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Solutions of the relativistic nonlinear wave
equation by solutions of the nonlinear
Schrodinger equation

P. BASARAB-HORWATH, W.I. FUSHCHYCH, L.F. BARANNYK

Using an ansatz for nonlinear complex wave equations obtained by using Lie point
symmetries, we show how to construct new solutions of the relativistic nonlinear wave
equation from those of a nonlinear Schrédinger equation with the same nonlinearity.
This ansatz reduces the number of space-time variables by one, and is not related to a
contraction. We give some examples of other types of hyperbolic equations admitting
solutions based on nonlinear Schrédinger equations.

1 Introduction

That nonlinear equations should play a role in quantum theory is not a new idea.
This idea was propagated by de Broglie, Iwanenko and Heisenberg [1-3|. Nonlinear
wave mechanics was taken up again by Bialynicki-Birula and Mycielski [4]. This
theme has also been of interest more recently [5], and much work on exact solutions
and modelling of nonlinear equations in quantum theory has also been done [12, 21,
22, 6].

In this article we consider a new aspect of some types of nonlinear relativistic
equations, and we obtain a connection between solutions of nonlinear Schrédinger
equations and our nonlinear relativistic equations. Our starting point is the nonlinear
hyperbolic wave equation

O + \F(|¥|)¥ = 0, (1)

where

with
Ty =guwr”, p,v=0,...,3, gu. =g" =diag(l,—-1,-1,-1), |¥|= (\Il‘i!)l/Q,

and ¥ = U(zg, 21, T2, 73) is a complex function, ¥ being the complex conjugate of ¥,
and we use summation over repeated indices (here and in the rest of the paper).
Using Lie point symmetries, exact solutions have been obtained for different choices
of the nonlinearity F' [7—12]. In this paper we obtain a new class of solutions to (1) by
using the symmetries of (1) to establish a connection between (1) and the nonlinear
Schrédinger equation

0

2L = —Av+ AF([u)). 2)
or
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Equation (2) is invariant under point transformations generated by the Gali-
lei group. Therefore it seems at first surprising that a Poincaré-invariant equation
should be connected with a Galilei-invariant one. It is, however, known that the Poin-
caré algebra contains the Galilei algebra [20], and the conformal algebra contains the
Schrodinger algebra [13-16]. The invariance of a restricted class of solutions of the
generalized Bhabha equations (invariant under the 144 Poincaré group) with respect
to the Galilei group was remarked upon in [20]. However, it is important to note that
equation (1) is not invariant under the Galilei group.

The novelty of our result is that we use a hitherto unexploited symmetry of (1)
to construct an ansatz (called the Galilei or parabolic ansatz) reducing (1) to (2), for
arbitrary nonlinearities in the right-hand side of (1). Thus, we show how nonlinear
equations themselves give rise to this connection. The ansatz we construct is shown
to work in other cases where the nonlinearity contains derivatives. This is explained
by the fact that the equations in question admit the same symmetry operator which
is crucial to the construction of the amnsatz. Furthermore, we do not establish the
connection in terms of contractions, as is done in [13, 14].

The article is organized as follows: first, we give a symmetry classification of equa-
tion (1) and show how to construct the ansatz connecting (1) to (2). We also give the
symmetry classification of (2), exhibiting the parallel with the symmetry classification
of (1). We list the subalgebra classification of the symmetry algebra of (2), together
with the corresponding ansatzes and reduced equations, in the appendix. Because of
the types of nonlinearity, we are able to solve only some of the reduced equations, in
Section 3. In Section 4, we give some examples of other equations for which our ansatz
works, and give solutions of the relativistic equations which are related to solitons of
the corresponding (using our reduction) Schrodinger equations in 141 space-time
dimensions. We do not list exact solutions based on the heat equation: these can be
obtained by using the results of [19].

2 Symmetry and Galilei ansatz for equation (1)

2.1. Symmetry classification. For the sake of completeness, we give the symmetry
classification of equations of type (1) in the following result.

Theorem 1. The Lie point symmetry algebra of equation (1) has basis vector fields
as follows:
(i) when F(|¥|) = const |W¥|?:

Oy Sy = 2,0, —2,0,, K, =2x,2"0, — 220, — 22, (V0y + Vy),
D:x”('),,—(\llo”'q,—l—\ilaq,), M:z(lll(‘)q, —\I/a\j,),

where z* = x, 2" and 9, = 8/0x", Oy = 0/O¥;
(ii) when F(|¥|) = const [¥|*, k # 0,2:

Ou, Ju =x,0, — 2,0,
2 — _
D(k) =z"0, — E(\Pa\p + @8@)7 M = Z(\I/a\p — \Ifa\j,),
(i31) when F(|W|) = const |W|* for any k, but F # 0:
Oy Sy = 1,0, — 2,0, M =i(Vdy — VIg);
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(iv) when F(|¥]) = const # 0:

Oy Sy = 1,0, — 2,0, M =i(Vdy — Vdy),
L=V0y +Vdg, Li=i(Vdy—Vdy), Ly=Vdy+ Yy, Biy,

where B is an arbitrary solution of OW = const ¥,
(v) when F(|¥|) =0:

Oy Sy = 1,0, —2,0,, K, =2x,2"0, — 220, — 22, (Vdy + Viyg),
DZQL‘”@IL, MZZ(\I/aq; —\I/a\j,), Lz\Ilaq;—l—\I/a\j,,
L = Z(‘I’a\p —Udg), Lo= Uiy + Yoy, Boy,

where B is an arbitrary solution of OW = 0.

The first case, F/(|¥]) = |¥|?, gives us the extended conformal algebra, the second
case gives the extended Poincaré algebra. In all five cases (which exhaust all possible
nonlinearities of the given type), the symmetry algebra contains the subalgebra (P,,
J.w), which is the Poincaré algebra, and the operator M = i(¥dy — Udg). It is
this operator which we combine with the generators of space-time translations J,
in order to build an ansatz which reduces equation (1) to a nonlinear Schrodinger
equation. This gives a reduction of a hyperbolic equation to a parabolic equation,
and for this reason we call it a parabolic symmetry of the nonlinear wave equation.
In this fashion we are able to construct new solutions of (1), even making a contact
with the Zakharov—Shabat soliton solution [18] when F(|¥|) = |¥|2. The appearance
of the parabolic symmetry M is a feature of the fact that ¥ is a complex-valued
function and of the type of nonlinearity we consider. In our previous article [19] we
considered a similar reduction of a linear equation (corresponding to F' = const) to the
heat equation using the operator ud, which is the counterpart of the other parabolic
symmetry operator L. Using M, we improve upon our result in that we are able to
include nonlinearities and still obtain a reduction to a parabolic equation. If we were
to use L instead, then we would reduce (1) to the heat equation with a complex
function. This, however, may be done only in the cases F' = const # 0 and F' = 0, as
it is only then that L appears as a symmetry. On writing ¥ = ue®, one finds that
L = ud, whereas M = 0,,. Therefore, equations admitting the symmetry M involve
only the derivatives of the phase.

In [17] we investigated equation (1) from a slightly different point of view: taking
the phase-amplitude representation of ¥, we used results about the compatibility of
the system

Ov = Fi(v), O0"vd,v= Fy(v),

to obtain new solutions of non-Lie type (that is, not obtainable by reduction by Lie
symmetries). The same approach can be taken for the nonlinear Schrodinger equation,
and the methods of [17] can also be combined with those of this article.

2.2. The Galilei ansatz and reduction to the Schrédinger equation. Equa-
tion (1) is invariant under 0, and M, and therefore under any constant linear combi-
nation of them:

e*Oy + kM. 3)
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The operator (3) gives rise to the invariant surface conditions
eh9, V0 = ikV, "9,V = —ikV
for ¥ and ¥, where e and k are real constants. These conditions give us the Lagran-
gian system

dr, dVv ¥

= —_— = —, 4
en kU —ik0 )

It is straightforward to show that (4) is equivalent to

d(cz)  adV _ dv
ce k¥ —ikV¥

()

for any constant four-vector ¢, where cx = c*z,,, ce = cte,. Then choose ¢ light-like,
so that €2 = 0 and, further, choose o, 3, 6 so that

A=p2=-1, =0, af=ad=ac=p5=Pc=0, de=1.

That is, o, 3, 6, € is a hybrid 2+2 basis of Minkowski space consisting of two space-like
vectors (a, 5) and two light-like vectors (0, ). Then put ¢ in (5) successively equal to
«, B3, 0, e, and we obtain the Lagrangian system

d(ax) _ d(Bz)  d(ex) d(éz) d¥ 4V

0 0 0 1 kv kU

(6)
The system (6) then integrates to give
U= eik(‘sm)v(saz, ar,Bx), U= e*ik(‘s"”)f)(ex,ax,ﬁx), (7)

where v is a smooth function. Substituting equations (7) as ansatzes in (1), we obtain
(after some elementary manipulation) the equation

ov 1 A

— = —Av— —F

ot =t g febe:
where we have used the notation t = ex, y; = az, yo = Sz and A = 33—;% + ;—é. For
convenience, we choose k = —%, and we then have the nonlinear Schrédinger equation
in 241 space-time dimensions

.Ov

o = —Av + AF(|v|)v. (8)

This is a well-studied equation, at least in 1+1 space-time dimensions, exhibiting
soliton solutions and being completely integrable (possessing infinitely many commu-
ting flows) for F(|v]) = |v]? (see [18]). It has been studied in other dimensions in
[20-23, 27| in terms of symmetries and conditional symmetries.

The Cauchy problem for equation (8) is well-posed for ¢ > 0, and (8) has solutions
which are singular for ¢ = 0. This leads to similar problems for the wave equation
when ez = 0, which is a characteristic (¢2 = 0), and so the initial-value problem of (8)
is related to the initial-value problem of (1) on a characteristic, known as Goursat’s
problem. For the linear equation, this has been studied in [28].
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It is an interesting question as to what quantum-mechanical implications (8) has
for (1), but we shall not pursue this in the present article.

We emphasise that the connection between the hyperbolic equation (1) and the
Schrodinger equation (8) is obtained by an ansatz which reduces the number of space-
time dimensions by one; it is not a contraction as in [13].

2.3. Symmetries of the Schrédinger equation (8). The symmetry algebra
of equation (8) is given by the following result: its classification according to the
type of nonlinearity is in a direct correspondence to that of the symmetry algebra of
equation (1).

Theorem 2. Equation (8) has mazimal point symmetry algebra (with the given vector
fields as basis) depending on the nonlinearity F(|v]):

(i) AGo(1,2), when F(|v]) = const |v]?:

T=0, P,=-0, Ji2=210y —2204,
=10, + 22%( 00y — 00g), Doy =2t0; + £,0, — (vO, + V05),
S =120, + tw,0, + iixaxa(v&, — 005) — t(v0, + V0y),
M= —%i(v&v — 50y);
(ii) AG1(1,2), when F(|v]) = const |v|*, k # 0,2:
T =0y P,=-04 Jia=210y, —220,,, Gq=10,+ ;zxa( Oy — 005),
Dy = 2t0, + 2,0, — 2(v0, + V0;), M = —51( 00, — V0p);
(i17) AG(1,2), when F(|v|) # const |v|*, for any k but F # 0:
T =0 P,=04 Ji2=210z —x20s,,
G = t0a + 2zxa(v8 —50y), M= —%i(v@v — 50y):

(iv) AG2(1,2) ® (B), when F =0, where (B) infinite space of arbitrary solutions
of the free Schridinger equation:

Tz@t, P, :8a, J12 :l‘lawz —Igawl, G, =t0, + 2l$a< V0, —ﬁaqj),
S =120 + tx,0, + 4zxama(v8v — 005) — t(v0, + 105),
M = —%Z('Uav — 178{,), D= Qt&g + I'aaa, L= ’Uav + 178{,, B@v,

where B is an arbitrary solution of the free Schrédinger equation.

The algebra in Theorem 2i is the Schrodinger algebra [14], which is a subalgebra of
the conformal algebra. This is reflected in the fact that the nonlinearity in Theorem 2i
is the same as in Theorem 1i, for which the wave equation (1) is invariant under the
conformal group. Note that Theorems 2iv, v correspond to Theorem 1v, since for
equation (8) the case F' = const # 0 can be gauged to the case (iv) on putting
0 = ey, and then o satisfies the free (no potential) Schrédinger equation. The
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above is an exhaustive list of the types of symmetries for all the different types of
nonlinearities. Again, in each of the four cases, we find the operator M = i(v9, —v05),
and we can use this in a similar way to the reduction of the wave equation, in order to
reduce (8) to the corresponding Schrédinger equation in 141 space-time dimensions;
this time with the same nonlinearity and ‘coupling’ constant A. Thus we can think
of the linear and nonlinear Schrédinger equations as part of a chain of successive
reductions, beginning with a nonlinear (hyperbolic) wave equation in n + 1 space-
time dimensions, as in (1).

Theorem 2 now allows us to classify the reductions of equation (8), according to
the type of nonlinearity. If we exclude the case F' = 0, then there are only three types
of algebras: AG(1,2) = (T, P,,Gq, J12, M), AG1(1,2) = (T, P,,G,, J12, M, D), and
AG5(1,2) = (T, Py, Gq, J12, M, D, S). These are the maximal symmetry algebras of
the equations:

%~ Av AR (oo, with F(ul) £ ol F£0, (9)
.O0v &

ZE =—-Av+ A‘/U| v, k 7é 0727 (10)
v

i~ — _A 2 11
e v+ Alv|?v, (11)

respectively. The Lie algebra AG2(1,2) was considered in [19]. It is the semi-direct
sum

ASL(2,R) & AO(2) + (M, P,, G,),

where ASL(2,R) is the Lie algebra of the group SL(2,R), and AO(2) is the Lie
algebra of the group O(2). The other two algebras are subalgebras of AGy(1,2).

3 Some exact solutions

In this section we obtain some exact solutions of the wave equation using results from
the tables in the appendix. The other reduced equations are difficult to solve, so we
leave them for future consideration, remarking only that they give exact solutions of
equation (1) when we use the ansatz in equation (7).

First, we take the case of the subalgebra (P>, T + 2aM) from Table 1 in the
appendix, with F(|¢]) = |¢|™ and n > 0. The reduced equation is then

¢ +ad = No["¢.
On putting
$(w) = plw)e’™
into this equation, with p, § being real functions and p > 0, we obtain
p+ap— pb* = X", (12)

pl +2p0 = 0. (13)
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Equation (13) readily integrates to give us
A

Ea

0 = (14)
where A is a constant of integration. Put now equation (14) into equation (12) and
we find

A2
prap— 5= Ap"HL,

which is the Ermakov—Pinney [31] equation when A = 0. Multiplying this equation
by 2p and integrating, we obtain
A? 2

.9 2, A n+2 4 o 15

AR A LA (15)
where C is another constant of integration. We now consider three cases of equa-
tion (15).

Case 1. A =0,C =0, a # 0. Since A = 0 here, we have § = const, and (15)

becomes

-2 2>\ n-+2

_ 2
=g ap”,

from which we deduce

[t
n2_J;\2 pn+2 —a p2

On writing u = —p~"™/2, this integral reduces to

du n
/7 = —E(j:w +Ch).
nQJi\2 - au2

For A > 0, a < 0 we obtain (after some calculation)

2 A
a(n—|—2)[

::i:w+C’1.

1 — cosh (nv—=a(Cy £ w))]

or

L Ja(n+2) 1
P= A 1—cosh (ny=a(Cy +w))

Finally, noting that we have w = y; = ax, in the notation of Section 2.3, we find that

T — —ila()+(52)/2) a(n +2) 1
A 1—cosh(ny=a(C + az))

is a solution of

OU = —A\|¥|" ¥,
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when A > 0, a < 0. If we take A > 0, a > 0, then we obtain, with similar calculations,
that

T — —ila(en)+(52)/2) a(n +2) 1
A 1—cos(nya(Cy £ ax))

is a solution of
Ov = —\|U|"0.

Case 2. A=0,n =2, a # 0. In this case we also have § = const, and (15) becomes

. 1

02+ ap? — 5)\/)4 =C. (16)
Equation (16) can be solved using Jacobian elliptic functions. For the definitions, we
refer to [29]. Following [30], we take a, A and C as functions of a real parameter s,
with |k| < 1, and using the generic notation E(w, ) for solutions of (16), we have the
following table of exact solutions:

E(w, k) a(k) A(K) C(k)
sn 1+ k2 2r2 1

cn 1—2k% | —2k? 1— kK2
dn K2 —2 k2 —1
ns = 1/sn 1+x% |2 K?
nc=1/cn | 1-2x% | 2(1 — K?) —K?
nd =1/dn | k2 -2 | 2(k?-1) —1

sc =sn/en | k2 —2 | 2(1—K?) 1

sd =sn/dn | 1-2k% | 2k%(k2 1) | 1
cs=cn/sn | kK2 —2 |2 1— K2
cd =cn/dn | 1+ k% | 2x2 1

ds =dn/sn | 1—2x% | 2 K2(K% — 1)
dc =dn/en | 14+ K2 |2 K2

Using this table and the notation of Section 2.3, we find that

U = e—i(a(ﬁ)(Ew)+(5:v)/2)E(ax’ K)
is an exact solution of
OW = —A(k)[[20,

where a(x) and A(k) are the appropriate functions of the parameter k, as given in the
above table. This gives us elliptic solutions of a nonlinear relativistic wave equation.
We note that solutions of nonlinear wave equations in terms of elliptic functions were
obtained by Petiau [35]. The solutions we present here are for a different nonlinearity.
Case 8. n=2,a=0.If we put n =2 and a =0 in (15), we obtain the equation

A? A
-2 4
PP+ =pt
P> 2
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On multiplying this equation by p?, and putting z = p?, we obtain the following
equation for z:

A 8C 8A2
2 A 3 _
2—2[42—1—)\2 )\},

which gives us the solution

1
z:p< 5)@),

where p(&) is the Weierstrass elliptic function (see [29]), provided that 274*+8C3/\ #
0 (the equation (d¢/ds)? = 4€3 — go€ — g3 has p(s) as solution provided g5 —27g3 # 0).
From this it is straightforward to deduce that

oo |- ixﬁ/@“’d_o
PIT 27 o(0)

is a solution of
Ov = —\|U0.

Next we turn to the case (G1 + aPy, G2) in Table 1. The reduced equation is

b5 (omg+ ) o= —inFliebe

2\w—a

Using the amplitude-phase representation ¢ = pe?¥ in this equation, as before, we find
the following system:

1 1 1
5+ = - = 17
p+2(wa+w>p : (17)
0 = —\F(p). (18)
Equation (17) integrates immediately to give
B C
w(w—a)’

where C' is a constant of integration. Using this, (18) now yields

0=— /F(ﬁ)dw—k&.

Combining this with the corresponding ansatz for the solution v of (8), and using the
notation of Section 2.3, we obtain that
C

V= X
(ex)? — alex)

N W A bz | (0z) + (Bz)
(A/ F( g(f_a))wﬁ )]

X exp
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is an exact solution of
Ov = —A\F(|Y|)7,
and when F(¢) = £", with n > 2, we have

U = # X
(ex)? — alex)

_|_

X exp [—z’ <—>\(n — 1)[(633)20_“@(595)}@—1)/2 %E * Wﬂ

as an exact solution.

4 Special solutions of some nonlinear
complex wave equations

In this section we give some particular solutions of some multi-dimensional hyperbolic
(‘relativistic’) equations which can be reduced to Schrédinger equations with our
ansatz (7). In some cases, the nonlinear Schrédinger equation involved admits a soliton
solution in 1+1 space-time.

First we take the hyperbolic equation

Ov = A|0[".
The ansatz (7) (with k = —1/2) reduces this to
vy + Av + Ao|"v = 0,

as we have already noted. It is a simple matter to verify that for A = a2b2% (% + 1)
we have

exp(4ia®b?t/n?)

cosh? ™ (ba, - y)
as a solution. Here a = (a1,a3), y = (y1,y2), where a = (a1, az) is an arbitrary vector

and b an arbitrary real number. Applying the Galilean boosts (which are symmetries
of the above nonlinear Schrédinger equation)

1
Ga = 100 + giza(v0, — 10;) (19)

(where a = 1,2) to this solution, we obtain the solution

expli(4a?b®t/n? +V - y/2 — V2t /4)]
B cosh? ™ (ba - (y — V't))

9

where V' = (V1,V5) is an arbitrary vector. For n = 2 and in 1+1 space-time, we have

_expli(a®b’t + Vy/2 — V2t /4)]
cosh(ab(y — Vt)) ’
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which is the Zakharov—Shabat soliton. Finally, using (7), we obtain

expli(—0x/2 + 4a°b* (ex) /n’ + (Vi(ax) + Va(B2))/2 — V(cx) /4)]

-
cosh?™ (blay (ax — Vit) + ag(Bx — Va(ex))])

as a solution of
2 (2
ov = a?h?= <— + 1) v |"w
n\n

in 143 space-time.

There are some other hyperbolic equations which can be reduced to nonlinear
Schrodinger equations, but with nonlinearities involving derivatives. The hyperbolic
equations of the form

DU = AF(|P, [¥],[¥],) ¥ (20)

can also be reduced to nonlinear Schrédinger equations with derivative nonlinearities,
using the same ansatz (7) (which is not surprising as the same symmetry operator is
responsible for the ansatz). Indeed, ansatz (7) with k = —1/2 gives us

ivg + Av + AF(Jv], —|v]a|v]e)v = 0, (21)

where [v[q|v|s = [v]2, + [v]2,. Equations of the type (21) were discussed in [21] from
a group-theoretical point of view. One of this type of Schrédinger equations is

. [v]a|v]a
v+ Av =2 R (22)
with A = =2 and F(|v, |v|a|v]e) = % Equation (22) admits the two solutions:
exp(—ia’t) _exp(—ia’t)
cosh(a - y)’ ~ " sinh(a-y)’

where a = (a1, ag) is an arbitrary vector and A is an arbitrary number. Applying the
Galilei boosts (19) (they are symmetries of (22)) to these solutions, we find

expli(V - y/2 — tV?/4 — ta?))

=A
Y cosh(a-y—a-Vt)

)

and

Y Aexp[i(V y/2 —tV? /4 — ta?)]
N sinh(a -y —a- Vi)

)

as solutions of (22), with V' = (V},V,) an arbitrary vector. From this we find that
the hyperbolic equation
LA

ov =
w2

admits the solutions

expli(Vi(ax)/2 + Va(Bx)/2 — V2(€£U)/4 —02/2 — a’(ex))]

=4 cosh(ay (azx) + az(fz) — (a - V)(ex))




92 P. Basarab-Horwath, W.I. Fushchych, L.F. Barannyk

and

expli(Vi(ax)/2 + Va(Bx)/2 — Vz(sx)/él —0x/2 — a?(ex))]

=4 sinh(a1 (ax) + a2(Bz) — (a - V)(ex))

Note that we have only used two Galilean boosts to obtain these two-parameter
families of solutions. We can introduce more parameters by using the other symmetries
of the hyperbolic equation and the corresponding Schrédinger equations.

A third example is the hyperbolic equation

v,
OW = 2p| 0|20 — C”T“ (23)

with C' # 1. Using the ansatz
U= e_i(‘sx)/g(“rc)v(ax,ﬁx,ex)
is straightforward to show that (23) reduces to the equation

v + Av + 2plov[*v = — el (24)
v

In 1+1 space-time, equation (24) is the Malomed—Stenflo equation [32] in plasma
physics which admits solitons. Equation (24) admits the solution

v = Asech (n - y) exp(i(C + 1)n’t)

(which in 1+1 dimensions is the Malomed—Stenflo soliton), where A% = n?(C +2)/2p
and n = (n1,n2) is an arbitrary vector. We can now act on this solution with the
Galilean boosts

_ Wa 50
G, =10, + 30+ 0) (v0y — VD),

which are symmetries of (24), and we obtain

v=Asech(n-y—n-Vt)exp [Z <<C + 1)t + 2(‘1/—'kyC) B 4(1‘/?0)”

as a two-parameter family of solutions of (24). We are then able to construct the
following solution of (23):

. Sz Vi(ax Va(Bx V2 x
exp [Z <(1 +C)n?(ex) — 30+0) 2(11(+c)) =+ 2(21(+c)) - 4(14&%;)}

=4 cosh(ny (az) + ne(fz) — (n - V)(ex))

5 Conclusions

These are just some examples of hyperbolic equations which reduce down to nonlinear
Schrodinger equations. There are of course more. For instance, the hyperbolic equation
_ Oy

OF = —— 1 — A\, (25)
|
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which arises in the context of de Broglie’s double solution [33, 1], reduces, with our
ansatz, to

10w = —Av + %v + Av; (26)
an equation which was considered by Guerra and Pusterla [34] in the context of
a nonlinear Schrédinger equation. The terms O|¥|/|¥| and Alv|/|v| are called the
quantum potentials [1]. Both equations (25) and (26) are conformally invariant, (25)
being invariant under the conformal algebra AC(1,n+2), and (26) under AC(1,n+1)
in n + 1 space-time dimensions (see [40]). These remarkable symmetry properties are
due to the quantum potential term. They share this symmetry with a wide class of
other equations [36, 37].

Despite this connection, we are as yet unable to give a clear physical meaning
to the reduction and the ansatz, other than the purely Lie-algebraic one. That we
should expect some sort of physical interpretation is suggested by the use of complex
hyperbolic equations by Grundland and Tuszynski in [10] in the context of superflui-
dity and liquid crystal theory.

It is also natural to ask if it is possible to obtain a nonlinear complex hyperbolic
wave equation from a Schrédinger equation. It is, of course, not possible from an
equation of the form

v + Av = F(|v])v.

However, if we consider
2 2

v, + % — g—y;) = F(|v])v,
and put

v =T V(z — 2,y + 2),
then we find that w satisfies the equation

o€z on?
with £ =z — 2t, n = y + 2t. It thus seems of interest to investigate equations of the
type

= F(lw)w,

i2Y 4 0w = F(u)).

ot
This type of equation is also of interest in quantum physics: the equation
ov 1 9
i— = —(0—-—m*)¥
ot 2m ( )

(with interaction terms involving the electromagnetic potential) was used by Fock as
an analogue of the Hamilton-Jacobi equation in quantum mechanics, where ¢t was
interpreted as the proper time (see [38] for more details on parametrized relativistic
quantum theories). Feynman in [39] considered the equation

or 1
j—— — — — “o_ I
i 2(8# eA,) (0" —eA")T.
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It has interesting symmetry properties, with its symmetry algebra containing both
the Poincaré and Galilei algebras. We intend to return to this equation in future
publications.

Finally, let us note that our ansatz relates the Schrédinger equation with any
equation related to the wave equation, such as the Dirac equation. Indeed, the Dirac
equation is

(iv*9, —m)¥ =0,
so that we may represent W as

U = (iv"0,, + m)9, (27)
where @ is a four-component vector of functions satisfying

ad + m?® = 0.

Clearly, each of the components can be related (independently) to the Schrédinger
equation by using our ansatz (7). In this way, we can use (27) to construct solutions of
the Dirac equation from the Schrédinger equation. Similarly, we can use the complex
heat equation

v

— =Av

ot
to construct solutions of the Dirac equation. Instead of ansatz (6), which uses the
operator M, we have the ansatz

U= ek(‘mv(sx, ar,Bx), U= ek(‘h)@(sx, az, fx),

which uses the operator L of Theorem 1. Exact solutions of the complex heat equation
in 142 space-time dimensions can be obtained from those of the real heat equation
given in [19]. Thus we see that solutions of the Dirac equation can be obtained from
the Schrédinger and heat equations, or a mixture of both.

6 Appendix

In the following tables we give inequivalent ansatzes for equations (9), (10) and (11)
constructed from one- and two-dimensional subalgebras of the corresponding algebras
of invariance. This is organized as follows: we consider subalgebras in the ascending
chain AG(1,2) C AG1(1,2) C AG2(1,2) (strictly speaking, this is incorrect, since the
dilatation operator D has a different representation in AG;(1,2) and AG4(1,2), but
but here we treat the inclusions as abstract Lie algebra inclusions up to isomorphism).
In Tables 1, 2 and 3, we give a list of inequivalent two-dimensional subalgebras, with
the corresponding ansatzes and reduced equations (these are ordinary differential
equations); in Tables 4, 5 and 6, we do the same for one-dimensional subalgebras of
the chain, the reduced equations being partial differential equations. The reductions
have been verified using MAPLE.

In order to avoid repetition in the reduced equations, we shall, in the following,
regard the function F in equation (9) as being arbitrary; in equation (10), k is an
arbitrary real number, so that with this convention equation (10) is a particular case
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of equation (9), and equation (11) is a particular case of equation (10). Further, in
performing the symmetry reductions of (9) for arbitrary F', we use the inequivalent
subalgebras (of dimensions 1 and 2) of AG1(1,2) the symmetry reduction of (10) is
done using those subalgebras of AGy(1,2) which are not equivalent to subalgebras
of AG(1,2); the reductions of (11) are done with respect to subalgebras of AG(1,2)
which are not equivalent to subalgebras of AG;(1,2).
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