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On a new conformal symmetry
for a complex scalar field
P. BASARAB-HORWATH, W.I. FUSHCHYCH, O.V. ROMAN

We exhibit a new nonlinear representation of the conformal algebra which is the
symmetry algebra of a nonlinear hyperbolic wave equation. The equation is the only
one of its type invariant under the conformal algebra in this nonlinear representation.
We also give a list of some nonlinear hyperbolic equations which are invariant under
the conformal algebra in the standard representation.

In this note we examine a nonlinear wave equation for a complex field, having the
following structure

�u = F (u, u∗,∇u,∇u∗,∇|u|∇|u|,�|u|)u, (1)

where u = u(x) = u(x0, x1, . . . , xn), ∇u = (ux0 , . . . , uxn
), ∇u∗ = (u∗

x0
, . . . , u∗

xn
),

∇|u|∇|u| = |u|µ|u|µ = gµν ∂|u|
∂xµ

∂|u|
∂xν , gµν = diag(1,−1, . . . ,−1), and we use the usual

summation convention. Here, F is an arbitrary real-valued function.
Examples of equations such as (1) can be found in the literature, the most common

being the nonlinear Klein–Gordon type [2, 3],

�u = F (|u|, |u|µ|u|µ)u. (2)

Another such equation is that proposed (independently of each other) by Guéret and
Vigier [9] and by Guerra and Pusterla [10],

�u =
�|u|
|u| u − m2c2

�2
u. (3)

This equation arose in the modelling of an equation for de Broglie’s theory of the
double solution [1]. Guéret and Vigier were able to show that a solution to this
problem, obtained by Mackinnon [11] satisfied Eq. (3). Guerra and Pusterla obtained
(3) as a relativistic version of a nonlinear Schrödinger equation they had found by
applying stochastic methods to quantum mechanics.

Eq. (3) is from our point of view (namely, the symmetry view) a remarkable
nonlinear equation, since it is invariant under the conformal algebra AC(1, n + 1) in
an unusual representation.

It is well-known (see, for instance, Refs. [3, 7]) that the free wave equation �u = 0
is invariant under the conformal group AC(1, n) with infinitesimal operators

Pµ =
∂

∂xµ
, Jµν = xµPν − xνPµ, (4)

D = xµPµ − n − 1
2

(u∂u + u∗∂u∗), Kµ = 2xµ − x2Pµ, (5)
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with x2 = xµxµ. The wave equation is also invariant under the operators

I = i(u∂u − u∗∂u∗), Q = u∂u + u∗∂u∗ ,

L1 = u∗∂u + u∂u∗ , L2 = i(u∗∂u − u∂u∗),

which are important in reducing the wave equation to the Schrödinger and heat equa-
tions (see Refs. [4, 5, 6]).

The conformal operators Kµ generate the finite conformal transformations

xµ → x′
µ =

xµ − x2cµ

1 − 2cαxα + c2x2
, (6)

u → u′ = (1 − 2cαxα + c2x2)(n−1)/2u, (7)

where cµ are parameters.
All equations of the form (2) invariant under the conformal group with infinitesimal

generators given in the representation (4), (5) were classified in Ref. [2]. In particular,
it was shown there that when the function F is independent of the derivatives of u,
then the equation is conformally invariant under (4), (5) if and only if

F (u) = λ|u|4/(n−1), (8)

where n ≥ 2 and λ is an arbitrary parameter. Thus, Eq. (1), when the right-hand
side does not depend on the derivatives of u, has the same conformal invariance as
the free wave equation if and only if F is given by (8).

An analysis of the proof of this statement shows that two things are fixed at the
outset: the independence of F of the derivatives; and the representation of the algebra
AC(1, n). One then sees that the following natural question arises: does there exist
a representation of AC(1, n) different from (4), (5)? That is, are there operators Kµ,
D which are not equivalent to those given in (5)? Our answer to this question is that
there exists such a representation.

To this end, we have calculated the Lie point symmetry algebra of the equation
(see, for instance, Ref. [12, 3])

�u =
�|u|
|u| u + λu, (9)

with λ an arbitrary parameter. It is evident that this equation is Poincaré invariant
with respect to the operators (4). On the other hand, it is definitely not invariant
under the conformal operators given in (5). However, this does not mean that it is
not at all conformally invariant, as we see from the following result.
Theorem 1. Eq. (9) with λ < 0 has maximal point-symmetry algebra AC(1, n+1)⊕Q
generated by operators

Pµ, Jµν , Pn+1, Jµn+1, D(1), K(1)
µ , K

(1)
n+1, Q,

where

Pµ =
∂

∂xµ
, Jµν = xµPν − xνPµ, Pn+1 =

∂

∂xn+1
= i(u∂u − u∗∂u∗),
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Jµn+1 = xµPn+1 − xn+1Pµ, D(1) = xµPµ + xn+1Pn+1 − n

2
(u∂u + u∗∂u∗),

K(1)
µ = 2xµD(1) − (xµxµ + xn+1x

n+1)Pµ,

K
(1)
n+1 = 2xn+1D

(1) − (xµxµ + xn+1x
n+1)Pn+1, Q = u∂u + u∗∂u∗ ,

where the additional variable xn+1 is defined as

xn+1 = −xn+1 =
i

2
√−λ

ln
u∗

u
, λ < 0.

For λ > 0 the maximal symmetry algebra of (9) is AC(2, n) ⊕ Q generated by the
same operators above, but with the additional variable

xn+1 = xn+1 =
i

2
√

λ
ln

u∗

u
, λ > 0.

Remark 1. In this theorem we have introduced a new metric tensor

gAB = diag (1,−1, . . . ,−1, gn+1 n+1)

with gn+1 n+1 = 1 when λ > 0 and gn+1 n+1 = −1 when λ < 0.
Direct verification shows that the above operators satisfy the commutation relati-

ons of the conformal algebra AC(1, n + 1) ⊕ Q when λ < 0 and AC(2, n) ⊕ Q when
λ > 0.

The meaning of the new operators Pn+1, Jµn+1, K
(1)
µ , K

(1)
n+1 is best understood

when Eq. (9) is rewritten in the amplitude-phase representation, namely, on putting
u = Reiθ with R and θ being real functions. Then equation (9) becomes the system

gµνθµθν = −λ, (10)

R�θ + 2gµνRµθν = 0. (11)

The symmetry algebra of Eq. (9) is actually obtained by first calculating the symmetry
algebra of the system (10), (11). Then we have, in the amplitude-phase representation

Pn+1 =
∂

∂θ
, Jµn+1 =

(
xµ

∂

∂θ

)
− θ

∂

xµ
, (12)

D(1) = xµ ∂

∂xµ
+ θ

∂

∂θ
− n

2
R

∂

∂R
, (13)

K(1)
µ = 2xµD(1) − (xµxµ + gn+1 n+1θ

2)
∂

∂xµ
, (14)

K
(1)
n+1 = 2gn+1 n+1θD

(1) − (xµxµ + gn+1 n+1θ
2)

∂

∂θ
. (15)

From the expressions (12)–(15), we see that the phase variable θ has been added to
the n+1-dimensional geometric space of the xµ. This is the same effect we see for the
eikonal equation [3], and it is not surprising, since the first equation of system (10),
(11) is indeed the eikonal equation for the phase function θ. What is novel here is that
equation (11), which is the equation of continuity, does not reduce the symmetry of
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equation (10). On using an appropriate ansatz (see Ref. [5]) for θ and A one can reduce
system (10), (11) to another system consisting of the Hamilton–Jacobi equation and
the non-relativistic continuity equation. This second system also exhibits surprising
symmetry properties [8]: it is again conformally invariant.

Let us remark that the operators D(1), K
(1)
µ , K

(1)
n+1 are a nonlinear representation

of the dilatation and conformal translation operators. They generate the following
finite transformations:

D(1) : xµ → x′
µ = exp(b)xµ, θ → θ′ = exp(b)θ,

R → R′ = exp(−bn/2)R;

K
(1)
µ : xµ → x′

µ =
xµ − cµ(xαxα + gn+1 n+1θ

2)
1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ2)

,

θ → θ′ =
θ

1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ2)
,

R → R′ =
(
1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ

2)
)n/2

R;

K
(1)
n+1 : xµ → x′

µ =
xµ

1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ2)
,

θ → θ =
θ − cn+1(xαxα + gn+1 n+1θ

2)
1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ2)

,

R → R′ =
(
1 − 2cνxν − 2cn+1θ + c2(xαxα + gn+1 n+1θ

2)
)n/2

R.

where b, cν , cn+1 are the group parameters and c2 = cνcν + cn+1c
n+1 with the

usual lowering and raising of indices using the metric gAB used in Theorem 1. The
expressions for these finite transformations can be compared with those given in (6),
(7). The form is exactly the same, but the new feature is that θ is considered as
a geometrical variable on the same footing as the xµ, and it is the amplitude R which
transforms as the dependent variable, just as u does in (7).

It should be added that Eq. (9) is the only equation of type (1) which is invariant
under AC(1, n + 1) ⊕ Q in the representation given in Theorem 1. This is not the
standard representation. However, if we keep the standard representation (4), (5) of
the conformal algebra but allow dependence of the nonlinearity in (1) on the deri-
vatives, then we find that there are other equations of this type which are invariant
under the conformal algebra:

�u = |u|4/(n−1)F
(
|u|(3+n)/(1−n)�|u|

)
u, n �= 1,

�u = �|u|F
(

�|u|
(∇|u|)2 , |u|

)
u, n = 1,

4�u =
{

�|u|
|u| + λ

(�|u|)n

|u|n+4

}
u, n arbitrary,

�u = (1 + λ)
�|u|
|u| u,

�u =
�|u|
|u|

(
1 +

λ

|u|4
)

u,

�u =
�|u|
|u|

(
1 +

λ

1 + σ|u|4
)

u.
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Thus, we see that wave equations which have a nonlinear quantum potential term
�|u|/|u| have an unusually wide symmetry. This is in sharp contrast with nonli-
nearities not containing derivatives. Moreover, we see that the representation of
a given algebra plays a fundamental role in picking out certain equations which
are invariant. This remark leads us to asking how one can construct all possible
representations, linear and nonlinear. Linear representation theory is well-developed,
but nonlinear representations are not at all well understood. Certainly, the equation
dictates the symmetry and the representation of the symmetry, and both equation
and representation are intimately tied together. From the symmetry point of view,
we cannot truly distinguish between them as phenomena.

Finally, we remark that given an equation, its symmetry algebra can be exploi-
ted to construct ansatzes (see, for example, [3]) for the equation, which reduce the
problem of solving the equation to one of solving an equation of lower order, even
ordinary differential equations. We examine this question for some of the equations
we have given above in a future article, and we hope that some of them will find
some application in nonlinear quantum mechanics or optics, not least because of their
beautiful symmetry properties and relation to nonlinear Schrödinger equations.
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