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Lowering of order and general solutions
of some classes of partial differential
equations
V.M. BOYKO, W.I. FUSHCHYCH

A procedure of lowering the order and construction of general solutions for some clas-
ses of partial differential equations (PDEs) are proposed. Some classes of general
solutions of some linear and nonlinear equations of mathematical physics are
constructed and a series of examples is presented.

The construction of the general solution of a definite partial differential equation
is in a number cases an unsolved problem. In what follows, we propose an algorithm
of lowering the order and constructing general solutions of specific partial differential
equations.

Consider the following partial differential equation

L(D[u]) + F (D[u]) = 0, (1)

where u = u(x), x = (x0, x1, . . . , xk); L is a first-order differential operator of the
form

L ≡ ai(x, u)∂xi
, i = 0, 1, . . . , k, (2)

and ai(x, u) are arbitrary smooth functions which are not identically equal to zero
simultaneously. D[u] is an n-order differential expression

D[u] = D
(
x, u, u(1), u(2), . . . , u(n)

)
, (3)

where u(m) is the collection of m-th order derivatives, m = 1, . . . , n, and F is an
arbitrary smooth function of D[u]. As a particular case, D[u] may depend only on x
and u. In this case we say that D[u] is of order zero. In general, (1) is an (n + 1)-th
order partial diffrential equation.

For equations of the type (1), we propose a method of lowering the order and
construction of solutions based on the local change of variables which reduces opera-
tors (2) to the operator of differentiation with respect to one of independent variables.

We introduce the change of variables

τ = f0(x, u), ωa = fa(x, u), a = 1, . . . , k, z = u, (4)

where z(τ, �ω) is a new dependent variable, �ω = (ω1, . . . , ωk).
We determine functions f0, fa from the conditions

L(f0) = 1, L(fa) = 0, a = 1, . . . , k, (5)
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and functions f1, . . . , fk and u must form a complete collection of functionally-in-
dependent invariant of operator (2). We choose f0 as a particular solution of the
equation Ly = 1.

Relations (5) determine the change of variables (4) such that operator L is reduced
to the operator of differentiation with respect to the variable τ , i.e.,

L ⇒ ∂τ . (6)

We obtain a new form of (3) in new variables (4) and rewrite the initial equation
(1) in the form

∂τ

(
D̃[z]

)
+ F

(
D̃[z]

)
= 0, (7)

where D̃[z] is D[u] in the new variables (4).
Relation (7) is the first order ordinary differential equation with respect to the

variable τ . We integrate it and obtain D̃[z]. Thus, when we solve (7), we obtain
an n-th order partial differential equation with respect to z(τ, �ω) with one arbitrary
function depending on �ω which is a “constant” of integration of Eq. (7).
Remark. This algorithm is also effective in the case where Eq. (1) has the form

L(D[u]) + F (D[u], f0, f1, . . . , fk) = 0. (8)

Here, functions f0, . . . , fk must satisfy relations (5). In this case, integrating the
corresponding ordinary differential equation (an analog of equation (7)) we regard
variables ωa as parameters.
Example 1. Consider the one-dimensional wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0. (9)

Equation (9) can be written in the form (1), namely:(
∂

∂t
− ∂

∂x

) (
∂u

∂t
+

∂u

∂x

)
= 0. (10)

After the change of variables

τ = t, ω = x + t, z = u,

Eq. (10) can be rewritten in the form

∂τ (zτ + 2zω) = 0.

We integrate this equation and obtain

zτ + 2zω = g(ω), (11)

Since g(ω) is arbitrary, we set g(ω) = 2h′(ω). Then characteristic system of for the
inhomogeneous quasi-linear Eq. (11) has the form

dτ

1
=

dω

2
=

dz

2h′(ω)
.
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We find the first integrals of the characteristic system and we get the following solution
of Eq. (11),

z − h(ω) = f(ω − 2τ), (12)

where h and f are arbitrary functions. Then we rewrite (12) in variables (t, x, u) and
get the following well-known general solutions of Eq. (9)

u = h(x + t) + f(x − t).

Example 2. Consider the following equation proposed in [3] for description of motion
of a liquid,

L(Lu) + λLu = 0, L ≡ ∂t + u∂x. (13)

This equation can be regards as a generalization of the one-dimensional Newton–Euler
equation (the equation of simple wave). In the explicit form, Eq. (13) has the form

∂2u

∂t2
+ 2u

∂2u

∂t∂x
+

∂u

∂t

∂u

∂x
+ u

(
∂u

∂x

)2

+ u2 ∂2u

∂x2
+ λ

(
∂u

∂t
+ u

∂u

∂x

)
= 0.

Since Eq. (13) belongs to the class of (1), the change of variables

τ = t, ω = x − ut, z = u,

allows us to write it as

∂τ

(
zτ

1 + τzω

)
+ λ

zτ

1 + τzω
= 0. (14)

Having integrated (14), e.g., for λ = 0, we obtain the parametric solution

z ±
∫

dω√
h(ω) + p

= ϕ(p), τ2 − h(ω) = p, (15)

where p is a parameter, h and ϕ are arbitrary functions.
Then we return to the initial variables and obtain a solution of Eq. (13). Below, we

give several classes of solutions of Eq. (13) with one arbitrary function [1] (The fact
that we have only one arbitrary function associated with the problem of integration
of system of type (15)).

1. L(Lu) = 0:

1.1 u ± ln(x − ut ∓ t) = ϕ
(
t2 − (x − ut)2

)
,

1.2 u +
t(x − ut)3

t2(x − ut)2 − 1
= ϕ

(
t2 − 1

(x − ut)2

)
,

1.3 u = ϕ

(
x − ut

exp (t2)

)
− x − ut

exp (t2)

∫
exp

(
t2

)
dt.

2. L(Lu) = a:

x − ut +
a

3
t3 +

C

2
t2 = ϕ

(
u − a

2
t2 − Ct

)
.
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3. L(Lu) + Lu = a

x − ut − C(t + 1) exp(−t) +
a

2
t2 = ϕ (u + C exp(−t) − at) .

Here, C = const, ϕ is arbitrary function.
Example 3. The equation

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
+ 2

∂2u

∂x∂y
= 0 (16)

can be written in the form (1) as follows:(
∂

∂t
− ∂

∂x
+

∂

∂y

)(
∂u

∂t
+

∂u

∂x
− ∂u

∂y

)
= 0.

Using the change of variables

τ = t, ω1 = t + x, ω2 = t − y, z = u,

and applying the algorithm described earlier, we obtain the following solution of
Eq. (16)

u = f(t + x, t − y) + g(t − x, t + y),

where f and g are arbitrary functions.
It is natural to generalize the described algorithm for equations of the form (1) to

the classes of partial differential equations of the form

Lm(D[u]) + bm−1L
m−1(Du) + · · · + b1L(D[u]) + b0 = 0, (17)

where

bj = bj(Du, f0, f1, . . . , fk), j = 0,m − 1; Lm = LLL · · ·LL︸ ︷︷ ︸
m

;

L, D[u], f0, f1, . . . , fk are determined according to the relations (2)–(6).
After the change of variables (4)–(6), the problem lowering the order of Eq. (17) is

reduced to the problem of integrating the m-th order ordinary differential equation.
Example 4. For

Dn(u) = 0, D ≡ xµ∂xµ
, µ = 0, . . . , k,

we use the change of variables

τ = lnx0, ωa =
xa

x0
, a = 1, k, z = u,

and we obtain the solution

u = Cn−1(ln x0)n−1 + Cn−2(ln x0)n−2 + · · · + C1 ln x0 + C0,

where Ci = Ci

(
x1

x0
; · · · ; xk

x0

)
, i = 0, n − 1.
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The obtained results can be easily generalized to the case of system of equations

L( �D[�u]) = �F
(
f0, f1, . . . , fk, �D[�u]

)
,

where �u = (u1(x), . . . , um(x)), x = (x0, x1, . . . , xk); L, f0, f1, . . . , fk are determined
according to relations (2), (4), (5) and (6). Here, u ≡ �u ; �D[�u] = (D1, . . . , Dm), where
Di = Di

(
x, �u, �u(1), �u(2), . . . , �u(n)

)
, i = 1, . . . , m, �u(i) is a collection of i-th order

derivatives for each component of the vector �u; and �F = (F 1, . . . , Fm). In particular,
the components of the vector �D[�u] can dependent only on x and �u.
Example 5. Consider the system of Euler equations

∂�v

∂x0
+ vk ∂�v

∂xk
= �0, (18)

where �v = (v1, v2, v3), vl = vl(x0, x1, x2, x3), l = 1, 2, 3.
The system (18) can be written as follows:(

∂0 + vk∂k

)
vl = 0, l = 1, 2, 3. (19)

After the change of variables

τ = x0,
ωa = xa − vax0, a = 1, 2, 3,
zl = vl, l = 1, 2, 3

the system (19) takes the form

∂τzl = 0, l = 1, 2, 3. (20)

Then we integrate Eq. (20), apply the inverse change of variables, and obtain a solution
of system (18) in an implicit form (compare this solutions with one from [2])

vl = gl(x1 − v1x0, x2 − v2x0, x3 − v3x0).

where gl are arbitrary functions.
Example 6. Consider the following system of equation for vector-potential Aµ,

Aν ∂Aµ

∂xν
= 0, µ = 0, . . . , 3. (21)

Assume that A0 �= 0. By the change of variables

τ =
x0

A0
,

ωa = xaA0 − x0A
a, a = 1, 2, 3,

Aµ = Aµ, µ = 0, 1, 2, 3

we obtain the following solutions of system (21)

Aµ = gµ(x1A
0 − x0A

1, x2A
0 − x0A

2, x3A
0 − x0A

3),

where gµ are arbitrary functions.
Consider a system of partial differential equations determined by the collection

of operators L1, . . . , Lr of the form (2) (u ≡ �u), and the number of operators must
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not exceed the number of independent variables, i.e., r ≤ k + 1. In other words,
consider the system of partial differential equations which consists of m equations of
the form (8), where L is one of the operators L1, . . . , Lr and D[u] ≡ �D[�u]. If these
operators form a commutative algebra Lie and the rank of the matrix consisting of the
coefficients of the operators L1, . . . , Lr is equal to r, then there exists a local change
of variables which transforms these operators to r operators of differentiation with
respect to r first independent variables. Thus, if the above conditions are satisfied for
a system, we can lower its order and in some cases construct its solutions (at least in
principle).
Example 7. Consider the system(

∂t + v∂x

)
u = 0,(

∂t + u∂x

)
v = 0,

(22)

where u = u(t, x), v = v(t, x), u �= v.
After the change of variables

τ =
x − ut

v − u
, ω =

x − vt

u − v
, U = u, V = v (23)

the system (22) takes the simple form

∂τU = 0,
∂ωV = 0.

(24)

Integrating (24) and performing the change of variable inverse to (23), we obtain
a solution of (22) in the form

u = f

(
x − vt

u − v

)
, v = g

(
x − ut

v − u

)
,

where f and g are arbitrary functions.
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