential
operators

X = ξµ∂xµ
+ η∂ψ + η∗∂ψ∗ + ρa∂Va

+ ρ∗a∂V ∗
a
,

where ξµ, η, η∗, ρa, ρ∗a are functions of t, �x, ψ, ψ∗, Va, V ∗
a .

Theorem 2. Equation (20) is invariant under the infinite-dimensional Lie algebra
with the infinitesimal operators

QA = 2A∂t + Ȧxc∂xc
− iÄxc

(
∂Vc

− ∂V ∗
c

) − Ȧ
(
Vc∂Vc

+ V ∗
c ∂V ∗

c

)
,

Qab = Eab
(
xa∂xb

− xb∂xa
+ Va∂Vb

− Vb∂Va
+ V ∗

a ∂V ∗
b
− V ∗

b ∂V ∗
a

) −
− iĖab

(
xa∂Vb

− xb∂Va
− xa∂V ∗

b
+ xb∂V ∗

a

)
,

Qa = Ua∂xc
− iU̇a

(
∂Va

− ∂V ∗
a

)
,

Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ , Z3 = ∂ψ, Z4 = ∂ψ∗ ,

(21)
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where A, Eab, Ua are arbitrary smooth functions of t. We mean summation over the
index c and no summation over indices a and b.

This theorem is proved by analogy with the previous one.
Note that algebra (21) includes, as a particular case, the Galilei operator of the

form:

Ga = t∂xa
− i∂Va

+ i∂V ∗
a
. (22)

This operator generates the following finite transformations:

t′ = t, x′a = xa + βat, x′b = xb (b �= a),

ψ′ = ψ, ψ∗′
= ψ∗, V ′

a = Va − iβa, V ∗′
a = V ∗

a + iβa,

where βa is an arbitrary real parameter. Operator (22) is essentially different from
the standard Galilei operator (8) of the Schrödinger equation, and we cannot derive
operator (8) from algebra (21).

Consider now the system of equation (20) with the additional condition for the
potentials Va, namely, the complex Euler equation:

i
∂ψ

∂t
+ ∆ψ = Va

∂ψ

∂xa
,

i
∂Va
∂t

− Vb
∂Va
∂xb

= F (|ψ|) ∂ψ
∂xa

.

(23)

Here, ψ and Va are complex dependent variables of t and �x, F is an arbitrary functi-
on of |ψ|. The coefficients of the second equation of the system provide the broad
symmetry of this system.

Let us investigate the symmetry classification of system (23). Consider the followi-
ng five cases.

1. F is an arbitrary smooth function. The maximal invariance algebra is 〈P0, Pa,
Jab, Ga〉, where

P0 = ∂t, Pa = ∂xa
,

Jab = xa∂xb
− xb∂xa

+ Va∂Vb
− Vb∂Va

+ V ∗
a ∂V ∗

b
− V ∗

b ∂V ∗
a
,

Ga = t∂xa
− i∂Va

+ i∂V ∗
a
.

2. F = C|ψ|k, where C is an arbitrary complex constant, C �= 0, k is an arbitrary
real number, k �= 0 and k �= −1. The maximal invariance algebra is 〈P0, Pa, Jab, Ga,
D(1)〉, where

D(1) = 2t∂t + xc∂xc
− Vc∂Vc

− V ∗
c ∂V ∗

c
− 2

1 + k
(ψ∂ψ + ψ∗∂ψ∗).

3. F =
C

|ψ| , where C is an arbitrary complex constant, C �= 0. The maximal

invariance algebra is 〈P0, Pa, Jab, Ga, Z = Z1 + Z2〉, where

Z = ψ∂ψ + ψ∗∂ψ∗ , Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ .

4. F = C �= 0, where C is an arbitrary complex constant. The maximal invariance
algebra is 〈P0, Pa, Jab, Ga,D

(1), Z3, Z4〉, where

Z3 = ∂ψ, Z4 = ∂ψ∗ .
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5. F = 0. The maximal invariance algebra is 〈P0, Pa, Jab, Ga,D,A,Z1, Z2, Z3, Z4〉,
where

D = 2t∂t + xc∂xc
− Vc∂Vc

− V ∗
c ∂V ∗

c
,

A = t2∂t + txc∂xc
− (ixc + tVc)∂Vc

+ (ixc − tV ∗
c )∂V ∗

c
.

6 Contact transformations
Consider the two-dimensional Schrödinger equation

iψt + ψxx = V (t, x, ψ, ψx, ψt). (24)

We seek the infinitesimal operators of contact transformations in the class of the
first-order differential operators of the form [1, 9]

X = ξν(t, x, ψ, ψt, ψx)∂xν
+ η(t, x, ψ, ψt, ψx)∂ψ +

+ ζν(t, x, ψ, ψt, ψx)∂ψν
+ µ(t, x, ψ, ψt, ψx, V )∂V ,

(25)

where

ξν = −∂W
∂ψν

, η = W − ψν
∂W

∂ψν
, ζν =

∂W

∂xν
+ ψν

∂W

∂ψ
(26)

for a function W = W (t, x, ψ, ψx, ψt). The condition of invariance of equation (24)
under operators (25), (26) implies that the unknown function W has the form

W = F 1(t)ψt + F 2(t, x, ψ, ψx),

where F 1 and F 2 are arbitrary functions of their arguments.
Then

ξ0 = −F 1(t), ξ1 = −F 2
ψx

(t, x, ψ, ψx),

η = F 2 − ψxF
2
ψx
, ζ0 = F 1

t ψt + F 2
t + ψtF

2
ψ, ζ1 = F 2

x + ψxF
2
ψ,

µ = i(Wt + ψtWψ) +Wxx + 2Wxψψx −
− (iψt − V ) (Wxψx

+Wψ + ψxWψψx
) + (ψx)2Wψψ −

− (iψt − V ) (Wxψx
+ ψxWψψx

− (iψt − V )Wψxψx
) .

Thus, equation (24) is invariant under the infinite-dimensional group of contact trans-
formations with the infinitesimal operators:

QF 1 = −F 1∂t + F 1
t ψt∂ψt

+ iF 1
t ψt∂V ,

QF 2 = −F 2
ψx
∂x + (F 2 − ψxF

2
ψx

)∂ψ + (F 2
t + ψtF

2
ψ)∂ψt

+

+ (F 2
x + ψxF

2
ψ)∂ψx

+
{
iF 2
t + iψtF

2
ψ + F 2

xx + 2F 2
xψψx + (ψx)2F 2

ψψ −
− (iψt − V )(2F 2

xψx
+ 2ψxF 2

ψψx
+ F 2

ψ) + (iψt − V )2F 2
ψxψx

}
∂V ,

where F 1 = F 1(t) and F 2 = F 2(t, x, ψ, ψx) are arbitrary functions.
Consider the special case. Let F 1(t) = 1, F 2(t, x, ψ, ψx) = −(ψx)2. Then W =

ψt − (ψx)2. The operators of the contact transformations have the form

QF 1 = ∂t, QF 2 = 2ψx∂x + (ψx)2∂ψ − 2(iψt − V )2∂V . (27)
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The operator (27) generate the finite transformations:

x′ = 2ψxθ + x, t′ = t,

ψ′ = (ψx)2θ + ψ, ψ′
x = ψx, ψ′

t = ψt,

V ′ =
2iθ(V − iψt)ψt + V

2θ(V − iψt) + 1
.

(28)

Transformations (28) can be used for generating exact solutions of equation (24) from
the known solution and for constructing nonlocal ansatzes reducing the given equation
to the system of ordinary differential equations.
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