
W.I. Fushchych, Scientific Works 2004, Vol. 6, 67–80.

Implicit and parabolic ansatzes:
some new ansatzes for old equations
P. BASARAB-HORWATH, W.I. FUSHCHYCH

We give a survey of some results on new types of solutions for partial differential
equations. First, we describe the method of implicit ansatzes, which gives equations
for functions which define implicitly solutions of some partial differential equations.
In particular, we find that the family of eikonal equations (in different geometries) has
the special property that the equations for implicit ansatzes are also eikonal equations.
We also find that the eikonal equation defines implicitly solutions of the Hamilton–
Jacobi equation. Parabolic ansatzes are ansatzes which reduce hyperbolic equations
to parabolic ones (or to a Schrödinger equation). Their uses in obtaining new types
of solutions for equations invariant under AO(p, q) are described. We also give some
results on conformally invariant nonlinear wave equations and describe some exact
solutions of a conformally invariant nonlinear Schrödinger equation.

1 Introduction
In this talk, I would like to present some results obtained during the past few years in
my collaboration with Willy Fushchych and some of his students. The basic themes
here are ansatz and symmetry algebras for partial differential equations.

I wrote this talk after Wilhelm Fushchych’ untimely death, but the results I give
here were obtained jointly or as a direct result of our collaboration, so it is only right
that he appears as an author.

In 1993/1994 during his visits to Linköping and my visits to Kyiv, we managed,
amongst other things, to do two things: use light-cone variables to construct new
solutions of some hyperbolic equations in terms of solutions of the Schrödinger or
heat equations; and to develop the germ of new variation on finding ansatzes. This
last piece is an indication of work in progress and it is published here for the first
time. I shall begin this talk with this topic first.

2 The method of implicit ansatzes

2.1 The wave and heat equations
Given an equation for one unknown real function (the dependent variable), u, say,
and several independent (“geometric”) variables, the usual approach, even in terms
of symmetries, is to attempt to find ansatzes for u explicitly. What we asked was
the following: why not try and give u implicitly? This means the following: look for
some function φ(x, u) so that φ(x, u) = C defines u implicitly, where x represents the
geometric variables and C is a constant. This is evidently natural, especially if you
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are used to calculating symmetry groups, because one then has to treat u on the same
footing as x. If we assume, at least locally, that φu(x, u) �= 0, where φu = ∂φ/∂u,
then the implicit function theorem tells us that φ(x, u) = C defines u implicitly
as a function of x, for some neighbourhood of (x, u) with φu(x, u) �= 0, and that
uµ = −φµ

φu
, where φµ = ∂φ

∂xµ . Higher derivatives of u are then obtained by applying
the correct amount of total derivatives.

The wave equation �u = F (u) becomes

φ2
u�φ = 2φuφµφµu − φµφµφuu − φ3

uF (u)

or

�φ = ∂u

(
φµφµ

φu

)
− φuF (u).

This is quite a nonlinear equation. It has exactly the same symmetry algebra as the
equation �u = F (u), except that the parameters are now arbitrary functions of φ.
Finding exact solutions of this equation will give u implicitly. Of course, one is entitled
to ask what advantages are of this way of thinking. Certainly, it has the disadvantage
of making linear equations into very nonlinear ones. The symmetry is not improved in
any dramatic way that is exploitable (such as giving a conformally-invariant equation
starting from a merely Poincaré invariant one). It can be advantageous when it comes
to adding certain conditions. For instance, if one investigates the system

�u = 0, uµuµ = 0,

we find that uµuµ = 0 goes over into φµφµ = 0 and the system then becomes

�φ = 0, φµφµ = 0.

In terms of ordinary Lie ansatzes, this is not an improvement. However, it is not
difficult to see that we can make certain non-Lie ansatzes of the anti-reduction type:
allow φ to be a polynomial in the variable u with coefficients being functions of x.
For instance, assume φ is a quintic in u: φ = Au5 + Bu + C. Then we will have the
coupled system

�A = 0, �B = 0, �C = 0,

AµAµ = BµBµ = CµCµ = AµBµ = AµCµ = BµCµ = 0.

Solutions of this system can be obtained using Lie symmetries. The exact solutions
of

�u = 0, uµuµ = 0

are then obtained in an implicit form which is unobtainable by Lie symmetry analysis
alone.

Similarly, we have the system

�u = 0, uµuµ = 1

which is transformed into

�φ = φuu, φµφµ = φ2
u
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or

�5φ = 0, φAφA = 0,

where �5 = � − ∂2
u and A is summed from 0 to 4.

It is evident, however, that the extension of this method to a system of equations
is complicated to say the least, and I only say that we have not contemplated going
beyond the present case of just one unknown function.

We can treat the heat equation ut = �u in the same way: the equation for the
surface φ is

φt = �φ − ∂

∂u

(∇φ · ∇φ

φu

)
.

If we now add the condition φu = ∇φ · ∇φ, then we obtain the system

φt = �φ, φu = ∇φ · ∇φ

so that φ is a solution to both the heat equation and the Hamilton–Jacobi equation,
but with different propagation parameters.

If we, instead, add the condition φ2
u = ∇φ · ∇φ, we obtain the system

φt = �φ − φuu, φ2
u = ∇φ · ∇φ.

The first of these is a new type of equation: it is a relativistic heat equation with
a very large symmetry algebra which contains the Lorentz group as well as Galilei
type boosts; the second equation is just the eikonal equation. The system is evidently
invariant under the Lorentz group acting in the space parametrized by (x1, . . . , xn, u),
and this is a great improvement in symmetry on the original heat equation.

It follows from this that we can obtain solutions to the heat equation using Lorentz-
invariant ansatzes, albeit through a modified equation.

2.2 Eikonal equations
Another use of this approach is seen in the following. First, let us note that there are
three types of the eikonal equation

uµuµ = λ,

namely the time-like eikonal equation when λ = 1, the space-like eikonal one when
λ = −1, and the isotropic eikonal one when λ = 0. Representing these implicitly, we
find that the time-like eikonal equation in 1 + n time-space

uµuµ = 1

goes over into the isotropic eikonal one in a space with the metric (1,−1, . . . ,−1︸ ︷︷ ︸
n+1

)

φµφµ = φ2
u.

The space-like eikonal equation

uµuµ = −1
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goes over into the isotropic eikonal one in a space with the metric (1, 1,−1, . . . ,−1︸ ︷︷ ︸
n

)

φµφµ = −φ2
u

whereas

uµuµ = 0

goes over into

φµφµ = 0.

Thus, we see that, from solutions of the isotropic eikonal equation, we can construct
solutions of time- and space-like eikonal ones in a space of one dimension less. We
also see the importance of studying equations in higher dimensions, in particular in
spaces with the relativity groups SO(1, 4) and SO(2, 3).

It is also possible to use the isotropic eikonal to construct solutions of the Hamil-
ton–Jacobi equation in 1 + n dimensions

ut + (∇u)2 = 0

which goes over into

φuφt = (∇φ)2

and this equation can be written as
(

φu + φt

2

)2

−
(

φu − φt

2

)2

= (∇φ)2

which, in turn, can be written as

gABφAφB = 0

with A,B = 0, 1, . . . , n + 1, gAB = diag (1,−1, . . . ,−1) and

φ0 =
φu + φt

2
, φn+1 =

φu − φt

2
.

It is known that the isotropic eikonal and the Hamilton–Jacobi equations have the
conformal algebra as a symmetry algebra (see [15]), and here we see the reason why
this is so. It is not difficult to see that we can recover the Hamilton–Jacobi equation
from the isotropic eikonal equation on reversing this procedure.

This procedure of reversal is extremely useful for hyperbolic equations of second
order. As an elementary example, let us take the free wave equation for one real
function u in 3 + 1 space-time:

∂2
0u = ∂2

1u + ∂2
2u + ∂2

3u

and write it now as

(∂0 + ∂3)(∂0 − ∂3)u = ∂2
1u + ∂2

2u
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or

∂σ∂τu = ∂2
1u + ∂2

2u,

where σ = x0−x3

2 , τ = x0+x3

2 . Now assume u = eσΨ(τ, x1, x2). With this assumption,
we find

∂τΨ =
(
∂2
1 + ∂2

2

)
Ψ

which is the heat equation. Thus, we can obtain a class of solutions of the free wave
equation from solutions of the free heat equation. This was shown in [1]. The ansatz
taken here seems quite arbitrary, but we were able to construct it using Lie point
symmetries of the free wave equation. A similar ansatz gives a reduction of the free
complex wave equation to the free Schrödinger equation. We have not found a way
of reversing this procedure, to obtain the free wave equation from the free heat or
Schrödinger equations. The following section gives a brief description of this work.

3 Parabolic ansatzes for hyperbolic equations:
light-cone coordinates and reduction to the heat
and Schrödinger equations

Although it is possible to proceed directly with the ansatz just made to give a
reduction of the wave equation to the Schrödinger equation, it is useful to put it
into perspective using symmetries: this will show that the ansatz can be constructed
by the use of infinitesimal symmetry operators. To this end, we quote two results:
Theorem 1. The maximal Lie point symmetry algebra of the equation

�u = m2u,

where u is a real function, has the basis

Pµ = ∂µ, I = u∂u, Jµν = xµ∂ν − xν∂µ

when m �= 0, and

Pµ = ∂µ, I = u∂u, Jµν = xµ∂ν − xν∂µ,

D = xµ∂µ, Kµ = 2xµD − x2∂µ − 2xµu∂u

when m = 0, where

∂u =
∂

∂u
, ∂µ =

∂

∂xµ
, xµ = gµνxν ,

gµν = diag (1,−1, . . . ,−1), µ, ν = 0, 1, 2, . . . , n.

We notice that in both cases (m = 0, m �= 0), the equation is invariant under the
operator I, and is consequently invariant under αµ∂µ + kI for all real constants k
and real, constant four-vectors α. We choose a hybrid tetradic basis of the Minkowski
space: α: αµαµ = 0; ε: εµεµ = 0; β: βµβµ = −1; δ: δµδµ = −1; and αµεµ = 1,
αµβµ = αµδµ = εµβµ = εµδµ = 0. We could take, for instance, α = 1√

2
(1, 0, 0, 1),
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ε = 1√
2
(1, 0, 0,−1), β = (0, 1, 0, 0), δ = (0, 0, 1, 0). Then the invariance condition (the

so-called invariant-surface condition),

(αµ∂µ + kI)u = 0,

gives the Lagrangian system

dxµ

αµ
=

du

ku

which can be written as

d(αx)
0

=
d(βx)

0
=

d(δx)
0

=
d(εx)

1
=

du

ku
.

Integrating this gives us the general integral of motion of this system

u − ek(εx)Φ(αx, βx, δx)

and, on setting this equal to zero, this gives us the ansatz

u = ek(εx)Φ(αx, βx, δx).

Denoting τ = αx, y1 = βx, y2 = δx, we obtain, on substituting into the equation
�u = m2u,

2k∂τΦ = �Φ + m2Φ,

where � = ∂2

∂
y2
1

+ ∂2

∂
y2
2

. This is just the heat equation (we can gauge away the linear

term by setting Φ = e
m2τ
2k Ψ). The solutions of the wave equation we obtain in this

way are given in [1].
The second result is the following:

Theorem 2. The Lie point symmetry algebra of the equation

�Ψ + λF (|Ψ|)Ψ = 0

has basis vector fields as follows:
(i) when F (|Ψ|) = const |Ψ|2:

∂µ, Jµν = xµ∂ν − xν∂µ, Kµ = 2xµxν∂ν − x2∂µ − 2xµ

(
Ψ∂Ψ + Ψ∂Ψ

)
,

D = xν∂ν − (
Ψ∂Ψ + Ψ∂Ψ

)
, M = i

(
Ψ∂Ψ − Ψ∂Ψ

)
,

where x2 = xµxµ.
(ii) when F (|Ψ|) = const |Ψ|k, k �= 0, 2:

∂µ, Jµν = xµ∂ν − xν∂µ, D(k) = xν∂ν − 2
k

(
Ψ∂Ψ + Ψ∂Ψ

)
,

M = i
(
Ψ∂Ψ − Ψ∂Ψ

)
.

(iii) when F (|Ψ|) �= const |Ψ|k for any k, but Ḟ �= 0:

∂µ, Jµν = xµ∂ν − xν∂µ, M = i
(
Ψ∂Ψ − Ψ∂Ψ

)
.
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(iv) when F (|Ψ|) = const �= 0:

∂µ, Jµν = xµ∂ν − xν∂µ, M = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L =

(
Ψ∂Ψ + Ψ∂Ψ

)
,

L1 = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L2 = Ψ∂Ψ + Ψ∂Ψ, B∂Ψ,

where B is an arbitrary solution of �Ψ = FΨ.
(v) when F (|Ψ|) = 0:

∂µ, Jµν = xµ∂ν − xν∂µ, Kµ = 2xµxν∂ν − x2∂µ − 2xµ

(
Ψ∂Ψ + Ψ∂Ψ

)
,

D = xµ∂µ, M = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L =

(
Ψ∂Ψ + Ψ∂Ψ

)
,

L1 = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L2 = Ψ∂Ψ + Ψ∂Ψ, B∂Ψ,

where B is an arbitrary solution of �Ψ = 0.
In this result, we see that in all cases we have M = i

(
Ψ∂Ψ − Ψ∂Ψ

)
as a symmetry

operator. We can obtain the ansatz

Ψ = eik(εx)Φ(αx, βx, δx)

in the same way as for the real wave equation, using M in place of I. However, now
we have an improvement in that our complex wave equation may have a nonlinear
term which is invariant under M (this is not the case for I). Putting the ansatz into
the equation gives us a nonlinear Schrödinger equation:

i∂τΦ = −�Φ + λF (|Φ|)Φ
when k = −1/2. Solutions of the hyperbolic equation which this nonlinear Schrödinger
equation gives is described in [2] (but it does not give solutions of the free Schrödinger
equation).

The above two results show that one can obtain ansatzes (using symmetries) to
reduce some hyperbolic equations to the heat or Schrödinger equations. The more
interesting case is that of complex wave functions, as this allows some nonlinearities.
There is a useful way of characterizing those complex wave equations which admit
the symmetry M : if we use the amplitude-phase representation Ψ = Reiθ for the
wave function, then our operator M becomes ∂θ, and we can then see that it is those
equations which, written in terms of R and θ, do not contain any pure θ terms (they
are present as derivatives of θ). To see this, we only need consider the nonlinear wave
equation again, in this representation:

�R − Rθµθµ + λF (R)R = 0,

R�θ + 2Rµθµ = 0

when λ and F are real functions. The second equation is easily recognized as the
continuity equation:

∂µ(R2θµ) = 0

(it is also a type of conservation of angular momentum). Clearly, the above system
does not contain θ other than in terms of its derivatives, and therefore it must admit
∂θ as a symmetry operator.

Writing an equation in this form has another advantage: one sees that the impor-
tant part of the system is the continuity equation, and this allows us to consider other
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systems of equations which include the continuity equation, but have a different first
equation. It is a form which can make calculating easier.

Having found the above reduction procedure and an operator which gives us the
reducing ansatz, it is then natural to ask if there are other hyperbolic equations which
are reduced down to the Schrödinger or diffusion equation. Thus, one may look at
hyperbolic equations of the form

�Ψ = H(Ψ,Ψ∗)

which admit the operator M . An elementary calculation gives us that H = F (|Ψ|)Ψ.
The next step is to allow H to depend upon derivatives:

�Ψ = F (Ψ,Ψ∗,Ψµ,Ψ∗
µ)Ψ

and we make the assumption that F is real. Now, it is convenient to do the calculations
in the amplitude-phase representation, so our functions will depend on R, θ, Rµ, θµ.
However, if we want the operator M to be a symmetry operator, the functions may
not depend on θ although they may depend on its derivatives, so that F must be a
function of |Ψ|, the amplitude. This leaves us with a large class of equations, which
in the amplitude-phase form are

�R = F (R,Rµ, θµ)R, (1)

R�θ + 2Rµθµ = 0 (2)

and we easily find the solution

F = F (R,RµRµ, θµθµ, Rµθµ)

when we also require the invariance under the Poincaré algebra (we need translations
for the ansatz and Lorentz transformations for the invariance of the wave operator).

We can ask for the types of systems (1), (2) invariant under the algebras of
Theorem 2, and we find:
Theorem 3. (i) System (1), (2) is invariant under the algebra 〈Pµ, Jµν〉.

(ii) System (1), (2) is invariant under 〈Pµ, Jµν ,D〉 with D = xσ∂σ − 2
kR∂R, k �= 0

if and only if

F = RkG

(
RµRµ

R2+k
,
θµθµ

Rk
,
θµRµ

R1+k

)
,

where G is an arbitrary continuously differentiable function.
(iii) System (1), (2) is invariant under 〈Pµ, Jµν ,D0〉 with D0 = xσ∂σ if and only

if

F = RµRµG

(
R,

θµθµ

RµRµ
,

θµRµ

RµRµ

)
,

where G is an arbitrary continuously differentiable function.
(iv) System (1), (2) is invariant under 〈Pµ, Jµν ,D,Kµ〉 with D = xσ∂σ − R∂R

and Kµ = 2xµD − x2∂µ if and only

F = R2G

(
θµθµ

R2

)
,

where G is an arbitrary continuously differentiable function of one variable.
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The last case contains, as expected, case (i) of Theorem 2 when we choose G(ξ) =
ξ − λR2. Each of the resulting equations in the above result is invariant under the
operator M and so one can use the ansatz defined by M to reduce the equation but
we do not always obtain a nice Schrödinger equation. If we ask now for invariance
under the operator L = R∂R (it is the operator L of case (v), Theorem 2, expressed
in the amplitude-phase form), then we obtain some other types of restrictions:
Theorem 4. (i) System (1), (2) is invariant under 〈Pµ, Jµν , L〉 if and only if

F = G

(
RµRµ

R2
, θµθµ,

Rµθµ

R

)
.

(ii) System (1), (2) is invariant under 〈Pµ, Jµν ,D0, L〉 with D0 = xσ∂σ if and only
if

F =
RµRµ

R2
G

(
R2θµθµ

RµRµ
,
RθµRµ

RµRµ

)
.

(iii) System (1), (2) is invariant under 〈Pµ, Jµν ,Kµ, L〉, where Kµ = 2xµxσ∂σ −
x2∂µ − 2xµR∂R, if and only if

F = κθµθµ,

where κ is a constant.
The last case (iii) gives us the wave equation

�Ψ = (κ − 1)
jµjµ

|Ψ|4 Ψ,

where jµ = 1
2i

[
Ψ̄Ψµ − ΨΨ̄µ

]
, which is the current of the wave-function Ψ. For κ = 1,

we recover the free complex wave equation. This equation, being invariant under
both M and N , can be reduced by the ansatzes they give rise to. In fact, with the
ansatz (obtained with L)

Ψ = e(εx)/2Φ(αx, βx, δx)

with ε, α isotropic 4-vectors with εα = 1, and β, δ two space-like orthogonal 4-vectors,
the above equation reduces to the equation

Φτ = �Φ − (κ − 1)
�j ·�j
|Φ|4 Φ,

where τ = αx and � = ∂2/∂y2
1 + ∂2/∂y2

2 with y1 = βx, y2 = δx, and we have

�j =
1
2i

[Φ̄∇Φ − Φ∇Φ̄].

These results show what nonlinearities are possible when we require the invariance
under subalgebras of the conformal algebra in the given representation. The above
equations are all related to the Schrödinger or heat equation. There are good reasons
for looking at conformally invariant equations, not least physically. As mathematical
reasons, we would like to give the following examples. First, note that the equation

�p,qΨ = 0, (3)
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where

�p,q = gAB∂A∂B, A,B = 1, . . . , p, p + 1, . . . , p + q

with gAB = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

), is invariant under the algebra generated by

the operators

∂A, JAB = xA∂B − xB∂A, KA = 2xAxB∂B − x2∂A − 2xA

(
Ψ∂Ψ + Ψ∂Ψ

)
,

D = xB∂B , M = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L =

(
Ψ∂Ψ + Ψ∂Ψ

)
,

L1 = i
(
Ψ∂Ψ − Ψ∂Ψ

)
, L2 = Ψ∂Ψ + Ψ∂Ψ,

namely the generalized conformal algebra AC(p, q) ⊕ 〈M,L,L1, L2〉 which contains
the algebra ASO(p, q). Here, ⊕ denotes the direct sum. Using the ansatz which the
operator M gives us, we can reduce equation (3) to the equation

i∂τΦ = �p−1,q−1Φ. (4)

This equation (4) is known in the literature: it was proposed by Feynman [7] in
Minkowski space in the form

i∂τΦ = (∂µ − Aµ)(∂µ − Aµ)Φ.

It was also proposed by Aghassi, Roman and Santilli [8] who studied the representation
theory behind the equation. Fushchych and Seheda [9] studied its symmetry properties
in the Minkowski space. The solutions of equation (4) give solutions of (3) [14]. We
have that equation (4) has a symmetry algebra generated by the following operators

T = ∂τ , PA = ∂A, JAB , GA = τ∂A − xAM,

D = 2τ∂τ + xA∂A − p + q − 2
2

L, M =
i

2
(Φ∂Φ − Φ̄∂Φ), L = (Φ∂Φ + Φ̄∂Φ),

S = τ2∂τ + τxA∂A − x2

2
M − τ(p + q − 2)

2
L

and this algebra has the structure [ASL(2, R) ⊕ AO(p − 1, q − 1)] � 〈L,M,PA, GA〉,
where � denotes the semidirect sum of algebras. This algebra contains the subalgebra
AO(p − 1, q − 1) � 〈T,M,PA, GA〉 with

[JAB , JCD] = gBCJAD − gACJBD + gADJBC − gBDJAC ,

[PA, PB ] = 0, [GA, GB ] = 0, [PA, GB ] = −gABM,

[PA, JBC ] = gABPC − gACPB , [GA, JBC ] = gABGC − gACGB ,

[PA,D] = PA, [GA;D] = GA, [JAB ,D] = 0, [PA, T ] = 0, [GA, T ] = 0,
[JAB , T ] = 0, [M,T ] = [M,PA] = [M,GA] = [M,JAB ] = 0,

It is possible to show that the algebra with these commutation relations is contained
in AO(p, q): define the basis by

T =
1
2
(P1 − Pq), M = P1 + Pq, GA = J1A + JqA,

JAB (A,B = 2, . . . , q − 1),
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and one obtains the above commutation relations. We see now that the algebra
AO(2, 4) (the conformal algebra AC(1, 3)) contains the algebra AO(1, 3)�〈M,PA, GA〉
which contains the Poincaré algebra AP (1, 3) = AO(1, 3)� 〈Pµ〉 as well as the Galilei
algebra AG(1, 3) = AO(3)� 〈M,Pa, Ga〉 (µ runs from 0 to 3 and a from 1 to 3). This
is reflected in the possibility of reducing

�2,4Ψ = 0

to

i∂τΦ = �1,3Φ

which in turn can be reduced to

�1,3Φ = 0.

4 Two nonlinear equations
In this final section, I shall mention two equations in nonlinear quantum mechanics
which are related to each other by our ansatz. They are

|Ψ|�Ψ − Ψ�|Ψ| = −κ|Ψ|Ψ (5)

and

iut + �u =
�|u|
|u| u. (6)

We can obtain equation (6) from equation (5) with the ansatz

Ψ = ei(κτ−(εx)/2)u(τ, βx, δx),

where τ = αx = αµxµ and ε, α, β, δ are constant 4-vectors with α2 = ε2 = 0,
β2 = δ2 = −1, αβ = αδ = εβ = εδ = 0, αε = 1.

Equation (5), with κ = m2c2/�
2 was proposed by Vigier and Guéret [11] and by

Guerra and Pusterla [12] as an equation for de Broglie’s double solution. Equation (6)
was considered as a wave equation for a classical particle by Schiller [10] (see also [13]).

For equation (5), we have the following result:
Theorem 5 (Basarab-Horwath, Fushchych, Roman [3, 4]). Equation (5) with
κ > 0 has the maximal point-symmetry algebra AC(1, n+1)⊕Q generated by operators

Pµ, Jµν , Pn+1, Jµn+1, D(1), K(1)
µ , K

(1)
n+1, Q,

where

Pµ =
∂

∂xµ
, Jµν = xµPν − xνPµ, Pn+1 =

∂

∂xn+1
= i(u∂u − u∗∂u∗),

Jµn+1 = xµPn+1 − xn+1Pµ, D(1) = xµPµ + xn+1Pn+1 − n

2
(Ψ∂Ψ + Ψ∗∂Ψ∗),

K(1)
µ = 2xµD(1) − (xµxµ + xn+1x

n+1)Pµ,

K
(1)
n+1 = 2xn+1D

(1) − (xµxµ + xn+1x
n+1)Pn+1, Q = Ψ∂Ψ + Ψ∗∂Ψ∗ ,
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where the additional variable xn+1 is defined as

xn+1 = −xn+1 =
i

2
√

κ
ln

Ψ∗

Ψ
, κ > 0.

For κ < 0 the maximal symmetry algebra of (9) is AC(2, n) ⊕ Q generated by the
same operators above, but with the additional variable

xn+1 = xn+1 =
i

2
√−κ

ln
Ψ∗

Ψ
, κ < 0.

In this result, we obtain new nonlinear representations of the conformal algebras
AC(1, n + 1) and AC(2, n). It is easily shown (after some calculation) that equation
(5) is the only equation of the form

�u = F (Ψ,Ψ∗,∇Ψ,∇Ψ∗,∇|Ψ|∇|Ψ|,�|Ψ|)Ψ
invariant under the conformal algebra in the representation given in Theorem 5. This
raises the question whether there are equations of the same form conformally invariant
in the standard representation

Pµ =
∂

∂xµ
, Jµν = xµPν − xνPµ,

D = xµPµ − n − 1
2

(Ψ∂Ψ + Ψ∗∂Ψ∗), Kµ = 2xµD − x2Pµ.

There are such equations [3] and [4], for instance:

�Ψ = |Ψ|4/(n−1)F
(
|Ψ|(3+n)/(1−n)�|Ψ|

)
Ψ, n �= 1,

�u = �|u|F
(

�|u|
(∇|u|)2 , |u|

)
u, n = 1,

4�Ψ =
{

�|Ψ|
|Ψ| + λ

(�|Ψ|)n

|Ψ|n+4

}
Ψ, n arbitrary,

�Ψ = (1 + λ)
�|Ψ|
|Ψ| Ψ,

�Ψ =
�|Ψ|
|Ψ|

(
1 +

λ

|Ψ|4
)

Ψ,

�Ψ =
�|Ψ|
|Ψ|

(
1 +

λ

1 + σ|Ψ|4
)

Ψ.

Again we see how the representation dictates the equation.
We now turn to equation (6). It is more convenient to represent it in the amplitude-

phase form u = Reiθ:

θt + ∇θ · ∇θ = 0, (7)

Rt + �θ + 2∇θ · ∇R = 0. (8)

Its symmetry properties are given in the following result:
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Theorem 6 (Basarab-Horwath, Fushchych, Lyudmyla Barannyk [5, 6]). The
maximal point-symmetry algebra of the system of equations (7), (8) is the algebra with
basis vector fields

Pt = ∂t, Pa = ∂a, Pn+1 =
1

2
√

2
(2∂t − ∂θ), N = ∂R,

Jab = xa∂b − xb∂a, J0 n+1 = t∂t − θ∂θ,

J0a =
1√
2

(
xa∂t + (t + 2θ)∂xa

+
1
2
xa∂θ

)
,

Ja n+1 =
1√
2

(
−xa∂t + (t − 2θ)∂xa

+
1
2
xa∂θ

)
,

D = −
(
t∂t + xa∂a + θ∂θ − n

2
∂R

)
,

K0 =
√

2
((

t +
�x2

2

)
∂t + (t + 2θ)xa∂xa

+
(

�x2

4
+ 2θ2

)
∂θ − n

2
(t + 2θ)∂R

)
,

Kn+1 = −
√

2
((

t − �x2

2

)
∂t + (t − 2θ)xa∂xa

+
(

�x2

4
− 2θ2

)
∂θ − n

2
(t − 2θ)∂R

)
,

Ka = 2xaD − (4tθ − �x2)∂xa
.

The above algebra is equivalent to the extended conformal algebra AC(1, n+1)⊕
〈N〉. In fact,with new variables

x0 =
1√
2
(t + 2θ), xn+1 =

1√
2
(t − 2θ) (9)

the operators in Theorem 1 can be written as

Pα = ∂α, Jαβ = xα∂β − xβ∂α, N = ∂R,

D = −xα∂α +
n

2
N, Kα = −xαD − (xµxµ)∂α.

(10)

Exact solutions of system (7), (8) using symmetries have been given in [5] and
in [6]. Some examples of solutions are the following (we give the subalgebra, ansatz,
and the solutions):
A1 = 〈J12 + dN,P3 + N,P4〉 (d ≥ 0)
Ansatz:

θ = −1
2
t + f(ω), R = x3 − d arctan

(
x1

x2

)
+ g(ω), ω = x2

1 + x2
2.

Solution:

θ = −1
2
t + ε

√
x2

1 + x2
2

2
+ C1, ε = ±1,

R = x3 + d arctan
(

x1

x2

)
− 1

4
ln(x2

1 + x2
2) + C2,

where C1, C2 are constants.
A4 = 〈J04 + dN, J23 + d2N,P2 + P3〉
Ansatz:

θ =
1
t
f(ω), R = d ln |t| + g(ω), ω = x1.
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Solution:

θ =
(x1 + C1)2

4t
, R = d ln |t| −

(
d +

1
2

)
ln |x1 + C1| + C2.

A9 = 〈J01, J02, J03, J12, J13, J23〉
Ansatz:

θ =
1
4t

f(ω) +
x2

1 + x2
2 + x2

3

4t
, R = g(ω), ω = θ − 1

2
t.

Solution:

θ =
�x2 − 4C1t + 8C2

1

4t − 8C1
, R = −3

2
ln

∣∣∣∣�x
2 − 2(t − 2C1)2

t − 2C1

∣∣∣∣ + C2.

A14 = 〈J04 + a1N,D + a2N,P3〉, (a1, a2 arbitrary)
Ansatz:

θ =
x2

1

t
f(ω), R = g(ω) + a1 ln |t| −

(
a1 + a2 +

3
2

)
ln |x1|, ω =

x1

x2
.

Solution:

θ =
x2

1

t
, R = a1 ln |t| +

(
a2 − a1 +

1
2

)
ln |x1| − 2(a2 + 1) ln |x2| + C.
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