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On the classification of subalgebras
of the conformal algebra with respect
to inner automorphisms
L.F. BARANNYK, P. BASARAB-HORWATH, W.I. FUSHCHYCH

We give a complete justification of the classification of inequivalent subalgebras of the
conformal algebra with respect to the inner automorphisms of the conformal group,
and we perform the classification of the subalgebras of the conformal algebra AC(1, 3).

1 Introduction

The necessity of classifying the subalgebras of the conformal algebra is motivated by
many problems in mathematics and mathematical physics [1, 2]. The conformal algeb-
ra AC(1, n) of Minkowski space R1,n contains the extended Poincaré algebra AP̃ (1, n)
and the full Galilei algebra AG4(n − 1) (also known as the optical algebra). The
classification of the subalgebras of the conformal algebra AC(l, n) is almost reducible
to the classification of the subalgebras of the algebras AP̃ (1, n) and AG4(n− 1).

Patera, Winternitz and Zassenhaus [1] have given a general method for the classi-
fication of the subalgebras of inhomogeneous transformations. Using this method, the
classification of the subalgebras AP (1, n), AP̃ (1, n), and AG4(n− 1) was carried out
in Refs. [1–9] for n = 2, 3, 4. In Refs. [7–11], this general method was supplemented by
many structural results which made possible the algorithmization of the classification
of the subalgebras of the Euclidean, Galilean, and Poincaré algebras for spaces of arbi-
trary dimensions. Indeed, this was done in Refs. [9] and [10], where the subalgebras
of AC(1, n) were classified up to conjugation under the conformal group C(1, n) for
n = 2, 3, 4.

In order to perform the symmetry reduction of differential equations, it is necessary
to identify the subalgebras of the symmetry algebra (of the equation) which give
the same systems of basic invariants. This observation has led to the introduction
in Ref. [12] of the concept of I-maximal subalgebras: a subalgebra F is said to be
I-maximal if it contains every subalgebra of the symmetry algebra with the same
invariants as F . In Ref. [13], all I-maximal subalgebras of AC(1, 4), classified up to
C(1, 4)-conjugation, were found in the representation defined on the solutions of the
eikonal equation. Using these subalgebras, reductions of the eikonal and Hamilton–
Jacobi equations to differential equations of lower order were obtained in Refs. [9]
and [12]. We note that the list of I-maximal subalgebras for a given algebra can differ
according to the equation being investigated.

In the above works, the question of the connection between conjugation of the
subalgebras of the algebra AP̃ (1, n) under the group P̃ (1, n) (or the group AdAP̃ (1, n)
of inner automorphisms of the algebra AP̃ (1, n)) and the conjugacy of these subal-
gebras under the group C(1, n) was not dealt with. This, and the same problem for

J. Math. Phys., 1998, 39, № 9, P. 4899–4922.



On the classification of subalgebras of the conformal algebra 221

subalgebras of the Galilei algebra AG4(n−1), is the problem we address in the present
article.

Since the group analysis of differential equations is of a local nature, we concentrate
on conjugacy of the subalgebras under the group of inner automorphisms of the
algebra AC(1, n). Going over to conjugacy under C(1, n) is not complicated, and
requires only a further identification of the subalgebras under the action of at most
three discrete symmetries. The results of this paper allow us to obtain a full classifi-
cation of the subalgebras of AC(1, n) for low values of n. On the basis of these results,
we give at the end of this paper a classification of the algebra AC(1, 3) with respect
to its group of inner automorphisms. The list of subalgebras obtained in this way can
be used for the symmetry reduction of any system of differential equations which are
invariant under AC(1, 3).

2 Maximal subalgebras of the conformal algebra

We denote by AdL the group of inner automorphisms of the Lie algebra L. Unless
otherwise stated, conjugacy of subalgebras of L means conjugacy with respect to the
group AdL. We consider AdL1 as a subgroup of AdL2 whenever L1 is a subalgebra
of L2. The connected identity component of a Lie group H is denoted by H1.

Let R1,n (n ≥ 2), be Minkowski space with metric gαβ , where (gαβ) = diag [1,−1,
. . . ,−1] and α, β = 0, 1, . . . , n. The transformation defined by the equations

xα = xα(y0, y1, . . . , yn), α = 0, 1, . . . , n

of a domain U ⊂ R1,n into R1,n, is said to be conformal if

∂xµ

∂yα

∂xν

∂yβ
gµν = λ(x)gαβ ,

where λ(x) �= 0 and x = (x0, x1, . . . , xn). The conformal transformations of R1,n

form a Lie group, the conformal group C(1, n). The Lie algebra AC(1, n) of the group
C(1, n) has as its basis the generators of pseudorotations Jαβ , the translations Pα, the
nonlinear conformal translations Kα, and the dilatations D, where α, β = 0, 1, . . . , n.
These generators satisfy the following commutation relations:

[Jαβ , Jγδ] = gαδJβγ + gβγJαδ − gαγJβδ − gβδJαγ ,

[Pα, Jβγ ] = gαβPγ − gαγPβ , [Pα, Pβ ] = 0, [Kα, Jβγ ] = gαβKγ − gαγKβ ,

[Kα,Kβ ] = 0, [D,Pα] = Pα, [D,Kα] = −Kα, [D,Jαβ ] = 0,
[Kα, Pβ ] = 2(gαβD − Jαβ).

(1)

The pseudo-orthogonal group O(2, n+1) is the multiplicative group of all (n+3)×
(n+3) real matrices C satisfying CtE2,n+1C = E2,n+1, where E2,n+1 = diag [1, 1,−1,
. . . ,−1]. We denote by Iab the (n+ 3)× (n+ 3) matrix whose entries are zero except
for 1 in the (a, b) position, with a, b = 1, 2, . . . , n+ 3. The Lie algebra AO(2, n+ 1) of
O(2, n+ 1) has as its basis the following operators:

Ω12 = I12 − I21, Ωab = −Iab + Iba (a < b; a, b = 3, . . . , n+ 3),
Ωia = −Iia − Iai (i = 1, 2; a = 3, . . . , n+ 3),
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which satisfy the commutation relations

[Ωab,Ωcd] = ρadΩbc + ρbcΩad − ρacΩbd − ρbdΩac (a, b, c, d = 1, 2, . . . , n+ 3),

where (ρab) = E2,n+1. Let us denote by R2,n+1 the pseudo-Euclidean space of n + 3
dimensions with metric ρab. The matrices of the group O(2, n + 1) and the algebra
AO(2, n+1) will be identified with operators acting on the left on R2,n+1. Then, with
this convention, O(2, n+ 1) is the group of isometries of R2,n+1.

It is known (see for instance Ref. [9]) that there is a homomorphism Ψ : O(2, n+
1) → C(1, n) with kernel {±En+3}, where {En+3} is the unit (n+3)× (n+3) matrix.
Thus we are able to identify O(2, n+ 1) with C(1, n). This homomorphism of groups
induces an isomorphism f of the corresponding Lie algebras, f : AO((2, n + 1) →
AC(1, n), which is given by

f(Ωα+2,β+2) = Jαβ , f(Ω1,α+2 − Ωα+2,n+3) = Pα,

f(Ω1,α+2 + Ωα+2,n+3) = Kα, f(Ω1,n+3) = −D (α, β = 0, 1, . . . , n).

We shall in this article identify the two algebras, using this isomorphism, so that we
can write the previous equations as

Ωα+2,β+2 = Jαβ , Ω1,α+2 − Ωα+2,n+3 = Pα,

Ω1,α+2 + Ωα+2,n+3 = Kα, Ω1,n+3 = −D (α < β; α, β = 0, 1, . . . , n).

We shall use the matrix realization of the conformal algebra.
Each matrix C which belongs to the identity component O1(2, n+ 1) of the group

O(2, n+ 1) is a product of matrices which are rotations in the x1x2 and xaxb planes
(a < b; a, b = 3, . . . , n + 3) and hyperbolic rotations in the xixa planes (i = 1, 2;
a = 3, . . . , n + 3). Thus each such matrix C can be given as a finite product of
matrices of the form expX, where X ∈ AO(2, n+ 1). From this, it follows that each
inner automorphism of the algebra AO(2, n+ 1) is a mapping

ϕC : Y → CY C−1, (2)

where Y ∈ AO(2, n + 1) and C ∈ O1(2, n + 1), and conversely each mapping of this
type is an inner automorphism of the algebra AO(2, n+ 1).

In the process of our investigation mappings of the above type (2) will occur for
certain matrices C ∈ O(2, n + 1), so we call these types of mappings O(2, n + 1)-
automorphisms of the algebra AO(2, n+ 1) corresponding to the matrix C.

If G is the group of O(2, n + 1)-automorphisms of the algebra AO(2, n + 1), and
H is the subgroup of G consisting of its inner automorphisms, then H is normal in
G and [G : H] ≤ 4. Representatives of the cosets of G/H different from the identity
will be

C1 = diag [−1, 1, . . . , 1,−1], C2 = diag [1, 1,−1, 1 . . . , 1],
C3 = diag [−1, 1,−1, 1, . . . , 1,−1],

(3)

or

C1 = diag [−1, 1, . . . , 1,−1, 1], C2 = diag [1, 1,−1, 1 . . . , 1],
C3 = diag [1,−1,−1, 1, . . . , 1,−1, 1].

(4)
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Given a subspace V of R2,n+1, there is a maximal subalgebra of AO(2, n + 1)
which leaves V invariant. We call this algebra the normalizer in AO(2, n + 1) of the
subspace V .

Let Q1, . . . , Qn+3 be a system of unit vectors in R2,n+1. Then the normalizer in
AO(2, n+ 1) of the isotropic subspace 〈Q1 +Qn+3〉 is the extended Poincaré algebra

AP̃ (1, n) = 〈P0, P1, . . . , Pn〉 	 (AO(1, n) ⊕ 〈D〉),
where 	 denotes semidirect sum, and ⊕ denotes direct sum of algebras; AO(1, n) =
〈Jα,β : α, β = 0, 1, . . . , n〉. The normalizer in AO(2, n+ 1) of the completely isotropic
subspace 〈Q1 +Qn+3, Q2 +Qn+2〉 is the ful1 Galilei algebra

AG4(n− 1) = 〈M,P1, . . . , Pn−1, G1, . . . , Gn−1〉 	 (AO(n− 1)⊕〈R,S, T 〉⊕〈Z〉),
where

M = P0 + Pn, Ga = J0a − Jan (a = 1, . . . , n− 1), R = −(J0n +D),

S =
1
2
(K0 +Kn), T =

1
2
(P0 − Pn), Z = J0n −D.

The generators of the algebra AG4(n− 1) satisfy the following commutation rela-
tions:

[Jab, Jcd] = gadJbc + gbcJad − gacJbd − gbdJac, [Ga, Jbc] = gabGc − gacGb,

[Pa, Jbc] = gabPc − gacPb, [Ga, Gb] = 0, [Pa, Gb] = δabM, [Ga,M ] = 0,
[Pa,M ] = 0, [Jab,M ] = 0, [R,S] = 2S, [R, T ] = −2T, [T, S] = R,

[Z,R] = [Z, S] = [Z, T ] = [Z, Jab] = 0, [R,Ga] = Ga, [R,Pa] = −Pa,

[R,M ] = 0, [R, Jab] = 0, [S,Ga] = 0, [S, Pa] = −Ga, [S,M ] = 0,
[S, Jab] = 0, [T,Ga] = Pa, [T, Pa] = 0, [T,M ] = 0, [T, Jab] = 0,
[Z,Ga] = −Ga, [Z,Pa] = −Pa, [Z,M ] = −2M,

with a, b, c, d = 1, . . . , n− 1.
From these commutation relations we find that

〈R,S, T 〉 = ASL(2,R), 〈R,S, T 〉 ⊕ 〈Z〉 = AGL(2,R),

where R denotes the field of real numbers.
Let F be a reducible subalgebra of AO(2, n + 1). That is, there exists in R2,n+1

a nontrivial subspace W which is invariant under F . If W is isotropic, then there
exists a totally isotropic subspace W0 ⊂W which is invariant under F . Since dimW0

is 1 or 2, then, by Witt’s theorem [14] there exists an isometry C ∈ O(2, n+ 1) such
that CW0 is either 〈Q1 + Qn+3〉 or 〈Q1 + Qn+3, Q2 + Qn+2〉. Taking into account
that the matrices (3) do not change these subspaces and represent all the components
of the group O(2, n + 1) different from the identity component O1(2, n + 1), then
we may assume that the above C lies in O1(2, n + 1), the identity component. Thus
there exists an inner automorphism ϕ of the algebra AO(2, n + 1) such that either
ϕ(F ) ⊂ AP̃ (1, n) or ϕ(F ) ⊂ AG4(n− 1).

If W is a nondegenerate subspace, then, by Witt’s theorem, it is isometric with
one of the following subspaces: R1,k (k ≥ 2), R2,k (k ≥ 1), Rk (k ≥ 1). Each of the
isometrics (3) leaves invariant each of these subspaces, so that we may assume that the
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isometry which mapsW onto one of these subspaces belongs to O1(2, n+1). From this,
it follows that a subalgebra F is conjugate under the group of inner automorphisms
of the algebra AO(2, n+ 1) to a subalgebra of one of the following algebras:

(1) AO′(1, k) ⊕AO′′(1, n− k + 1),
where AO′(1, k) = 〈Ωab : a, b = 1, 3, . . . , k + 2〉 and
AO′′(1, n− k + 1) = 〈Ωab : a, b = 2, k + 3, . . . , n+ 3〉 with n ≥ 3
and k = 2, . . . , [(n+ 1)/2];

(2) AO(2, k) ⊕AO(n− k + 1), where
AO(n− k + 1) = 〈Ωab : a, b = k + 3, . . . , n+ 3〉 with k = 0, 1, . . . , n.

In order to classify the subalgebras of these direct sums it is necessary to know
the irreducible subalgebras of algebras of the type AO(1,m) (m ≥ 2) and AO(2,m)
(m ≥ 3). It has been shown in Ref. [15] that AO(1,m) has no irreducible subalgebras
different from AO(1,m). In Refs. [16] and [17] it has been shown that every semisimple
irreducible subalgebra of AO(2,m) (m ≥ 3) can be mapped by an automorphism of
this algebra onto one of the following algebras:

(1) AO(2,m);
(2) ASU(1, (m/2)] when m is even;

(3) 〈Ω12 +
√

3Ω13 + Ω25,−Ω15 + Ω24 −
√

3Ω23,Ω12 − 2Ω45〉 when m = 3.

It follows then that when m > 3 is odd, the algebra AO(2,m) has no irreducible
subalgebras other than AO(2,m). If m = 2k and k ≥ 2, then, up to inner automor-
phisms, AO(2,m) has two nontrivial maximal irreducible subalgebras: ASU(l, k) ⊕
〈Y 〉, and ASU(l, k)′ ⊕ 〈Y ′〉, where

Y = diag [J, . . . , J ], Y ′ = diag [J,−J, J . . . , J ]

with

J =
(

0 −1
1 0

)
.

We note that a subalgebra L of AG4(n−1) is conjugate under AdAO(2, n+1) with
a subalgebra the algebra AP̃ (1, n) if and only if the projection of L onto AGL(2,R) =
〈R,S, T 〉 ⊕ 〈Z〉 is conjugate under AdAGL(2,R) with a subalgebra of the algebra
〈R, T, Z〉.

3 Conjugacy under Ad AP (1, n) of subalgebras
of the Poincaré algebra AP (1, n)

The Poincaré group P (1, n) is the multiplicative group of matrices(
∆ Y
0 1

)
,
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where ∆ ∈ O(1, n) and Y ∈ Rn+1. Let I ′ab, a, b = 0, 1, . . . , n+1 be the (n+2)×(n+2)
matrix whose entries are all zero except for the ab-entry, which is unity. Then a basis
for AP (1, n) is given by the matrices

J0a = −I ′0a − I ′0a, Jab = −I ′ab + I ′ba, P0 = I ′0,n+1, Pa = I ′a,n+1,

with a < b; a, b = 1, . . . , n. These basis elements obey the commutation relations (1).
It is sometimes useful in calculations to identify elements of AO(1, n) with matrices
of the form

X =




0 β01 β02 · · · β0n

β01 0 β12 · · · β1n

β02 −β12 0 · · · β2n

· · · · ·
β0n −β1n −β2n · · · 0




and elements of the space U = 〈P0, . . . , Pn〉 are represented by n + 1-dimensional
columns Y . In this case, we take

P0 =




1
0
...
0


 , P1 =




0
1
...
0


 , . . . , Pn =




0
0
...
1




and with this notation it is easy to see that [X,Y ] = XY . We endow the space U
with the metric of the pseudo-Euclidean space R1,n, so that the inner product of two
vectors


x0

x1

...
xn


 ,




y0
y1
...
yn




is x0y0 − x1y1 − · · · − xnyn. The projection of AP (1, n) onto AO(1, n) is denoted
by ε̂. We also note that AO(n), contained in AO(1, n), is generated by Jab (a < b;
a, b = 1, . . . , n).

Let B be a Lie subalgebra of the algebra AO(1, n) which has no invariant isotropic
subspaces in R1,n. Then B is conjugate under AdAO(1, n) to a subalgebra of AO(n)
or to AO(1, k) ⊕ C, where k ≥ 2 and C is a subalgebra of the orthogonal algebra
AO′(n− k) generated by the matrices Jab (a, b = k + 1, . . . , n). In the first case, B is
not conjugate to any subalgebra of AO(n− 1).
Proposition 1. Let B be a subalgebra of AO(n) which is not conjugate to a subalgebra
of AO(n− 1). If L is a subalgebra of AP (1, n) and ε̂(L) = B, then L is conjugate to
an algebra W 	C, where W is a subalgebra of 〈P1, . . . , Pn〉, and C is a subalgebra of
B ⊕ 〈P0〉. Two subalgebras W1 	 C1 and W2 	 C2 of this type are conjugate to each
other under AdAP (1, n) if and only if they are conjugate under AdAO(n).
Proof. The algebra B is a completely reducible algebra of linear transformations of
the space U and annuls only the subspace 〈P0〉 (other than the null subspace itself).
Thus, by Theorem 1.5.3 [9], the algebra L is conjugate to an algebra of the form
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W 	C where W ⊂ 〈P1, . . . Pn〉 and C ⊂ B⊕〈P0〉. Now let W1	C1, and W2	C2 be of
this form, conjugate under AdAP (1, n). Then there exists a matrix Γ ∈ P1(1, n) such
that ϕΓ(W1 	 C1) = W2 	 C2, and from this it follows that ϕΛ(B1) = B2 for some
Λ ∈ O1(1, n). Let V = 〈P1, . . . , Pn〉. Since [B1, V ] = V , then [B2, ϕΛ(V )] = ϕΛ(V )
and ϕΛ(V ) = V . Thus we can assume that Λ = diag [1,Λ1] where Λ1 ∈ SO(n), so
that the given algebras are conjugate under AdAO(n). The converse is obvious.
Proposition 2. Let B = AO(1, k) ⊕ C, where k ≥ 2 and C ⊂ AO′(n − k). If L
is a subalgebra of AP (1, n) and ε̂(L) = B then L is conjugate to L1 ⊕ L2 where
L1 = AO(1, k) or L1 = AP (1, k), and L2 is a subalgebra of the Euclidean algebra
AE′(n − k) with basis Pa, Jab (a, b = k + 1, . . . , n). Two subalgebras of this form,
L1 ⊕L2 and L′

1 ⊕L′
2 are conjugate under AdAP (1, n) if and only if L1 = L′

1 and L2

is conjugate to L′
2 under the group of E′(n− k)-automorphisms.

Proof. The proof is as in the proof of Proposition 1.
Lemma 1. If C ∈ O(1, n) and C(P0 + Pn) = λ(P0 + Pn) then λ �= 0 and

C =




1 + λ2(1 + v2)
2λ

λvtB
−1 + λ2(1 − v2)

2λ
v B −v

−1 + λ2(1 + v2)
2λ

λvtB
1 + λ2(1 − v2)

2λ


 , (5)

where B ∈ B(n−1), v is an (n−1)-dimensional column vector, v2 is the scalar square
of v and vt is the transpose of v. Conversely, every matrix C of this form satisfies
C(P0 + Pn) = λ(P0 + Pn).
Proof. Proof is by direct calculation.
Lemma 2. Let C ∈ O(1, n) have the form (5), with λ > 0. Then

C = diag [1, B, 1] exp[(− lnλ)J0n] exp(−β1G1 − · · · − βn−1Gn−1),

where Ga = J0a − Jan and


β1

...
βn−1


 = B−1v.

Proof. Direct calculation gives us

exp(−θJ0n) =


 cosh θ 0 sinh θ

0 En−1 0
sinh θ 0 cosh θ




and

exp(−β1G1 − · · · − βn−1Gn−1) =




1 +
b2

2
bt b2

2
b En−1 −b

b2

2
bt 1 − b2

2


 ,
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where b = (β1, . . . , βn−1)t. On putting λ exp θ we have

cosh θ =
λ2 + 1

2λ
, sinh θ =

λ2 − 1
2λ

.

Since we have


λ2 + 1
2λ

0
λ2 − 1

2λ
0 En−1 0

λ2 − 1
2λ

0
λ2 + 1

2λ







1 +
b2

2
bt b2

2
b En−1 −b

b2

2
bt 1 − b2

2


 =

=




1 + λ2(1 + b2)
2λ

λbt −1 + λ2(1 − b2)
2λ

b En−1 −b

−1 + λ2(1 + b2)
2λ

λbt 1 + λ2(1 − b2)
2λ


 ,

then

exp(−θJ0n) exp(−β1G1 − · · · − βn−1Gn−1) = diag [1, β−1, 1]C

from which it follows directly that

C = diag [1, B, 1] exp[(− lnλ)J0n] exp(−β1G1 − · · · − βn−1Gn−1)

and the lemma is proved.
The set of F of matrices of the form (5) with λ > 0 is a group under multiplication.

The mapping

C →
(
λB λv
0 1

)

is an isomorphism of the group F onto the extended Euclidean group Ẽ(n− 1). Thus
we shall mean the group F when talking of the extended Euclidean group, and the
connected identity component Ẽ1(n− 1) will be identified with the group of matrices
of the form (5) with λ > 0 and B sinSO(n − 1). From Lemma 2 it follows that the
Lie algebra AF of the group F is generated by the basis elements Jab, Ga, J0n (a < b;
a, b = 1, . . . , n− 1).
Lemma 3. If C ∈ O1(1, n) and C(P0 + Pn) = λ(P0 + Pn) then λ > 0 and B ∈
SO(n− 1) in (5).
Proof. Since

1 + λ2(1 + v2)
2λ

> 0,

then we have λ > 0. From Lemma 2, diag [1, B, 1] ∈ O1(1, n), so that detB > 0. Thus
B ∈ SO(n− 1) and the lemma is proved.
Lemma 4. If C ∈ O(1, n) and ±C �∈ Ẽ(n − 1) then C = ±A1C

′A2 where A1, A2 ∈
Ẽ(n− 1) and C ′ = diag [1, . . . , 1,−1].
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Proof. We can choose a matrix Λ ∈ O(n−1) so that ΛC(P0+Pn) = αP0+βP1+γPn

where α2 − β2 − γ2 = 0. If β �= 0 then α− γ �= 0. Let θ = β/(α− γ). Then,

exp(θG1)(αP0 + βP1 + γPn) =
α− γ

2
(P0 − Pn)

and so there exists a matrix Γ ∈ Ẽ(n − 1) such that ΓC(P0 + Pn) = λ(P0 + Pn) or
ΓC(P0 + Pn) = λ(P0 − Pn). In the first case, ±ΓC ∈ Ẽ(n− 1), so that then we have
±C ∈ Ẽ(n−1), which is impossible. In the second case, C ′ΓC(P0 +Pn) = λ(P0 +Pn).
For λ > 0 we find C ′ΓC ∈ Ẽ(n− 1). Put C ′ΓC = A2, Γ = A−1

1 . Then C = A1C
′A2.

If λ < 0 then we put −C ′ΓC = A2, in which case C = −A1C
′A2, and the lemma is

proved.
Lemma 5. If C ∈ O1(1, n) and C �∈ Ẽ1(n − 1), then C = D1QD2, where D1,D2 ∈
Ẽ1(n− 1), and Q = diag [1,−1, 1, . . . , 1,−1].
Proof. If ±C ∈ Ẽ(n − 1), then C(P0 + Pn) = γ(P0 + Pn). By Lemma 3, γ > 0 and
C ∈ Ẽ1(n−1), which contradicts the assumption. Thus, ±C �∈ Ẽ(n−1). By Lemma 4,
C = ±A1C

′A2. From this it follows that C = D1ΓD2, where D1,D2 ∈ Ẽ1(n−1), and
F is one of the matrices ±C ′, ±Q. However, Γ ∈ O1(1, n), since Γ = D−1

1 CD−1
2 , find

from this it follows that Γ = Q. The Lemma is proved.
Direct calculation shows that the normalizer of the space 〈P0 + Pn〉 in AO(1, n)

is generated by the matrices Ga, Jab, J0n (a, b = 1, . . . , n − 1), which satisfy the
commutation relations

[Ga, Jbc] = gabGc − gacGb, [Ga, Gb] = 0, [Ga, J0n] = Ga.

This means that the normalizer of the space 〈P0 +Pn〉 in the algebra AO(1, n) is the
extended Euclidean algebra

AẼ(n− 1) = 〈G1, . . . , Gn−1〉 	 (AO(n− 1) ⊕ 〈J0n〉)
in an (n−1)-dimensional space, where the generators of translations are G1, . . . , Gn−1

and the generator of dilatations is the matrix J0n.
Let K be a subalgebra of AP (1, n) such that its projection onto AO(1, n) has an

invariant isotropic subspace in Minkowski space R1,n. The subalgebra K is conjugate
under AdAP (1, n) with a subalgebra of the algebra A = AG1(n − 1) 	 〈J0n〉 where
AG1(n−1) is the usual Galilei algebra with basis M , T , Pa, Ga, Jab (a, b = 1, . . . , n−
1), and M = P0 + Pn, T = 1

2 (P0 − Pn).
Proposition 3. Let L1 and L2 be subalgebras of A, with L1 not conjugate under
AdA to any subalgebra having zero projection onto 〈G1, . . . , Gn−1〉. If ϕ(L1) = L2

for some ϕ ∈ AdAP (1, n), then there exists an inner automorphism ψ of the algebra
A with ψ(L1) = L2.
Proof. Since AdA contains automorphisms which correspond to matrices of the form

exp

(
n∑

γ=

aγPγ

)
(6)

and since P (1, n) is a semidirect product of the group of matrices of the form (6)
and the group O(1, n) of matrices of the form diag [∆, 1], then we may assume that
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ϕ = ϕC with C ∈ O1(1, n). If C �∈ Ẽ1(n− 1), then by Lemma 5, C = D1QD2. In that
case we find that

(D1QD2)ε̂(L1)(D−1
2 QD−1

1 ) = ε̂(L2),

whence

Q(D2ε̂(L1)D−1
2 )Q = D−1

1 ε̂(L2)D1. (7)

However,

QGaQ = Q(J0a − Jan)Q =

{
J0a + Jan, when a �= 1,
−(J01 + J1n), when a = 1.

This means that QGaQ �∈ A. Because of this, the left-hand side of (7) does not belong
to A, whereas the right-hand side of (7) is a subalgebra of A. This then implies that
we must have C ∈ Ẽ1(n− 1) and thus we have ψ(L1) = L2 for some ψ ∈ AdA.
Proposition 4. Let Ã be a Lie algebra with basis P0, Pa, Pn, Jab, J0n (a, b =
1, . . . , n− 1) and let L1, L2 be subalgebras of Ã such that at least one of them has a
nonzero projection onto 〈J0n〉. If ϕ(L1) = L2 for some ϕ ∈ AdAP (1, n), then there
exists an inner automorphism ψ ∈ Ã so that either ψ(L1) = L2 or ψ(L1) = ϕQ(L2)
where Q = diag [1,−1, 1, . . . , 1,−1].
Proof. As in the proof of Proposition 3, we may assume that ϕ = ϕC where C ∈
O1(1, n). We shall also assume that the projection of L1 onto 〈J0n〉 is nonzero. If
C ∈ Ẽ1(n − 1) and C �∈ Õ1(n − 1) then the projection of the algebra ϕ(L1) onto
〈G1, . . . , Gn−1〉 is nonzero, and hence the projection of L2 onto 〈G1, . . . , Gn−1〉 is
nonzero, which contradicts the assumptions of the proposition. Thus, if C ∈ Ẽ1(n−1)
then ϕ ∈ Ad Ã.

Let C �∈ Ẽ1(n − 1). By Lemma 5, C = D1QD2 where D1,D2 ∈ Ẽ1(n − 1). Then
ϕ(L1) = L2 can be written as

ϕQ(σD2(L1)] = ϕD−1
1

(L2).

If D2 �∈ Õ1(n−1) then the projection of ϕD2(L1) onto 〈G1, . . . , Gn−1〉 is nonzero and
hence ϕQ[ϕD2(L1)] does not belong to A. But then ϕD−1

1
(L2) is also not in A. This is

a contradiction. Thus D1,D2 ∈ Õ1(n− 1). From this it follows that ϕQ(ψ(L1)) = L2

where ψ = ϕD is an inner automorphism of the algebra Ã. This proves the proposition.
Proposition 5. Suppose 2 ≤ m ≤ n− 1. Let F be a subalgebra of the algebra AO(m)
which is not conjugate under AdAO(m) to a subalgebra of AO(m− 1), and let L be
a subalgebra of 〈P0, P1, . . . , Pn〉 	 F such that ε̂(L) = F . Then L is conjugate to an
algebra W 	K, where W is a subalgebra of 〈P1, . . . , Pm〉 and K is a subalgebra of F ⊕
〈P0, Pm+1, . . . , Pn〉. Two subalgebras W1 	K1 and W2 	K2 of this type are conjugate
under AdAP (1, n) if and only if there exists an automorphism ψ ∈ AdAO(m) ×
AdAO(1, n−m) such that ψ(W1 	K1) = W2 	K2 or ψ(W1 	K1) = Q(W2 	K2)Q
where

AO(1, n−m) = 〈Jαβ : α, β = 0,m+ 1, . . . , n〉
and Q = diag [1,−1, 1, . . . , 1,−1].
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4 Conjugacy of subalgebras of the extended Poincaré
algebra AP̃ (1, n) under Ad AC(1, n)

Lemma 6. If C ∈ O(2, n+ 1) and C(Q1 +Qn+3) = λ(Q1 +Qn+3) then λ �= 0 and

C =




1 + λ2(1 − v2)
2λ

−λvtE1,nB
−1 + λ2(1 + v2)

2λ
v B −v

−1 + λ2(1 − v2)
2λ

−λvtE1,nB
1 + λ2(1 + v2)

2λ


 , (8)

where B ∈ O(1, n), E1,n = diag [1,−1, . . . ,−1], v is an (n + 1) × 1 matrix and v2

is its scalar square in R1,n. Conversely, every matrix C of the form (8) satisfies the
condition C(Q1 +Qn+3) = λ(Q1 +Qn+3).
Proof. Direct calculation.
Lemma 7. Let C ∈ O(2, n+ 1) have the form (8), with λ > 0. Then

C = diag [1, B, 1] exp[(lnλ)D] exp(−β0P0 − β1P1 − · · · − βnPn),

where


β0

β1

...
βn


 = B−1v.

Proof. The proof of Lemma 7 is similar to that of Lemma 2.
The mapping

f : C →
(
λB λv
0 1

)

is a homomorphism of the group of matrices (8) onto the extended Poincaré group
P̃ (1, n). The kernel of this homomorphism is the group of order two, {−En+3, En+3}.
Let us denote by H the set of matrices of the form (8) with λ > 0. Then f is an
isomorphism of H onto P̃ (1, n). For this reason we shall, in the remainder of this
article, mean the group H when referring to P̃ (1, n). Its Lie algebra is the extended
Poincaré algebra AP̃ (1, n) given in Section 2.
Lemma 8. Let C ∈ O1(2, n + 1) and let it be of the form (8) with λ > 0. Then
B ∈ B1(1, n).
Remark 1. Note that when λ < 0 it is possible that B does not belong to O1(2, n+1).
Lemma 9. If C ∈ O1(2, n+ 1) and ±C �∈ P̃ (1, n) then either C = ±A1QA2 or C =
A1F (θ)A2, where A1, A2 ∈ P̃ (1, n), Q = diag [1, . . . , 1−1] and F (θ) = exp[(θ/2)(K0+
P0 +Kn − Pn)].
Proof. There exists a matrix ΛP̃ (1, n) such that

ΛC(Q1 +Qn+3) = α1Q1 + α2Q2 + α3Qn+2 + α4Qn+3,
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where α2
1 + α2

2 − α2
3 − α2

4 = 0 and α2α3 ≥ 0. If α1 �= α4 then, as in the proof of
Lemma 4, we obtain that

exp(β0P0 + βnPn)ΛC(Q1 +Qn+3) = γ(Q1 ±Qn+3)

for some real numbers β0, βn, γ. From this it follows that

Γ exp(β0P0 + βnPn)ΛC(Q1 +Qn+3) = λ(Q1 +Qn+3),

where λ > 0 and Γ = ±En+3 or Γ = ±Q. By Lemma 6 and Lemma 7, we obtain

Γ exp(β0P0 + βnPn)ΛC = Λ̃, Λ̃ ∈ P̃ (1, n).

Since ±C �∈ P̃ (1, n), then Γ = ±Q, and so C = ±A1QA2, where A1 = Λ−1 exp(−β0P0

−βnPn), A2 = Λ̃.
If α1 = α4, then also α2 = α3. It is easy to verify that

F (θ)ΛC(Q1 +Qn+3) = (α1 cos θ + α2 sin θ)(Q1 +Qn+3) +
+ (α2 cos θ − α1 sin θ)(Q2 +Qn+2).

If α1 = 0 then we put θ = (π/2), when α2 > 0 and θ = −(π/2), when α2 < 0. If
α1 �= 0 then we let α2 cos θ − α1 sin θ = 0. In that case,

tan θ =
α2

α1
, α1 cos θ + α2 sin θ = α1 cos θ(1 + tan2 θ).

We choose the value of θ so that α1 cos θ > 0. With this choice of θ we have

F (θ)ΛC(Q1 +Qn+3) = λ(Q1 +Qn+3),

where λ > 0. But then, as a result of Lemma 6 and Lemma 7, F (θ)ΛC = Λ̃, Λ̃ ∈
P̃ (1, n), and so C = A1F (−θ)A2, where A1 = Λ−1, A2 = Λ̃. The result is proved.
Lemma 10. Let L1 and L2 be subalgebras of AP̃ (1, n) which are not conjugate under
AP̃ (1, n) to subalgebras of AÕ(1, n) = AO(1, n) ⊕ 〈D〉. Then L1, L2 are conjugate
under AdAC(1, n) if and only if they are conjugate under AdAP̃ (1, n) or if one of
the following conditions holds:

(1) n is an odd number and there exists an automorphism ψ ∈ AdAP̃ (1, n) with
ψ(L1) = C2L2C

−1
2 (see Eq. (3) for notation);

(2) there exist automorphisms ψ1, ψ2 ∈ AP̃ (1, n) with

ψ1(L1) = F (θ)[ψ2(L2)]F (−θ).
Proof. Let CL1C

−1 = L2 for some C ∈ O1(2, n+ 1). By Lemma 9, we may assume
that ±C ∈ P̃ (1, n) or that C is one of the matrices ±A1QA2, A1F (θ)A2 (we use the
notation of Lemma 9) . If C ∈ P̃ (1, n) then, by Lemma 8, C belongs to the identity
component of the group P̃ (1, n) and thus ϕC is an inner automorphism of the algebra
AP̃ (1, n). Now suppose −C ∈ P̃ (1, n). Then by Lemma 7, C = −diag [1, B, 1], where
B ∈ O(1, n) and ∆ ∈ P̃1(1, n). Thus we may assume that C = −diag [1, B, 1]. From
this it follows that B ∈ O1(1, n) for odd n and we have

diag [1, 1,−1, 1, . . . , 1, 1]B ∈ O1(1, n)
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For even n this means that the algebras L1, L2 are conjugate to each other under
AdAP̃ (1, n) or that there exists an automorphism ψ ∈ AdAP̃ (1, n) such that ψ(L1) =
C2L2C

−1
2 .

Let C = ±A1QA2. Then C = Γ1∆Γ2 with Γ1,Γ2 ∈ P̃ (1, n) and ∆ = ±diag [1, ε1, 1,
. . . , 1, ε2,−1] with ε1, ε2 ∈ {−1, 1}. Clearly, ∆ ∈ O1(2, n + 1). When C = A1Q2 we
have ε1 = 1, ε2 = −1 and when C = −A1QA2, ε1 = 1, ε2 = (−1)n. Since

∆Pn∆−1 = ±Kn, ∆Pα∆−1 = ±Kα

with α < n, then from Γ−1
1 L2Γ1 = ∆(Γ2L1Γ−1

2 )∆−1 it follows that the algebra
Γ−1

1 L2Γ1 has a nonzero projection onto 〈K0,K1, . . . ,Kn〉, which is impossible. Thus
the matrix C is different from ±A1QA2.

Now let C = A1F (θ)A2. If Γ is one of the matrices (4), then ΓF (θ)Γ−1 = F (±θ),
so that

C = A′
1F (θ)A′

2∆,

where A′
1, A

′
2 ∈ P̃ (1, n) and ∆ = E or ∆ is one of the matrices (4). Since ∆ can be

represented as a product of matrices in O1(2, n), then the last case is impossible, and
we have proved the Lemma.
Theorem 1. Let L1 and L2 be subalgebras of AP̃ (1, n) which are not conjugate under
AP̃ (1, n) to subalgebras of AÕ(1, n) and such that their projections onto AO(1, n)
have no invariant isotropic subspace in R1,n. The subalgebras L1 and L2 are conjugate
under AdAC(1, n) if and only if they are conjugate under AdAP̃ (1, n) or when there
exists an automorphism ψ ∈ AdAP̃ (1, n) such that ψ(L1) = C2L2C

−1
2 , where C2 =

diag [1, 1,−1, 1, . . . , 1].
Proof. By Lemma 10 we may assume that ψ1(L1) = F (θ)[ψ2(L2)]F (−θ) for some
ψ1, ψ2 ∈ AP̃ (1, n). Under the given assumptions, the projection of ψ2(L2) onto
AO(1, n) contains an element of the form

X =
n−1∑
b=1

(αbJ0b + γbJbn) +
n−1∑
b,c=1

σbcJbc,

where αq �= −γq for some q (1 ≤ q ≤ n− 1). Since

F (θ)J0qF (−θ) = J0q cos θ +
1
2
(Kq + Pq) sin θ

and

F (θ)JqnF (−θ) = Jnq cos θ +
1
2
(Kq − Pq) sin θ

we have that F (θ)XF (−θ) contains the term

F (θ)[αqJ0q + γqJqn]F (−θ) = (αqJ0q + γqJqn) cos θ +

+
1
2
[αq(Kq + Pq) + γq(Kq − Pq)] sin θ

and from this it follows that (αq + γq) sin θ = 0 so that sin θ = 0. But then θ = mπ.
When m = 2d we have F (θ) = En+3. When m = 2d + 1 then F (θ) = diag [−1,−1,
En−1,−1,−1]. However,

F (θ)[ψ2(L2)]F (−θ) = (−F (θ))[ψ2(L2)](−F (−θ))
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from which it follows that we may assume that ψ1(L1) = C[ψ2(L2)]C−1 where C =
diag [1, 1,−En−1, 1, 1]. If n is odd, then ϕC is an inner automorphism of AP̃ (1, n).
If n is even, then ϕC2ϕC is an inner automorphism of the algebra AP̃ (1, n). In the
first case, ψ3(L1) = L2 where ψ3 = ψ−1

2 ϕ−1
C ψ1 is an inner automorphism of the

algebra AP̃ (1, n). In the second case, ψ(L1) = ϕC2(L2) for some ψ ∈ AdAP̃ (1, n).
The theorem is proved.
Theorem 2. Let L1 and L2 be subalgebras of AÕ(1, n) having no invariant isotropic
subspaces in R1,n. The subalgebras L1, L2 are conjugate under AdAC(1, n) if and
only if they are conjugate under AdAÕ(1, n) or when there exists an automorphism
ψ ∈ AdAÕ(1, n) such that ψ(L1) = CL2C

−1 where C is one of the (n+ 3)× (n+ 3)
matrices

diag [1, 1,−1, 1, . . . , 1], diag [1, . . . , 1,−1], diag [1, . . . , 1,−1,−1].

We note that AÕ(1, n) ⊂ AO(2, n+ 1) and that the matrix C is (n+ 3)× (n+ 3).

5 Subalgebras of the full Galilei algebra
Lemma 11. Let C ∈ O(2, n + 1) and W = 〈Q1 + Qn+3, Q2 + Qn+2〉. If CW = W ,
then

C = exp[θ(S + T )] diag [1, ε,K, ε, 1] exp(αR+ βZ) ×

× exp

(
n−1∑
i=1

γiGi

)(
δM + λT +

n−1∑
i=1

µiPi

)
,

(9)

where ε = ±1, K ∈ O(n− 1).
Proof. We have

C(Q1 +Qn+3) = α1(Q1 +Qn+3) + α2(Q2 +Qn+2)

and so

F (−θ)C(Q1 +Qn+3) = (α1 cos θ − α2 sin θ)(Q1 +Qn+3) +
+ (α2 cos θ + α1 sin θ)(Q2 +Qn+2).

If α1 = 0 then we put θ = (3π/2) when α2 > 0 and θ = (π/2) when α2 < 0. If α1 �= 0
then we put α1 sin θ+α2 cos θ = 0 and then tan θ = −α2/α1 and α1 cos θ−α2 sin θ =
α1 cos θ(1 + tan2 θ). We choose θ so that α1 cos θ > 0. For this choice of θ we have
F (−θ)C(Q1 +Qn+3) = ξ(Q1 +Qn+3), where ξ > 0. Using Lemma 7, we obtain

F (−θ)C = A = diag [1, B, 1] exp([ln ξ]D) exp

(
−

n∑
i=0

βiPi

)
∈ P̃ (1, n),

where B ∈ O(1, n). Then C = F (θ)A. The matrix A has the form (8). Direct calcula-
tion gives

A(Q2 +Qn+2) = α(Q1 +Qn+3) + βQ2 + γQn+2 +
n+1∑
i=3

δiQi.
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From this it follows that

F (θ)A(Q2 +Qn+2) = (α cos θ + β sin θ)Q1 + (−α sin θ + β cos θ)Q2 +

+ (γ cos θ − α sin θ)Qn+2 + (γ sin θ + α cos θ)Qn+3 +
n+1∑
i=3

δiQi.

Now we have F (θ)A(Q2 +Qn+2) ∈W , from which we have

α cos θ + β sin θ = γ sin θ + α cos θ, −α sin θ + β cos θ = γ cos θ − α sin θ

and so we conclude that β = γ and δj = 0, j = 3, . . . , n+ 1. But in that case we have

diag [1, B, 1](Q2 +Qn+2) = β(Q2 +Qn+2).

By Lemma 2, we have

±B = diag [1,K, 1] exp[(− ln |β|)J0n] exp

(
n−1∑
i=1

γiGi

)
,

where K ∈ O(n− 1). We note that

K0 + P0 −Kn − Pn = 2(S + T ), J0n =
1
2
(Z −R), D = −1

2
(Z +R),

P0 =
1
2
(M + 2T ), Pn =

1
2
(M − 2T ), [D,Ga] = 0, [D,J0n] = 0.

The lemma is proved.
Lemma 12. Let C ∈ O1(2, n + 1) and W = 〈Q1 + Qn+3, Q2 + Qn+2〉. If CW = W
then the matrix C has the form (9) with ε = 1 and K ∈ SO(n− 1).
Proof. From the conditions of Lemma 1 1 and the fact that we ask for C ∈ O1(2, n+1),
it follows that diag [1, ε,K, ε, 1] ∈ O1(2, n+ 1). It follows now that ε > 0 and that∣∣∣∣ K 0

0 ε

∣∣∣∣ > 0

and thus we have ε = 1 and |K| > 0, whence K ∈ SO(n− 1). This proves the lemma.
The matrices of the form (9) with ε = 1 and K ∈ SO(n− 1) form a group under

multiplication, which we denote by G4(n − 1) since its Lie algebra is the full Galilei
algebra AG4(n− 1). It is easy to see that G4(n− 1) ⊂ O1(2, n+ 1).
Lemma 13. If C ∈ O1(2, n + 1) but C �∈ G4(n − 1), then C = A1ΓA2, where
A1, A2 ∈ G4(n− 1) and Γ is one of the matrices

Γ1 = diag [1, . . . , 1,−1], Γ2 = diag [1, 1,−1, 1, . . . , 1,−1, 1]. (10)

Proof. Let

C(Q1 +Qn+3) =
n+3∑
i=1

αiQi, α2
1 + α2

2 − α3
3 − · · · − α2

n+3 = 0.

There exists a matrix Λ = diag [1, 1,∆, 1, 1] with ∆ ∈ SO(n− 1) such that ΛC(Q1 +
Qn+3) does not contain Q4, . . . , Qn+1. Hence we may assume α2

1+α2
2−α2

n+2−α2
n+3 =

0.
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Since

S + T =
1
2
(K0 + P0 +Kn − Pn) = Ω12 + Ωn+2,n+3,

then, up to a factor exp[θ(S+T )], we may suppose that α1 �= 0, α2 = 0. If α2
1 = α2

n+3

then α3 = 0, αn+2 = 0. Assume α1 �= αn+3. As in the proof of Lemma 4, we find that

exp(β1P1 + β2P2)(α1Q1 + α3Q3 + αn+2Qn+2 + αn+3Qn+3) =
= α′

1Q1 + α′
n+3Qn+3,

where α′2
1 − α′2

n+3 = 0. Thus there exists a matrix A1 ∈ G4(n− 1) such that

A−1
1 C(Q1 +Qn+3) = γ(Q1 ±Qn+3),

A−1
1 C(Q2 +Qn+2) = δ1Q1 + δ2Q2 + δ3Q3 + δ4Qn+2 + δ5Qn+3.

(11)

Since the pseudo-orthogonal transformations preserve the scalar product, it follows
that the right-hand sides in (11) are also orthogonal, which implies that γ(δ1∓δ5) = 0
so that δ5 = ±δ1. If δ2 �= δ4 then multiplying the left- and right-hand sides in (11) by
exp(θG1) does not change the right-hand side of the first equality, and allows us to
eliminate δ3 by transforming it into 0. If δ2 = δ4, then one easily deduces that δ3 = 0.
Thus we may assume that δ3 = 0. But then we have δ4 = ±δ2 because δ5 = ±δ1 and
δ21 + δ22 − δ24 − δ25 = 0.

Let W = 〈Q1 + Qn+3, Q2 + Qn+2〉. The above reasoning implies that for some
matrixA1 ∈ G4(n−1) we have ΓA−1

1 CW = W where Γ is one of the matrices (10). The
fact that ΓA−1

1 C ∈ O1(2, n+ 1) implies, using Lemma 12, ΓA−1
1 C = A2 ∈ G4(n− 1).

Thus C = A1ΓA2 and the lemma is proved.
Lemma 14. The subalgebras L1 and L2 of AG4(n−1) are conjugate under AdAC(1, n)
if and only if they are conjugate under AdAG(n− 1) or if there exist automorphisms
ψ1, ψ2 in AdAG4(n− 1) with ψ1(L1) = Γ[ψ2(L2)]Γ−1, where Γ is one of the matri-
ces (10).
Proof. The result follows immediately from Lemma 13.

In the following table we give the action on the full Galilei algebra AG4(n− 1) of
the automorphisms where

C4 = exp
(π

2
(S + T )

)
, C5 = exp(π(S + T ))

(see (3) and (10) for the notation).
Theorem 3. Let L1 and L2 be subalgebras of AG4(n − 1) which are not conjugate
under AdAG4(n− 1) with subalgebras of

〈M,T, P1, . . . , Pn−1〉 	 (AO(n− 1) ⊕ 〈D,J0n〉
and

AO(n− 1) ⊕ 〈S + T,Z〉.
Then the subalgebras L1 and L2 are conjugate under AdAC(1, n) if and only if they
are conjugate under AdAG4(n− 1).
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Table 1. Action of automorphisms on elements of AG4(n − 1) for n ≥ 2.

Element of
AG4(n − 1)

ϕΓ1 ϕΓ2 ϕC1 ϕC4 ϕC5 Restrictions

P1 K1 −P1 −P1 −G1 −P1

Pa Ka Pa −Pa −Ga −Pa a = 2, . . . , n − 1
M K0 − Kn 2T −M M M
G1 J01 + J1n −(J01 + J1n) G1 P1 −G1

Ga J0a + Jan J0a + Jan Ga Pa −Ga a = 2, . . . , n − 1
J1a J1a −J1a J1a J1a J1a a = 2, . . . , n − 1
Jab Jab Jab Jab Jab Jab a, b = 2, . . . , n − 1
R −R Z R −R R
S T 1

2
(K0 − Kn) −S T S

T S 1
2
M −T S T

Z −Z R Z Z Z

Proof. If the subalgebras L1 and L2 are conjugate under AdAG4(n−1) then they are
conjugate under AdAC(1, n). Now suppose that they are conjugate under AdAC(1, n).
In order to prove their conjugacy under AdAG4(n− 1) it is sufficient (by Lemma 14)
to show that for an arbitrary ψ ∈ AdAG4(n − 1) and for each matrix Γ of the form
(10), the subalgebra Γψ(L1)Γ−1 either equals ψ(L1) or is not contained in AG4(n−1),
for then the only possibility is that they are conjugate under AdAG4(n− 1).

If the projection of ψ(L1) onto 〈G1, . . . , Gn−1〉 is nonzero, then, using Table 1, the
subalgebra Γψ(L1)Γ−1 contains an element Y whose projection for some a, 1 ≤ a ≤
n−1 onto 〈J0a, Jan〉 is of the form λ(J0a+Jan) with λ �= 0. If Γψ(L1)Γ−1 ⊂ AG4(n−1),
then the projection of Y onto 〈J0a, Jan〉 would have the form µ(J0a−Jan) which would
imply λ = µ = −µ = 0, an obvious contradiction.

Now let the projection of ψ(L1) onto 〈G1, . . . , Gn−1〉 be zero. Denote by τψ(L1)
the projection of ψ(L1) onto 〈R,S, T 〉. If τψ(L1) = 〈R,S, T 〉, then 〈R,S, T 〉 ⊂ ψ(L1).
From this it follows that Γ2ψ(L1)Γ−1

2 is not a subset of AG4(n−1). If we assume that
Γ1ψ(L1)Γ−1

1 ⊂ AG4(n − 1), we obtain, from Table 1, that the projection of ψ(L1)
onto 〈P1, . . . , Pn,M〉 is zero, and consequently we have either ψ(L1) = 〈R,S, T 〉 or
ψ(L1) = 〈R,S, T 〉 ⊕ 〈Z〉. In this case, Γ1ψ(L1)Γ−1

1 = ψ(L1). If τψ(L1) = 〈R +
αS, T +βS〉, with α �= 0, then Γ2ψ(L1)Γ−1

2 is not contained in AG4(n− 1). If we had
Γ1ψ(L1)Γ−1

1 ⊂ AG4(n− 1), then the projection of ψ(L1) onto 〈P1, . . . , Pn,M〉 would
be zero. But then ψ(L1) would be conjugate under AdAG4(n− 1) with a subalgebra
of AO(n − 1) ⊕ 〈R, T, Z〉, which contradicts the assumptions of the theorem. The
theorem is proved.
Theorem 4. Let L1 and L2 be subalgebras of the algebra

L = 〈M,T, P1, . . . , Pn−1〉 	 (AO(n− 1) ⊕ 〈D,J0n〉)
having nonzero projection on 〈J0n〉 and 〈D〉 and are not conjugate under AdL with
subalgebras of the algebra 〈M,T 〉 	 (AO(n − 1) ⊕ 〈D,J0n〉). Then L1 and L2 are
conjugate under AdAC(1, n) if and only if they are conjugate under AdL or if there
exists an automorphism ψ ∈ AdL such that ψ(L1) = ΛL2Λ−1 where Λ is one of the
matrices Γ2, C5, Γ2C5 (see Table 1).
Proof. If ψ ∈ AdAG4(n− 1), then ψ = ϕC where C is a matrix of the form (9). By
theorem IV.3.4 of Ref. [9], the subalgebra L1 is, up to an automorphism of AdAG4(n−
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1), one of the following algebras:

(1) (U1 + U2 + U3) 	 F, where U1 ⊂ 〈M〉, U2 ⊂ 〈T 〉, U3 ⊂ 〈P1, . . . , Pn−1〉
and F ⊂ AO(n− 1) ⊕ 〈D,J0n〉;

(2) (U1 + U2) 	 F, where U1 ⊂ 〈T 〉, U2 ⊂ 〈P1, . . . , Pn−1〉
and F is a subalgebra of AO(n− 1) ⊕ 〈R,M〉;

(3) (U1 + U2) 	 F, where U1 ⊂ 〈M〉, U2 ⊂ 〈P1, . . . , Pn−1〉
and F is a subalgebra of AO(n− 1) ⊕ 〈Z, T 〉.

By assumption, the projection of L1 onto 〈P1, . . . , Pn−1〉 is nonzero.
If ψ(L1) = L2, then in formula (9) θ = 0 or θ = π because for other values

of θ the projection of ψ(L1) onto 〈G1, . . . , Gn−1〉 is nonzero. For this reason, γ1 =
· · · = γn−1 = 0 and so ψ ∈ AdL or ϕC5ψ ∈ AdL. Let there be automorphisms
ψ1, ψ2 ∈ AdAG4(n−1) with Γψ1(L1)Γ = ψ2(L2) where Γ is one of the matrices (10).
If AdL did not contain ψ1 and ϕC5ψ1, then the projection of ψ1(L1) on 〈G1, . . . , Gn−1〉
would be nonzero, and so, by Table 1, ψ2(L2) would not be in AG4(n−1). Thus ψj or
ϕC5ψj belongs to AdL for each j = 1, 2. For Γ = Γ1 the projection of Γψ1(L1)Γ onto
〈K1, . . . ,Kn−1〉 is nonzero, so we have Γ = Γ2. In this case Γψ2(L2)Γ = ψ′

2(ΓL2Γ).
Using Lemma 14, the theorem is proved.

In a similar way, one proves the following results.
Theorem 5. Let B be a subalgebra of the algebra

N = 〈M,P1, . . . , Pn−1〉 	 (AO(n− 1) ⊕ 〈D,T 〉)
and let B have nonzero projection onto 〈D〉. Then B is conjugate under AdAC(1, n)
to the algebra

F = (W1 ⊕W2) 	 E, (12)

where E is a subalgebra of the algebra AO(n−1)⊕〈D〉, W1 ⊂ 〈P1, . . . , Pn−1〉 and W2

is one of the algebras 0, 〈P0〉, 〈Pn〉, 〈Pn〉, 〈P0, Pn〉. If W2 = 〈Pn〉, or W2 = 〈P0, Pn〉
then the subalgebra W1 	E is not conjugate under AdAO(n− 1) with any subalgebra
of 〈P1, . . . , Pn−2〉 	 (AO(n − 2) ⊕ 〈D〉). Subalgebras F1, F2 of the type (12) of the
algebra N with nonzero projection onto 〈D〉, which are not conjugate under AdN to
subalgebras of 〈M,T 〉 	 (AO(n − 1) ⊕ 〈D〉), will be conjugate under AC(1, n) if and
only if they are conjugate under AdL or when there exists an automorphism ψ ∈ AdL
with ψ(F1) = Γ2F2Γ−1

2 (see (10)), where L = AO(n− 1) (we consider AdAO(n− 1)
to be a subgroup of AdAC(1, n)).
Theorem 6. Let B be a subalgebra of the algebra

N = 〈M,P1, . . . , Pn−1〉 	 (AO(n− 1) ⊕ 〈J0n, T 〉)
and let B have nonzero projection onto 〈J0n〉. Then B is conjugate under AdAC(1, n)
with the algebra

F = W 	 E, (13)

where E is a subalgebra of the algebra 〈P1, . . . , Pn−1〉 	 (AO(n − 1) ⊕ 〈J0n〉) and W
is one of the algebras 0, 〈M〉, 〈P0, Pn〉. Let L = N 	 〈D〉. Subalgebras F1, F2 of the
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type (13) of the algebra N which are not conjugate under AdN with subalgebras of
the algebra 〈M〉 	 (AO(n− 1)⊕ 〈J0n, T 〉), will be conjugate under AdAC(1, n) if and
only if they are conjugate under AdL or if there exists an automorphism ψ ∈ AdL
with ψ(F1) = ΛF2Λ−1 where Λ is one of the matrices Γ2, C5, Γ2C5 (see Table 1).
Theorem 7. Let L1, L2 be subalgebras of the algebra L = 〈M,S+T,Z〉⊕AO(n− 1)
which have nonzero projection onto 〈S + T 〉. The algebras L1 and L2 are conjugate
under AdAC(1, n) if and only if they are conjugate under AdL or if there exists an
automorphism ψ ∈ AdL such that ψ(L1) = Γ1L2Γ−1

1 (see Table 1).

6 Subalgebras of AC(1, 3)

We recall that in this article the conformal algebra AC(1, 3) is realized as the pseudo-
orthogonal algebra AO(2, 4). It turns out that it is convenient to divide the subalgeb-
ras of AO(2, 4) into seven classes:

(1) subalgebras not having invariant isotropic subspaces in R2,4;

(2) subalgebras conjugate to subalgebras of AG1(2);

(3) subalgebras conjugate to subalgebras of AG1(2) 	 〈J03〉 and having nonzero
projection onto 〈J03〉;

(4) subalgebras conjugate to subalgebras of AP (1, 3) but not conjugate to subalgeb-
ras of AG1(2) 	 〈J03〉;

(5) subalgebras conjugate to subalgebras of AG1(2)	 〈J03,D〉 but not conjugate to
subalgebras of AG1(2) 	 〈J03〉;

(6) subalgebras conjugate to subalgebras of AP (1, 3) but not conjugate to subalgeb-
ras of AG1(2) 	 〈J03,D〉;

(7) subalgebras conjugate to subalgebras of AG4(2) but not conjugate to subalgeb-
ras of AP (1, 3).

Since subalgebras conjugate under AdAC(1, 3) are identified, we omit mentioning
conjugacy when referring to classes. So, for instance, we shall consider the second class
as consisting of subalgebras of AG1(2). In order to have a better survey of subalgebras
it is convenient to split the classes into subclasses corresponding to certain properties
of the projections of the subalgebras of a class onto the homogeneous part of the
algebra.

The division of the set of subalgebras of AC(1, 3) into the classes (1)–(7) allows
us easily to construct the set of subalgebras of each of the algebras AG1(2), AP (1, 3),
AP̃ (1, 3), AG4(2). Up to conjugacy under AdAC(1, 3) we have

(a) the set of subalgebras of AG1(2) coincides with class (2);

(b) the set of subalgebras of AP (1, 3) is the union of classes (2), (3) and (4);

(c) the set of subalgebras of AP̃ (1, 3) coincides with the union of classes (2)–(6);

(d) the set of subalgebras of AG4(2) is the union of classes (2), (3), (5), and (7).

We use the notation F : U1, . . . , Um for U1 	 F, . . . , Um 	 F .
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A. Subalgebras not possessing invariant isotropic subspaces
in R2,4

This class is divided into subclasses by the existence for the subalgebras of invariant
irreducible subspaces of a particular kind in the space R2,4.

1. Irreducible subalgebras of AO(2, 4)

AC(1, 3);
ASU(1, 2) = 〈P0 +K0 + 2J12, P0 +K0 +K3 − P3, P1 +K1 + 2J02,

P3 +K3 +K0 − P0,K2 − P2 + 2J13, P2 +K2 − 2J01,

D + J03,K1 − P1 − 2J23〉;
ASU ′(1, 2) = 〈P0 +K0 − 2J12, P0 +K0 +K3 − P3, P1 +K1 − 2J02,

P3 +K3 +K0 − P0,K2 − P2 − 2J13, P2 +K2 + 2J01,

D + J03,K1 − P1 + 2J23〉;
ASU(1, 2) ⊕ 〈P0 +K0 − 2J12 −K3 + P3〉;
ASU ′(1, 2) ⊕ 〈P0 +K0 + 2J12 −K3 + P3〉;
〈P0 +K0 − 2J12 −K3 + P3〉 ⊕ 〈P1 +K1 + 2J02, P3 +K3 +K0 − P0,

K2 − P2 + 2J13〉;
〈P0 +K0 + 2J12 −K3 + P3〉 ⊕ 〈P1 +K1 − 2J02, P3 +K3 +K0 − P0,

K2 − P2 − 2J13〉.
2. Irreducible subalgebras AO(1, 4)

AC(3).

3. Irreducible subalgebras of AO(2, 3)

AC(1, 2);

〈P2 +K2 +
√

3(P1 +K1) +K0 − P0,D + J02 −
√

3J01, P0 +K0 − 2(K2 − P2)〉;
〈P2 +K2 −

√
3(P1 +K1) +K0 − P0,D + J02 +

√
3J01, P0 +K0 − 2(K2 − P2)〉.

4. Subalgebras of AO(2, 2) ⊕ AO(2) with irreducible projection onto
AO(2, 2)

〈J01 −D,K0 − P0 − P1 −K1, P0 +K0 −K1 + P1〉 ⊕
⊕ 〈P0 +K0 +K1 − P1〉 ⊕ F, where F = 0 or F = 〈J23〉;

〈J01 +D,K0 − P0 + P1 +K1, P0 +K0 +K1 − P1〉 ⊕
⊕ 〈P0 +K0 −K1 + P1〉 ⊕ F, where F = 0 or F = 〈J23〉;

AC(1, 1), AC(1, 1) ⊕ 〈J23〉, where AC(1, 1) = 〈P0, P1,K0,K1, J01,D〉;
〈J01 −D,K0 − P0 − P1 −K1, P0 +K0 −K1 + P1〉 ⊕

⊕ 〈P0 +K0 +K1 − P1 + αJ23〉 (α �= 0);
〈J01 +D,K0 − P0 + P1 +K1, P0 +K0 +K1 − P1〉 ⊕

⊕ 〈P0 +K0 −K1 + P1 + αJ23〉 (α �= 0).

5. Subalgebras of the type AO(2, 1) ⊕ F with F ⊂ AO(3)

AC(1) ⊕ L, where AC(1) = 〈D,P0,K0〉,
and L is one of the algebras: 0, 〈J12〉, 〈J12, J13, J23〉.
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6. Subalgebras of AO(2) ⊕ AO(4) having an irreducible projection

〈P0 +K0〉; 〈P0 +K0〉 ⊕ 〈2J12 + α(K3 − P3)〉 (|α| ≤ 1);
〈P0 +K0〉 ⊕ 〈J12,K3 − P3〉; 〈P0 +K0〉 ⊕ 〈J12 + J13, J23〉;
〈P0 +K0〉 ⊕ 〈2J12 + ε(K3 − P3), 2J13 − ε(K2 − P2),

2J23 + ε(K1 − P1)〉 (ε = ±1);
〈P0 +K0〉 ⊕ 〈2J12 + ε(K3 − P3), 2J13 − ε(K2 − P2), 2J23 + ε(K1 − P1)〉 ⊕

⊕ 〈2J12 − ε(K3 − P3)〉 (ε = ±1);
〈P0 +K0〉 ⊕ 〈K1 − P1,K2 − P2,K3 − P3, J12, J13, J23〉;
〈P0 +K0 + 2αJ12〉 (α �= 0, |α| �= 1);
〈P0 +K0 + 2αJ12 + β(K3 − P3)〉 (α �= 0, |α| �= 1, β ≥ α, β �= 1);
〈2J12 + α(P0 +K0),K3 − P3 + β(P0 +K0)〉

(α �= 0, β ≥ 0, with |α| �= 1 when β = 0);
〈α(P0 +K0) + 2εJ12 −K3 + P3〉 ⊕ 〈2εJ12 +K3 − P3, 2εJ13 −K2 + P2,

2εJ23 +K1 − P1〉 (α ≥ 0);
〈2εJ12 +K3 − P3, 2εJ13 −K2 + P2, 2εJ23 +K1 − P1〉 (ε = ±1);
〈2εJ12 +K3 − P3, 2εJ13 −K2 + P2, 2εJ23 +K1 − P1〉 ⊕

⊕ 〈2εJ12 −K3 + P3〉 (ε = ±1);
〈K1 − P1,K2 − P2,K3 − P3, J12, J13, J23〉.

7. Subalgebras of AO(1, 2) ⊕ AO(1, 2)

〈P1 +K1, P2 +K2, J12〉 ⊕ 〈K0 − P0,K3 − P3, J03〉;
〈P1 +K1 + 2εJ03, P2 +K2 +K0 − P0, 2εJ12 +K3 − P3〉 (ε = ±1);
〈P1 +K1, P2 +K2, J12〉 ⊕ 〈K3 − P3〉.

B. Subalgebras of AG1(2)

The classical Galilei algebra AG1(2) is the semidirect sum of a solvable ideal, generated
by 〈P1, P2,M, T 〉, and the Euclidean algebra AE(2) = 〈G1, G2, J12〉. The projection
of AG1(2) onto AO(1, 3) coincides with AE(2), which has, up to inner automorphi-
sms, the subalgebras 0, 〈J12〉, 〈G1〉, 〈G1, G2〉, 〈G1, G2, J12〉. The first two subalgebras
are completely reducible algebras of linear transformations of Minkowski space R1,3,
whereas the others are not of this type. Thus we divide this class into two subclasses A
and B.

1. Subalgebras with completely reducible projection onto AO(1, 3)

0, 〈P0〉, 〈P1〉, 〈M〉, 〈P0, P3〉, 〈M,P1〉, 〈P1, P2〉, 〈M,P1, P2〉, 〈P0, P1, P2〉,
〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;

〈J12〉 : 0, 〈P0〉, 〈P3〉, 〈M〉, 〈P0, P3〉, 〈P1, P2〉, 〈P0, P1, P2〉, 〈M,P1, P2〉,
〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;

〈J12 + P0〉 : 0, 〈P3〉, 〈P1, P2〉, 〈P1, P2, P3〉;
〈J12 ± P3〉 : 0, 〈P0〉, 〈P1, P2〉, 〈P0, P1, P2〉;
〈J12 ± 2T 〉 : 0, 〈M〉, 〈P1, P2〉, 〈M,P1, P2〉.



On the classification of subalgebras of the conformal algebra 241

2. Subalgebras whose projection onto AO(1, 3) is not completely redu-
cible

〈G1〉 : 〈P2〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + αP2〉, 〈M,P1, P2〉,
〈P0, P1, P3〉, 〈P0, P1, P2, P3〉 (α �= 0);

〈G1 ± P2〉 : 0, 〈M〉, 〈M,P1〉, 〈P0, P1, P3〉;
〈G1 + 2T 〉 : 0, 〈P2〉, 〈M〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + αP2〉,

〈M,P1, P2〉 (α �= 0);
〈G1, G2〉 : 〈M,P1, P2〉, 〈P0, P1, P2, P3〉;
〈G1 + εP2, G2 − εP1,M〉, 〈G1 + εP2, G2 − εP1 + αP2,M〉 (ε = ±1, α �= 0);
〈G1 + αP2, G2 + 2T,M,P1〉 (α ∈ R);
〈G1 ± P2, G2,M, P1〉, 〈G1, G2 + 2T,M,P1, P2〉;
〈G1, G2, J12〉 : 〈M,P1, P2〉, 〈P0, P1, P2, P3〉;
〈G1, G2, J12 ± 2T,M,P1, P2〉, 〈G1 + εP2, G2 − εP1, J12,M〉 (ε = ±1).

C. Subalgebras of AG1(2) � 〈J03〉 with nonzero projection
onto 〈J03〉

We divide also this class into two subclasses which are distinguished by whether or
not they have a completely reducible projection onto AO(1, 3).

1. Subalgebras with completely reducible projection onto AO(1, 3)

〈J03〉 : 0, 〈P1〉, 〈M〉, 〈P0, P3〉, 〈M,P1〉, 〈P1, P2〉, 〈P0, P1, P3〉, 〈M,P1, P2〉,
〈P0, P1, P2, P3〉;

〈J03 + P1〉 : 0, 〈P2〉, 〈M〉, 〈P0, P3〉, 〈M,P2〉, 〈P1, P2, P3〉;
〈J12 + αJ03〉 : 0, 〈M〉, 〈P0, P3〉, 〈P1, P2〉, 〈M,P1, P2〉,

〈P0, P1, P2, P3〉, (α �= 0);
〈J12, J03〉 : 0, 〈M〉, 〈P0, P3〉, 〈P1, P2〉, 〈M,P1, P2〉, 〈P0, P1, P2, P3〉.

2. Subalgebras with projections onto AO(1, 3) which are not completely
reducible

〈G1, J03〉 : 0, 〈M〉, 〈P2〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + αP2〉, 〈M,P1, P2〉,
〈P0, P1, P3〉, 〈P0, P1, P2, P3〉 (α �= 0);

〈G1, J03 + P2〉 : 0, 〈M〉, 〈M,P1〉, 〈M,P1 + αP2〉, 〈P0, P1, P3〉, (α �= 0);
〈G1, J03 + P1〉 : 〈M〉, 〈M,P2〉;
〈G1, J03 + P1 + αP2,M〉 (α �= 0);
〈G1, G2, J03〉 : 0, 〈M〉, 〈M,P1〉, 〈M,P1, P2〉, 〈P0, P1, P2, P3〉;
〈G1, G2, J03 + P1,M〉, 〈G1, G2, J03 + P2,M, P1〉;
〈G1, G2, J12 + αJ03〉 : 0, 〈M〉, 〈M,P1, P2〉, 〈P0, P1, P2, P3〉 (α �= 0);
〈G1, G2, J12, J03〉 : 0, 〈M〉, 〈M,P1, P2〉, 〈P0, P1, P2, P3〉.
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D. Subalgebras of AP (1, 3) which are not conjugate
to subalgebras of AG1(2) � 〈J03〉

This class consists of those subalgebras of the Poincaré algebra AP (1, 3) whose projec-
tion onto AO(1, 3) do not possess isotropic invariant subspaces in R1,3. Since the
projections are simple algebras, then each subalgebra of the fourth class splits. The
full list of such algebras is

AO(1, 2) : 0, 〈P3〉, 〈P0, P1, P2〉, 〈P0, P1, P2, P3〉;
AO(3) : 0, 〈P0〉, 〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;
AO(1, 3) : 0, 〈P0, P1, P2, P3〉.

E. Subalgebras of AG1(2) � 〈J03, D〉 which are not conjugate
to subalgebras of AG1(2) � 〈J03〉

Let K be a subalgebra of AG1(2) 	 〈J03,D〉 with nonzero projection onto 〈D〉, and
let θ̂ be the projection of K onto 〈J03,D〉. By Propositions IV.2.3 and IV.2.5 in
Ref. [9], the algebra K, as a subalgebra of AP̃ (1, 3), is split whenever θ̂(K) is one of
the subalgebras 1) 〈D〉; 2) 〈γD − J03〉 (γ �= ±1, 0, 2); 3) 〈D,J03〉. This leads us to
dividing this class of subalgebras into two subclasses of nonsplittable subalgebras K of
AP̃ (1, 3), denoted by D and E, for which the projection onto 〈G1, G2〉 is non-zero, and
for which θ̂(K) is 〈J03±D〉 and 〈J03−2D〉 respectively. It is also useful to distinguish
the subclass A of subalgebras having zero projection onto 〈G1, G2〉. The subalgebras in
this subclass differ from the other subalgebras in that their projections onto AO(1, 3)
are completely reducible algebras of linear transformations of Minkowski space R1,3.
All the other subalgebras are split, and we divide them formally into subclasses B
and C, depending on the dimension of their projection onto 〈D,J03〉.

1. Subalgebras with zero projection on 〈G1, G2〉
〈D〉 : 〈P0〉, 〈P0, P3〉, 〈P0, P1, P2〉, 〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;
〈J12 + αD〉 : 〈P0〉, 〈P3〉 : 〈P0, P3〉, 〈P0, P1, P2〉, 〈P1, P2, P3〉,

〈P0, P1, P2, P3〉 (α > 0);
〈J12,D〉 : 〈P0〉, 〈P3〉 : 〈P0, P3〉, 〈P0, P1, P2〉, 〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;
〈J03 + αD〉 (0 < α ≤ 1);
〈J03 + αD,M〉 (0 < |α| ≤ 1);
〈J03 + αD〉 : 〈P1〉, 〈P0, P3〉, 〈P1, P2〉, 〈P0, P1, P3〉, 〈P0, P1, P2, P3〉 (α > 0);
〈J03 + αD〉 : 〈M,P1〉, 〈M,P1, P2〉, (α �= 0);
〈J03 −D ± 2T 〉 : 0, 〈P1〉, 〈M〉, 〈P1, P2〉, 〈M,P1〉, 〈M,P1, P2〉;
〈J03,D〉 : 0, 〈P1〉, 〈M〉, 〈P0, P3〉, 〈P1, P2〉, 〈M,P1〉, 〈M,P1, P2〉,

〈P0, P1, P3〉, 〈P0, P1, P2, P3〉;
〈εJ12 + αJ03 + βD〉 (0 < α ≤ β, ε = ±1);
〈J12 + αJ03 + βD,M〉 (0 < |α| ≤ |β|);
〈εJ12 + αJ03 + βD〉 : 〈P0, P3〉, 〈P1, P2〉, 〈P0, P1, P2, P3〉 (ε = ±1, α, β > 0);
〈J12 + αJ03 + βD,M,P1, P2〉 (α �= 0, β �= 0);
〈J12 + α(J03 −D ± 2T )〉 : 0, 〈M〉, 〈P1, P2〉, 〈M,P1, P2〉 (α �= 0);
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〈J12 + αJ03,D〉 : 0, 〈M〉, 〈P1, P2〉, 〈P0, P3〉, 〈M,P1, P2〉,
〈P0, P1, P2, P3〉 (α �= 0);

〈J03 + αD, J12 + βD〉 : 〈P0, P3〉, 〈P1, P2〉, 〈M,P1, P2〉,
〈P0, P1, P2, P3〉 (α2 + β2 �= 0);

〈J03 + αD, J12 + βD〉 : (|α| ≤ 1, β ≥ 0, |α| + β �= 0);
〈J03 + αD, J12 + βD,M〉 : (|α| ≤ 1, β ≥ 0, |α| + β �= 0);
〈J03 + αD, J12 + βD,M,P1, P2〉 : (α, β ∈ R, α2 + β2 �= 0);
〈J03 −D ± 2T, J12 + 2αT 〉 : 0, 〈M〉, 〈P1, P2〉, 〈M,P1, P2〉;
〈J03 −D,J12 ± T 〉 : 0, 〈M〉, 〈P1, P2〉, 〈M,P1, P2〉;
〈J03, J12,D〉 : 0, 〈M〉, 〈P0, P3〉, 〈P1, P2〉, 〈M,P1, P2〉, 〈P0, P1, P2, P3〉.

2. Subalgebras with two-dimensional projection onto 〈J03, D〉 and non-
zero projection onto 〈G1, G2〉

〈G1, J03,D〉 : 〈P2〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + αP2〉, 〈M,P1, P2〉,
〈P0, P1, P3〉, 〈P0, P1, P2, P3〉;

〈G1, G2, J03,D〉 : 〈M,P1, P2〉, 〈P0, P1, P2, P3〉;
〈G1, G2, J12 + αJ03,D〉 : 〈M,P1, P2〉, 〈P0, P1, P2, P3〉 (α �= 0);
〈G1, G2, J03 + αD, J12 + βD,P1, P2〉 (|α| ≤ 1, β ≥ 0, |α| + β �= 0);
〈G1, G2, J03 + αD, J12 + βD,P0, P1, P2, P3〉 (α2 + β2 �= 0);
〈G1, G2, J03, J12,D〉 : 〈M,P1, P2〉, 〈P0, P1, P2, P3〉.

3. Split subalgebras with one-dimensional projection onto 〈J03, D〉 and
nonzero projection onto 〈G1, G2〉

〈G1 +D〉 : 〈P0, P1, P3〉, 〈P0, P1, P2, P3〉;
〈G1,D〉 : 〈P0, P1, P3〉, 〈P0, P1, P2, P3〉;
〈G1 +D,G2, P0, P1, P2, P3〉, 〈G1, G2,D, P0, P1, P2, P3〉;
〈G1, J03 + αD〉 : 〈P2〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + βP2〉

(|α| ≤ 1, α �= 0, β �= 0);
〈G1, J03 + αD〉 : 〈M,P1, P2〉, 〈P0, P1, P3〉, 〈P0, P1, P2, P3〉 (α �= 0);
〈G1, G2, J03 + αD,M,P1, P2〉 (0 < |α| ≤ 1);
〈G1, G2, J03 + αD,P0, P1, P2, P3〉 (α �= 0);
〈G1, G2, J12 + αD,P0, P1, P2, P3〉 (α �= 0);
〈G1, G2, J12,D, P0, P1, P2, P3〉;
〈G1, G2, J12 + αJ03 + βD,M,P1, P2〉 (0 < |α| ≤ |β|);
〈G1, G2, J12 + αJ03 + βD,P0, P1, P2, P3〉 (β �= 0).

4. Nonsplit subalgebras of AG1(2) � 〈J03 ∓ D〉 with nonzero projection
onto 〈G1, G2〉 and 〈J03 ∓ D〉

〈J03 −D,G1 ± P2〉 : 0, 〈M〉, 〈M,P1〉, 〈P0, P1, P3〉;
〈J03 −D ± 2T,G1 + αP2,M, P1〉;
〈J03 −D ± 2T,G1,M, P1, P2〉, 〈J03 −D +M,G1, P2〉;
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〈J03 −D,G1 + εP2, G2 − εP1 + αP2,M〉 (ε = ±1, α ∈ R);
〈J03 −D,G1 ± P2, G2,M, P1〉, 〈J03 −D ± 2T,G1, G2, P1, P2,M〉;
〈J12 + α(J03 −D), G1 + εP2, G2 − εP1,M〉 (ε = ±1, α �= 0);
〈J12 + α(J03 −D ± 2T ), G1, G2,M, P1, P2〉 (α �= 0);
〈J12 ± 2T, J03 −D,G1, G2,M, P1, P2〉;
〈J12 + 2αT, J03 −D ± 2T,G1, G2,M, P1, P2〉 (α ∈ R);
〈J12, J03 −D,G1 + εP2, G2 − εP1,M〉 (ε = ±1).

5. Nonsplit subalgebras of AG1(2) � 〈J03 − 2D〉 with nonzero projection
onto 〈G1, G2〉 and 〈J03 − 2D〉

〈J03 − 2D,G1 + 2T 〉 : 0, 〈M〉, 〈P2〉, 〈M,P1〉, 〈M,P2〉, 〈M,P1 + αP2〉,
〈M,P1, P2〉 (α �= 0);

〈J03 − 2D,G1, G2 + 2T 〉 : 〈M,P1〉, 〈M,P1, P2〉.

F. Subalgebras of AP̃ (1, 3) not conjugate to subalgebras
of AP (1, 3) and of AG1(2) � 〈J03, D〉

This class consists of those subalgebras of AP (1, 3) whose projection onto AO(1, 3)
do not have invariant isotropic subspaces in R1,3 and with a nonzero projection onto
〈D〉. We have

AO(1, 2) ⊕ 〈D〉 : 0, 〈P3〉, 〈P0, P1, P2〉, 〈P0, P1, P2, P3〉;
AO(3) ⊕ 〈D〉 : 0, 〈P0〉, 〈P1, P2, P3〉, 〈P0, P1, P2, P3〉;
AO(1, 3) ⊕ 〈D〉 : 0, 〈P0, P1, P2, P3〉.

G. Subalgebras of AG4(2) which are not conjugate
to subalgebras of AP̃ (1, 3)

LetK be a subalgebra of AG4(2) and τ(K) its projection onto AGL(2,R). By Proposi-
tions V.2.1 and V.2.2 of Ref. [9], the algebra K belongs to this class if and only if
τ(K) is conjugate to one of the following algebras: 〈S + T 〉, 〈S + T 〉+ 〈Z〉 (subdirect
sum), ASL(2,R) = 〈R,S, T 〉, AGL(2,R) = 〈R,S, T, Z〉. Because of this, we divide
this seventh class into three subclasses, each of which consists of subalgebras having
a corresponding projection onto AGL(2,R); those sub-algebras whose projections are
either ASL(2,R) or AGL(2,R) are put into the same subclass.

1. Subalgebras whose projection onto AGL(2, R) is 〈S + T 〉
〈S + T 〉 : 0, 〈M〉, 〈G1, P1,M〉, 〈G1 − α−1P2, G2 + αP1,M〉,

〈G1, G2, P1, P2,M〉 (0 < |α| ≤ 1);
〈S + T ±M〉, 〈S + T + αJ12 ±M〉 (α �= 0);
〈S + T + αJ12〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉, 〈G1, G2, P1, P2,M〉

(ε = ±1, α �= 0);
〈S + T + εJ12〉 : 〈G1 + εP2〉, 〈G1 + εP2,M〉, 〈G1 + εP2, G1 − εP2,

G2 + εP1,M〉 (ε = ±1);
〈S + T + εJ12 ±M,G1 + εP2〉 (ε = ±1);
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〈S + T + εJ12 + εG1 + P2〉 : 0, 〈M〉, 〈G2 − εP1,M〉,
〈G1 − εP2, G2 + εP1,M〉, 〈G2 − εP1, G1 − εP2, G2 + εP1,M〉 (ε = ±1);

〈J12, S + T 〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉,
〈G1, G2, P1, P2,M〉 (ε = ±1);

〈J12 ±M,S + T + αM〉 (α ∈ R);
〈J12, S + T ±M〉.

2. Subalgebras whose projection onto AGL(2, R) is the subdirect sum
〈S + T 〉 + 〈Z〉

〈S + T + αZ〉 : 0, 〈M〉, 〈G1, P1,M〉, 〈G1 − β−1P2, G2 + βP1,M〉,
〈G1, G2, P1, P2,M〉 (0 < |β| ≤ 1, α �= 0);

〈S + T,Z〉 : 0, 〈M〉, 〈G1, P1,M〉, 〈G1 − α−1P2, G2 + αP1,M〉,
〈G1, G2, P1, P2,M〉 (0 < |α| ≤ 1);

〈S + T + αJ12 + βZ〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉,
〈G1, G2, P1, P2,M〉 (ε = ±1, α � −0, β > 0);

〈S + T + αJ12, Z〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉,
〈G1, G2, P1, P2,M〉 (ε = ±1, α �= 0);

〈S + T + εJ12 + αZ〉 : 〈G1 + εP2〉, 〈G1 + εP2,M〉,
〈G1 + εP2, G1 − εP2, G2 + εP1,M〉 (ε = ±1, α �= 0);

〈S + T + εJ12, Z〉 : 〈G1 + εP2〉, 〈G1 + εP2,M〉,
〈G1 + εP2, G1 − εP2, G2 + εP1,M〉 (ε = ±1);

〈J12 + αZ, S + T + βZ〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉,
〈G1, G2, P1, P2,M〉 (ε = ±1, |α| + |β| �= 0);

〈J12, S + T,Z〉 : 0, 〈M〉, 〈G1 + εP2, G2 − εP1,M〉,
〈G1, G2, P1, P2,M〉 (ε = ±1).

3. Subalgebras whose projection onto AGL(2, R) contains ASL(2, R)

〈R,S, T 〉 : 0, 〈M〉, 〈G1, P1,M〉, 〈G1, G2, P1, P2,M〉;
〈J12〉 ⊕ 〈R,S, T 〉 : 0, 〈M〉, 〈G1, G2, P1, P2,M〉;
〈J12 ±M〉 ⊕ 〈R,S, T 〉;
〈R,S, T, Z〉 : 0, 〈M〉, 〈G1, P1,M〉, 〈G1, G2, P1, P2,M〉;
〈R,S, T 〉 ⊕ 〈J12 + αZ〉 : 0, 〈M〉, 〈G1, G2, P1, P2,M〉 (α �= 0);
〈R,S, T 〉 ⊕ 〈J12, Z〉 : 0, 〈M〉, 〈G1, G2, P1, P2,M〉.
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