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Continuity equation in nonlinear quantum
mechanics and the Galilei relativity principle
W.I. FUSHCHYCH, V.M. BOYKO

Classes of the nonlinear Schrödinger-type equations compatible with the Galilei relati-
vity principle are described. Solutions of these equations satisfy the continuity equa-
tion.

The continuity equation is one of the most fundamental equations of quantum
mechanics

∂ρ

∂t
+ �∇ ·�j = 0. (1)

Depending on definition of ρ (density) and �j = (j1, . . . , jn) (current), we can construct
essentially different quantum mechanics with different equations of motion, which are
distinct from classical linear Schrödinger, Klein–Gordon–Fock, and Dirac equations.

In this paper we describe wide classes of the nonlinear Schrödinger-type equations
compatible with the Galilei relativity principle and their solutions satisfy the conti-
nuity equation.

1. At the beginning we study a symmetry of the continuity equation considering
(ρ,�j) as dependent variables related by (1).
Theorem 1. The invariance algebra of equation (1) is an infinite-dimensional algebra
with basis operators

X = ξµ(x)
∂

∂xµ
+
(
aµν(x)jν + bµ(x)

) ∂

∂jµ
, (2)

where j0 ≡ ρ; ξµ(x) are arbitrary smooth functions; x = (x0 = t, x1, x2, . . . , xn) ∈
R

n+1; aµν(x) = ∂ξµ

∂xν
− δµν

(
∂ξi

∂xi
+ C

)
; C = const, δµν is the Kronecker delta; µ, ν, i =

0, 1, . . . , n,
(
b0(x), b1(x), . . . , bn(x)

)
is an arbitrary solution of equation (1).

Here and below we imply summation over repeated indices.
Corollary 1. The generalized Galilei algebra [1]

AG2(1, n) = 〈Pµ, Jab, Ga,D(1), A〉 (3)

is a subalgebra of algebra (2).

Corollary 2. The conformal algebra [1]

AP2(1, n) = AC(1, n) = 〈Pµ, Jab, J0a,D(2),Kµ〉 (4)

is a subalgebra of algebra (2).
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We use the following designations in (3) and (4)

Pµ = ∂µ, Jab = xa∂b − xb∂a + ja∂jb − jb∂ja , (a < b)
Ga = x0∂a + ρ∂ja , J0a = xa∂0 + x0∂a + ja∂ρ + ρ∂ja ,

D(1) = 2x0∂0 + xa∂a − nρ∂ρ − (n + 1)ja∂ja , D(2) = xµ∂µ − nρ∂ρ − nja∂ja ,

A = x2
0∂0 + x0xa∂a − nx0ρ∂ρ + (xaρ − (n + 1)x0j

a)∂ja ,

Kµ = 2xµD(2) − xνxνgµi∂i − 2xνSµν , Sµν = gµij
ν∂ji − gνij

µ∂ji ,

gµν =


1, µ = ν = 0,

−1, µ = ν �= 0,
0, µ �= ν,

µ, ν, i = 0, 1 . . . , n; a, b = 1, 2, . . . , n.

Corollary 3. The continuity equation satisfies the Galilei relativity principle as well
as the Lorentz–Poincaré–Einstein relativity principle.

Thus, depending on the definition of ρ and �j, we come to different quantum
mechanics.

2. Let us consider the scalar complex–valued wave functions and define ρ and �j in
the following way

ρ = f(uu∗),

jk = −1
2
ig(uu∗)

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n.
(5)

where f , g, ϕ are arbitrary smooth functions, f �= const, g �= 0. Without loss of
generality, we assume that f ≡ uu∗.

Let us describe all functions g(uu∗), ϕ(uu∗) for continuity equation (1), (5) to be
compatible with the Galilei relativity principle, defined by the following transforma-
tions:

t → t′ = t, xa → x′
a = xa + vat.

Here we do not fix transformation rules for the wave function u.
Theorem 2. If ρ and �j are defined according to formula (5), then the continuity
equation (1) is Galilei-invariant iff

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
+

∂ϕ(uu∗)
∂xk

, k = 1, 2, . . . , n. (6)

The corresponding generators of Galilei transformations have the form

Ga = x0∂a + ixa (u∂u − u∗∂u∗) , a = 1, 2, . . . , n.

If in (6)

ϕ = λuu∗, λ = const, (7)

then the continuity equation (1), (6), (7) coincides with the Fokker–Planck equation

∂ρ

∂t
+ �∇ ·�j + λ∆ρ = 0, (8)
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where

ρ = uu∗, jk = −1
2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

)
, k = 1, 2, . . . , n. (9)

The continuity equation (1), (6), (7) was considered in [2, 6].
Let us investigate the symmetry of the nonlinear Schrödinger equation

iu0 +
1
2
∆u + i

∆ϕ(uu∗)
2uu∗ u = F

(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, (10)

where F is an arbitrary real smooth function.
For the solutions of equation (10), equation (1), (6) is satisfied and is compatible

with the Galilei relativity principle. Schrödinger equations in the form of (10), when
ϕ(uu∗) = λuu∗ for fixed function F , were considered in [1–8].

In terms of the phase and amplitude
(
u = R exp(iΘ)

)
, equation (10) has the form

R0 + RkΘk +
1
2
R∆Θ +

1
2R

∆ϕ = 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R + F
(
R2,

(
�∇(R2

))2
,∆R2

)
= 0.

(11)

Theorem 3. The maximal invariance algebras for system (11), if F = 0, are the
following:

1. 〈Pµ, Jab, Q,Ga,D〉 (12)

when ϕ is an arbitrary function;

2. 〈Pµ, Jab, Q,Ga,D, I, A〉 (13)

when ϕ = λR2, λ = const.
In (12) and (13) we use the following designations:

Pµ = ∂µ, Jab = xa∂xb
− xb∂xa

, a < b,

Ga = x0∂xa
+ ixa∂Θ, Q = ∂Θ, D = 2x0∂x0 + xa∂xa

, I = R∂R,

A = x2
0∂x0 + x0xa∂xa

− n

2
x0R∂R +

1
2
x2

a∂Θ,

µ = 0, 1, . . . , n; a, b = 1, 2, . . . , n.

(14)

Algebra (13) coincides with the invariance algebra of the linear Schrödinger equation.
Corollary 4. System (11), (7) is invariant with respect to algebra (13) if

F = R−1∆R N

(
R∆R

(�∇R)2

)
,

where N is an arbitrary real smooth function.
3. Let us consider a more general system than (10)

iu0 +
1
2
∆u = (F1 + iF2)u, (15)
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where F1, F2 are arbitrary real smooth functions,

Fm = Fm

(
uu∗, (�∇(uu∗))2,∆(uu∗)

)
u, m = 1, 2. (16)

The structure of functions F1, F2 may be described in form (16) by virtue of
conditions for system (15) to be Galilei-invariant.

In terms of the phase and amplitude, equation (15) has the form

R0 + RkΘk +
1
2
R∆Θ − RF2 = 0, Θ0 +

1
2
Θ2

k − 1
2R

∆R + F1 = 0, (17)

where Fm = Fm

(
R2,

(
�∇(R2

))2
,∆R2

)
, m = 1, 2.

Theorem 4. System (17) is invariant with respect to the generalized Galilei algebra
AG2(1, n) = 〈Pµ, Jab, Ga, Q, D̃, A〉 if it has the form

R0 + RkΘk +
1
2
R∆Θ − R1+4/n M

(
(�∇R)2

R2+4/n
;

∆R

R1+4/n

)
= 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R + R4/n N

(
(�∇R)2

R2+4/n
;

∆R

R1+4/n

)
= 0,

where N , M are arbitrary real smooth functions. The basis operators of the algebra
AG2(1, n) are defined by (14) and D̃ = D − n

2 I.
Theorem 5. System (17) is invariant with respect to algebra (13) if it has the form

R0 + RkΘk +
1
2
R∆Θ − ∆R M

(
R∆R

(�∇R)2

)
= 0,

Θ0 +
1
2
Θ2

k − 1
2R

∆R +
∆R

R
N

(
R∆R

(�∇R)2

)
= 0,

(18)

where N , M are arbitrary real smooth functions.
System (18) written in terms of the wave function has the form

iu0 +
1
2
∆u =

∆|u|
|u|

(
N

(
|u|∆|u|
(�∇|u|)2

)
+ iM

(
|u|∆|u|
(�∇|u|)2

))
u. (19)

Equation (19) is equivalent to the following equation

iu0 +
1
2
∆u =

∆(uu∗)
(uu∗)

(
Ñ

(
(uu∗)∆(uu∗)

(�∇(uu∗))2

)
+ iM̃

(
(uu∗)∆(uu∗)

(�∇(uu∗))2

))
u.

Thus, equation (18) admits an invariance algebra which coincides with the inva-
riance algebra of the linear Schrödinger equation with the arbitrary functions M , N .
Remark 1. With certain particular M and N the symmetry of system (18) can be
essentially extended. E.g., if in (18) N = 1

2 , then the second equation of the system
(equation for the phase) will be the Hamilton–Jacobi equation [5].

Let us consider some forms of the continuity equation (1) for equation (18).



Continuity equation in nonlinear quantum mechanics 141

Case 1. If M = 0, then for solutions of equation (18) equation (1) holds true,
where the density and current can be defined in the classical way (9).

Case 2. If ∆R M = −λ
(
∆R +

(�∇R)2

R

)
, then for solutions of equation (18), the

continuity equation (1), (6), (7) (or the Fokker–Planck equation (8), (9)) is valid.
Case 3. If M is arbitrary then for solutions of equation (18), the continuity equation

is valid, where the density and current can be defined by the conditions

ρ = uu∗, �∇ ·�j =
∂

∂xk

(
−1

2
i

(
∂u

∂xk
u∗ − u

∂u∗

∂xk

))
− 2|u|∆|u| M

(
|u|∆|u|
(�∇|u|)2

)
.

Thus, we constructed wide classes of the nonlinear Schrödinger-type equations
which is invariant with respect to algebra (13) (maximal invariance algebra of the
linear Schrödinger equation) and for whose solutions the continuity equation (1) is
valid.
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