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Reduction of self-dual Yang–Mills equations
with respect to subgroups of the extended
Poincaré group
V.I. LAHNO, W.I. FUSHCHYCH

For the vector potential of the Yang–Mills field in the Minkowski space R(l, 3), we
construct the ansatze that are invariant under three-parameter subgroups of the
extended Poincaré group P̃ (1, 3). We perform the symmetry reduction of self-dual
Yang–Mills equations to systems of ordinary differential equations.

1 Introduction
Classical SU(2)-invariant Yang–Mills equations (YME) comprise a system of twelve
nonlinear partial differential equations (PDE) of the second order in the Minkowski
space R(1, 3). On the other hand, once the Yang–Mills potentials satisfy the self-
duality conditions, the YME are automatically satisfied. This allows one to construct
a broad subclass of solutions to the YME using the condition of self-duality, which
amounts to a system of nine first-order PDE,

Fµν =
i

2
εµνγδF

γδ, (1)

where Fµν = ∂µ �Aν − ∂ν �Aµ + e �Aµ × �Aν is the Yang–Mills strength-tensor, εµνγδ

is the rank-four antisymmetric tensor, and e is the gauge coupling constant, with
µ, ν, γ, δ,= 0, 3. Equations (1) are called the self-dual Yang–Mills equations (SDYME).

Self-duality properties have allowed exact solutions to YME to be explicitly con-
structed, starting with the ansatze for the Yang–Mills fields proposed by Wu and
Yang, Rosen, ’t Hooft, Corrigan and Fairlie, Wilczek, and Witten. One should also
note the Atiyah–Drinfeld–Hitchin–Manin construction that has been applied in the
construction of instanton solutions to YME (see reviews [1, 2] and the bibliographies
cited therein).

Recently, increasing interest has been given to SDYME and the corresponding Lax
pairs in the Euclidean space R(4) in view of the possibility of reducing them to classical
integrable equations (Euler–Arnold, Burgers, Kadomtsev–Petviashvili, Liouville, and
others). This problem was considered, in particular, in [3–5], where reduction with
respect to translations was performed. In [6], SDYME were reduced with respect to all
subgroups of the Euclidean group E(4), while in [7, 8], SDYME and the corresponding
Lax pairs in four- dimensional Minkowski space with the signature (+ + −−) were
reduced with respect to Abelian subgroups of the Poincaré group P (2, 2).

In this paper, we continue our investigation of the problem of the symmetry
reduction of YME and SDYME in the Minkowski space R(1, 3). It is known [9] that the
maximal symmetry group (according to Lie) of the YME is the group C(1, 3)⊗SU(2);
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this group also preserves SDYME (1). The presence of high symmetry allows one to
apply the method of symmetry reduction [10, 11] to the equations and, further, to
obtain exact solutions. Several conformally invariant solutions of YME were found
in [12] (see, also, [13]). A systematic investigation of conformally invariant reductions
of YME and SDYME was initiated in [14, 15], where YME and SDYME (1) were
reduced, with respect to three-parameter subgroups of the Poincaré group P (1, 3), to
systems of ordinary differential equations (ODE) and new solutions to the YME were
constructed. The unified form of the P (1, 3)-invariant ansatze made it possible [16] to
perform a direct reduction of the YME to systems of ODE and to obtain conditionally
invariant solutions of the YME. In this paper, we consider the symmetry reduction
of SDYME (1) to systems of ODE that correspond to three-parameter subgroups of
the extended Poincaré group P̃ (1, 3).

The paper is organized as follows. In Section 2, we consider the general procedure
for constructing linear ansatze. Section 3 is devoted to the derivation of the unified
form of P̃ (1, 3)-invariant ansatze and to the reduction of SDYME (1) to systems of
ODE. In the last section, we consider some of the reduced systems and obtain exact
real solutions of (1).

2 Linear form of P̃ (1, 3)-invariant ansatze
As noted above, SDYME (1) are invariant under the conformal group C(1, 3), in which
the generators

Pµ = ∂µ, Jµν = xµ∂ν − xν∂µ + Amµ ∂

∂Am
ν

− Amν ∂

∂Am
µ

,

D = xµ∂µ − Am
µ

∂

∂Am
µ

,

(2)

span a subgroup isomorphic to the extended Poincaré group P̃ (1, 3). Here, ∂µ =
∂

∂xµ
, with µ, ν = 0, 3 and m,n = 0, 3. Here and henceforth, we sum over repeated

indices (from 0 to 3 for the indices µ, ν, γ, δ, σ = 0, 3, and from 1 to 3 for m,n =
1, 3). The indices µ, ν, γ, δ, and σ are raised and lowered by the metric tensor gµν =
diag (1,−1,−1,−1).

Let AP̃ (1, 3) be the extended Poincaré algebra whose basis is given by genera-
tors (2) and let AP̃ (1, 3) be the extended Poincaré algebra generated by the vector
fields

P (1)
µ = ∂µ, J (1)

µν = xµ∂ν − xν∂µ, D = xµ∂µ.

In the classical approach, due to Lie [10, 11], symmetry reduction of SDYME (1)
to systems of ODE is associated with those subalgebras L of AP̃ (1, 3) that satisfy
the condition r = r(1) = 3, where r is the rank of L and r(1) is the rank of the
projection of L onto AP̃ (1)(1, 3). As can be easily seen, we have dim L = r = 3, which
means that in order to perform the reduction, we need to know the three-dimensional
subalgebras of AP̃ (1, 3) satisfying the above condition. Taking into account that
SDYME (1) are invariant under the conformal group C(1, 3), we can restrict ourselves
to the three-dimensional subalgebras of AP̃ (1, 3) determined up to conformal conjuga-
tion. Such subalgebras of the AP̃ (1, 3) algebra are known [17, 18]. Since the case of
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the Poincaré algebra AP (1, 3) has been considered in [14, 15], we limit ourselves to
those subalgebras of AP̃ (1, 3) that are not C(1, 3)-conjugates to the subalgebras of
AP (1, 3). We use the results and notation of [18], in particular, the fact that the
list of three-dimensional subalgebras of AP̃ (1, 3) that are not conjugate to the three-
dimensional subalgebras of AP (1, 3) is exhausted, up to C(1, 3)-conjugation, by the
following algebras:

L1 = 〈D,P0, P3〉, L2 = 〈J12 + αD,P0, P3〉,
L3 = 〈J12,D, P0〉, L4 = 〈J12,D, P3〉,
L5 = 〈J03 + αD,P0, P3〉, L6 = 2〈J03 + αD,P1, P2〉,
L7 = 〈J03 + αD,M,P1〉 (α �= 0), L8 = 〈J03 + D + 2T, P1, P2〉,
L9 = 〈J02 + D + 2T,M,P1〉, L10 = 〈J03,D, P1〉,
L11 = 〈J03,D,M〉, L12 = 〈J12 + αJ03 + βD,P0, P3〉,
L13 = 〈J12 + αJ03 + βD,P1, P2〉,
L14 = 〈J12 + α(J03 + D + 2T ), P1, P2〉, L15 = 〈J12 + αJ03,D,M〉,
L16 = 〈J03 + αD, J12 + βD,M〉, (0 ≤ |α| ≤ 1, β ≥ 0, |α| + |β| �= 0),
L17 = 〈J03 + D + 2T, J12 + αT,M〉 (α ≥ 0),
L18 = 〈J03 + D,J12 + 2T,M〉, L19 = 〈J03, J12,D〉,
L20 = 〈G1, J03 + αD,P2〉 (0 < |α| ≤ 1), L21 = 〈J03 + D,G1 + P2,M〉,
L22 = 〈J03 − D + M,G1, P2〉, L23 = 〈J03 + 2D,G1 + 2T,M〉,
L24 = 〈J03 + 2D,G1 + 2T, P2〉.

(3)

Here, M = P0+P3, G1 = J01−J13, and T = 1
2 (P0−P3); also, α, β > 0 unless explicitly

stated otherwise. In what follows, α and β take on the values given in list (3).
Note that all of the subalgebras Lj (j = 1, 24) satisfy the condition r = r(1) = 3.
Let us demonstrate that, similar to [14, 15, 19], the ansatz for the �Aµ fields can

be taken, without any loss of generality, in the linear form

�Aµ(x) = Λ(x) �Bµ(ω), (4)

where Λ(x) is a known square nondegenerate order-12 matrix and �Bµ(ω) are new
unknown vector-functions of the independent variable ω = ω(x), with x = (x0, x1, x2,
x3) ∈ R(1, 3).

Obviously, the fact that the sought for ansatz is linear requires that the algebra
Lj contain an invariant ω(x) independent of �Aµ, as well as twenty linear invariants
of the form

fm
µ0(x)Am

0 + fm
µ1(x)Am

1 + fm
µ2(x)Am

2 + fm
µ3(x)Am

3 ,

which are functionally dependent as functions of Am
0 , Am

1 , Am
2 , and Am

3 . These invari-
ants can be considered as components of a vector F �A, where F = (fm

µν(x)), while

�A =




�A0

�A1

�A2

�A3


 .
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Here, the matrix F is nondegenerate in some domain in R(1, 3). According to the
theorem on the conditional existence of invariant solutions [11], the ansatz F �A = �B(ω)
results in a reduction of system (1) to a system of ODE that relates the independent
variable ω, the sought for functions Bm

µ , and the first derivatives thereof. Setting
Λ = F−1(x), we arrive at ansatz (4).

Let L = 〈X1,X2,X3〉 be one of the subalgebras of AP̃ (1, 3) from list (3), with Xk

being an operator of form (2), i.e.,

Xk = ξkm(x)∂µ + ρmσλ(x)Am
λ

∂

∂Am
σ

(k = 1, 2, 3).

The function fn
δγ(x)An

γ is an invariant of the operator Xk if and only if

ξkµ(x)
∂fn

δγ(x)
∂xµ

An
γ + ρkσλ(x)An

λfn
δσ(x) = 0

or

ξkµ(x)
∂fn

δγ(x)
∂xµ

+ fn
δσ(x)ρkσγ(x) = 0 (5)

for all values of γ. Let F (x) = (fn
δσ(x)) and Γk(x) = (ρkσγ(x)) be square matrices

of order 12. Then the second term on the left-hand side of (5) is an element of the
matrix F (x)Γk(x).

These observations lead us to the following theorem.
Theorem 1. The system of functions fn

δγ(x)An
γ is a system of functional invariants of

a subalgebra L if and only if F = (fn
δσ(x)) is a nondegenerate matrix in some domain

of R(1, 3) and satisfies the system of equations

ξkµ(x)
∂F (x)
∂xµ

+ F (x)Γk(x) = 0 (k = 1, 2, 3). (6)

Similarly, the function ω(x) is an invariant of the operator Xk if and only if Xkω = 0,
i.e.,

ξkµ(x)
∂ω

∂xµ
= 0. (7)

Since all of the algebras Lj satisfy the condition

rank ‖ξkµ(x)‖ = 3,

systems (6) and (7) are compatible.
Theorem 1 assigns a matrix Γk to every generator Xk of the subalgebra L of

AP̃ (1, 3). Let us indicate the explicit form of these matrices for all generators (2) of
the algebra AP̃ (1, 3).

Since the operator Pµ is independent of ∂
∂Am

µ
, the corresponding Γ is a zero matrix.

Denote by −Sµν the Γ-matrix that corresponds to the operator Jµν . It is easy to verify
that

S01 =




0 −I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 , S02 =




0 0 −I 0
0 0 0 0
−I 0 0 0
0 0 0 0


 ,
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S03 =




0 0 0 −I
0 0 0 0
0 0 0 0
−I 0 0 0


 , S12 =




0 0 0 0
0 0 −I 0
0 I 0 0
0 0 0 0


 ,

S13 =




0 0 0 0
0 0 0 −I
0 0 0 0
0 I 0 0


 , S23 =




0 0 0 0
0 0 0 0
0 0 0 −I
0 0 I 0


 ,

where 0 is the zero and I is the unit matrix of order 3.
The D operator corresponds to the matrix −E, where E is the unit order-12

matrix.
The above matrices determine a matrix representation of the algebra AQ̃(1, 3) =

AQ(1, 3) ⊕ 〈D〉, because

[Sµν , Sδγ ] = gµγSνδ + gνδSµγ − gµδSνγ − gνγSµδ, [E,Sµν ] = 0.

Let a = (1, 0, 0, 0), b = (0, 1, 0, 0), c = (0, 0, 1, 0), d = (0, 0, 0, 1), and k = a + d.
Denote by aµ, bµ, cµ, and dµ, the µth component of the vectors a, b, c, and d,
respectively. Then,

x0 = ax = aµxµ, x1 = −bx = −bµxµ,

x2 = −cx = −cµxµ, x3 = −dx = −dµxµ.

Theorem 2. For every subalgebra Lj (j = 1, . . . , 24) from list (3), there exists a linear
ansatz (4), in which ω is a solution to system (7) and

Λ−1 = exp{− log θE} exp{θ0S03} exp{−θ1S12} exp{−2θ2(S01 − S13)}.
Moreover, the functions θ, θ0, θ1, θ2 and ω can be represented as follows:

L1 : θ = |bx|−1, θ0 = θ1 = θ2 = 0, ω = cx(bx)−1,

L2 : θ = Ψ− 1
2

1 , θ0 = θ2 = 0, θ1 = Φ, ω = log Ψ1 + 2Φ,

L3 : θ = |dx|−1, θ0 = θ2 = 0, θ1 = Φ, ω = Ψ1(dx)−2,

L4 : θ = |ax|−1, θ0 = θ2 = 0, θ1 = Φ, ω = Ψ1(ax)−2,

L5 : θ = |bx|−1, θ0 = α−1 log |bx|, θ1 = θ2 = 0, ω = cx(bx)−1,

L6 : θ = |Ψ2|− 1
2 , θ0 =

1
2

log |(ax − dx)(kx)−1|, θ1 = θ2 = 0,

ω = (1 − α) log |ax − dx| + (1 + α) log |kx|,
L7 : θ = |cx|−1, θ0 = α−1 log |cx|, θ1 = θ2 = 0, ω = |kx|α|cx|1−α,

L8 : θ = |ax − dx|− 1
2 , θ0 =

1
2

log |ax − dx|, θ1 = θ2 = 0,

ω = kx − log |ax − dx|,
L9 : θ = |cx|−1, θ0 = log |cx|, θ1 = θ2 = 0, ω = kx − 2 log |cx|,
L10 : θ = |cx|−1, θ0 = log |(ax − dx)(cx)−1|, θ1 = θ2 = 0,

ω = Ψ2(cx)−2,

L11 : θ = |cx|−1, θ0 = − log |(kx(cx)−1|, θ1 = θ2 = 0, ω = cx(bx)−1,
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L12 : θ = Ψ− 1
2

1 , θ0 = −αΦ, θ1 = Φ, θ2 = 0, ω = log Ψ1 + 2βΦ,

L13 : θ = |Ψ2|− 1
2 , θ0 =

1
2

log |(ax − dx)(kx)−1|,

θ1 = − 1
2α

log |(ax − dx)(kx)−1|, θ2 = 0,

ω = (α − β) log |ax − dx| + (α + β) log |kx|,
L14 : θ = |ax − dx|− 1

2 , θ0 =
1
2

log |ax − dx|, θ1 = −1
2

log |ax − dx|,
θ2 = 0, ω = kx − log |ax − dx|,

L15 : θ = Ψ− 1
2

1 , θ0 = −αΦ, θ1 = Φ, θ2 = 0, ω = log[Ψ1(kx)−2] + 2αΦ,

L16 : θ = Ψ− 1
2

1 , θ0 =
1
2

log |Ψ1(kx)−2], θ1 = Φ, θ2 = 0,

ω = log[Ψ1−α
1 (kx)2α] + 2βΦ,

L17 : θ = Ψ− 1
2

1 , θ0 =
1
2

log Ψ1, θ1 = Φ, θ2 = 0, ω = kx − log Ψ1 + 2αΦ,

L18 : θ = Ψ− 1
2

1 , θ0 =
1
2

log Ψ1, θ1 = Φ, θ2 = 0, ω = kx + 2Φ,

L19 : θ = Ψ− 1
2

1 , θ0 = −1
2

log |kx(ax − dx)−1|, θ1 = Φ, θ2 = 0,

ω = Ψ1|Ψ2|−1,

L20 : θ = |Ψ3|− 1
2 , θ0 =

1
2α

log |Ψ3|, θ1 = 0, θ2 =
1
2
bx(kx)−1,

ω = |kx|2α|Ψ3|1−α,

L21 : θ = |cxkx − bx|−1, θ0 = log |cxkx − bx|−1, θ1 = 0, θ2 =
1
2
cx,

ω = kx,

L22 : θ = |kx|− 1
2 , θ0 = −1

2
log |kx|, θ1 = 0, θ2 =

1
2
bx(kx)−1,

ω = ax − dx + log |kx| − (bx)2(kx)−1,

L23 : θ = |cx|−1, θ0 =
1
2

log |cx|, θ1 = 0, θ2 = −1
4
kx,

ω = [4bx + (kx)2](cx)−1,

L24 : θ = |4bx + (kx)2|−1, θ0 =
1
2

log |4bx + (kx)2|, θ1 = 0, θ2 = −1
4
kx,

ω =
[
ax − dx + bxkx +

1
6
(kx)3

]2

[4bx + (kx)2]−3.

Here, Φ = arctan cx
bx , Ψ1 = (bx)2 + (cx)2, Ψ2 = (ax)2 − (dx)2, and Ψ3 = (ax)2 −

(bx)2 − (dx)2.
Proof. All of the cases are analyzed similarly, so we can limit ourselves to the
subalgebra L2 = 〈J12 + αD,P0, P3〉.

According to Theorem 1, the entries of column Λ−1 �A are invariants of the subal-
gebra L2 if and only if

−x1
∂Λ
∂x2

+ x2
∂Λ
∂x1

+ α

(
xµ

∂Λ
∂xµ

)
−Λ(S12 + αE) = 0,

∂Λ
∂x0

= 0,
∂Λ
∂x3

= 0.(8)
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The last two equations in (8) demonstrate that Λ = Λ(x1, x2), while the first equation
implies that one can set θ0 = θ2 = 0 in the expression for Λ. By the Campbell–
Hausdorff formula, we have, in this case,

ξµ
∂Λ
∂xµ

= −Λξµ

(
∂θ

∂xµ
+

∂θ1

∂xµ

)
.

Hence, the common factor of Λ can be canceled from the left on the left-hand side
of the first equation in (8), which gives an equation whose left-hand side can be
represented as a combination of the matrices E and S12. Equating the coefficients in
these combinations to zero, we arrive at the system of equations below:

1
θ

{
x1

∂θ

∂x2
− x2

∂θ

∂x1
− α

(
x1

∂θ

∂x1
+ x2

∂θ

∂x2

)}
− α = 0,

x1
∂θ1

∂x2
− x2

∂θ1

∂x1
− α

(
x1

∂θ1

∂x1
+ x2

∂θ1

∂x2

)
− 1 = 0,

(9)

which is equivalent to (8). It is not difficult to verify that system (9) is satisfied by
the functions

θ = (x2
1 + x2

2)
− 1

2 = [(bx)2 + (cx)2]−
1
2 , θ1 = arctan

x2

x1
= arctan

cx

bx
.

Equations (7) for ω(x) are of the form

−x1
∂ω

∂x1
+ x2

∂ω

∂x2
+ α

(
xµ

∂ω

∂xµ

)
= 0,

∂ω

∂x0
= 0,

∂ω

∂x1
= 0.

This implies that

ω = log(x2
1 + x2

2) + 2 arctan
x2

x1
= log[(bx)2 + (cx)2] + 2 arctan

cx

bx
,

which proves the theorem.

3 Covariant form of the linear ansatz
and symmetry reduction of SDYME

By Theorem 2, the ansatze that correspond to the subalgebras Lj (j = 1, . . . , 24), are
of the linear form (4), where

Λ(x) = exp{2θ2(S01 − S13)} exp{θ1S12} exp{−θ0S03} exp{log θE}.
Thus, it follows that

Λ = θ




[cosh θ0 + 2θ2
2e

−θ0 ] 2[−θ2 cos θ1] 2[θ2 sin θ1] [sinh θ0 + 2θ2
2e

−θ0 ]
2[−θ2e

−θ0 ] [cos θ1] [− sin θ1] 2[θ2e
−θ0 ]

[0] [sin θ1] [cos θ1] [0]
[sinh θ0 + 2θ2

2e
−θ0 ] 2[−θ2 cos θ1] 2[θ2 sin θ1] [cosh θ0 − 2θ2

2e
−θ0 ]


 ,

where [f ] denotes [f ] = f · I and I is a unit matrix of order 3.
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In view of the above, ansatz (4) can be represented in the following form:

�A0 = θ[cosh θ0
�B0 + sinh θ0

�B3 + 2θ2
2e

−θ0( �B0 − �B3) + 2θ2(sin θ1
�B2 − cos θ1

�B1)],
�A1 = θ[cos θ1

�B1 − sin θ1
�B2 − 2θ2e

−θ0( �B0 − �B3)],
�A2 = θ[sin θ1

�B1 + cos θ1
�B2],

�A3 = θ[sinh θ0
�B0 + cosh θ0

�B3 + 2θ2e
−θ0( �B0 − �B3) + θ2(sin θ1

�B2 − cos θ1
�B1)],

(10)

and, as is not difficult to verify,

�Aµ = aµ
�A0 + bµ

�A1 + cµ
�A2 + dµ

�A3,

�B0 = aν
�Bν , �B1 = −bν

�Bν , �B2 = −cν
�Bν , �B3 = −dν

�Bν ,

where aµ, bµ, cµ, and dµ are the µth components of the vectors a, b, c, and d, respec-
tively, given in Section 2.

In these notations, the linear ansatz (10), as well as the linear ansatz (4) can be
represented as

�Aµ(x) = θaµν(x) �Bν(ω) = θ{(aµaν − dµdν) cosh θ0 + (dµaν − dνaµ) sinh θ0 +

+ 2(aµ + dµ)[θ2 cos θ1bν − θ2 sin θ1cν + θ2
2e

−θ0(aν + dν)] +

+ (bµcν − bνcµ) sin θ1 − (cµcν + bµbν) cos θ1 −
− 2e−θ0θ2bµ(aν + dν)} �Bν)} �Bν(ω).

(11)

The values taken by the functions θ, θ0, θ1, θ2, and ω in (11) are given in Theorem 2
for each of the subalgebras Lj (j = 1, . . . , 24).

Thus, we have written the P̃ (1, 3)-invariant ansatz for the �Aµ(x) fields in a mani-
festly covariant form.

Let us note that ansatz (11) can be obtained from (10) by applying the proliferation
formulas that correspond to the Lorentz group AO(1, 3) to the functions �Aµ from (10)
with the generators (2) (see, for instance, [14, 15]). Therefore, the vectors a, b, c, and
d can be viewed as a general system of orthonormalized vectors in the Minkowski
space R(1, 3), which can be expressed as

aµaµ = −bµbµ = −cµcµ = −dµdµ = 1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.

The unified form of the P̃ (1, 3)-invariant ansatze derived in (11) allows us to perform
the reduction of SDYME (1) in the general form.
Lemma. The ansatz (11) allows one to reduce SDYME (1) to the system

Tµν =
i

2
εµνσδT

σδ, (12)

where

Tµν = Gµ(ω)
d �Bν(ω)

dω
− Gν(ω)

d �Bµ(ω)
dω

+ Hµ(ω) �Bν(ω) −
− Hν(ω) �Bµ(ω) + Sµνγ(ω) �Bγ(ω) + e �Bµ(ω) × �Bν(ω).

(13)
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In (13), the functions Gµ(ω), Hµ(ω), and Sµνγ(ω) are determined from

θGγ = aµγ
∂ω

∂xµ
, Hγθ2 = aµγ

∂θ

∂xµ
, θSδσγ = aµ

δ

∂aµγ

∂xν
aνσ − aµ

σ

∂aµγ

∂xν
aνδ.

To prove the lemma, it suffices to substitute ansatz (11) into SDYME (1) and to
contract the resulting expression with the tensor aµ

σaν
δ , using the fact that aµν satisfies

aµ
νaµγ = gνγ .

According to the lemma, the construction of the reduced systems associated with
subalgebras Lj is tantamount to finding the functions Gγ(ω), Hγ(ω), and Sδσγ(ω)
for every such subalgebra. We skip the cumbersome calculations and give only the
explicit form of these functions for each of the subalgebras Lj in the following list:

L1 : Gγ = ε1(cγ − bγω), Hγ = −ε1bγ , Sδσγ = 0,

L2 : Gγ = 2(bγ + cγ), Hγ = −bγ , Sδσγ = (bδcσ − bσcδ)cγ ,

L3 : Gγ = 2
√

ω(bγ − ε2
√

ωdγ), Hγ = −ε2dγ , Sδσγ =
1√
ω

(cσbδ − bσcδ)cγ ,

L4 : Gγ = 2
√

ω(bγ − ε3
√

ωaγ), Hγ = −ε3aγ , Sδσγ =
1√
ω

(cσbδ − bσcδ)cγ ,

L5 : Gγ = ε1(cγ − bγω), Hγ = −ε1bγ ,

Sδσγ = ε1α
−1[bσ(dδaγ − dγaδ) − bδ(dσaγ − dγaσ)],

L6 : Gγ = ε4(1 − α)(aγ − dγ) + ε5(1 + α)kγ ,

Hγ = −1
2
ε6[ε5(aγ − dγ) + ε4kγ ],

Sδσγ =
1
2
[ε4(aγ − dγ) − ε5kγ ](aσdδ − aδdσ),

L7 : Gγ = ω[ε5αkγω− 1
α + ε7(1 − α)cγ ], Hγ = −ε7cγ ,

Sδσγ = ε7α
−1[cσ(aγdδ − dγaδ) − cδ(aγdσ − dγaσ)],

L8 : Gγ = kγ − ε4(aγ − dγ), Hγ = −1
2
ε4(aγ − dγ),

Sδσγ =
1
2
ε4[(aγ − dγ)(aσdδ − aδdσ)],

L9 : Gγ = kγ − 2ε7cγ , Hγ = −ε7cγ ,

Sδσγ = ε7[cσ(aγdδ − dγaδ) − cδ(aγdσ − dγaσ)],
L10 : Gγ = ε4[(aγ − dγ)ω + kγ ] − 2ε7cγω, Hγ = −ε7cγ ,

Sδσγ = ε4(aγ − dγ)(aσdδ) − aδdσ) − ε7cσ(aγdδ − dγaδ) +
+ ε7cδ(aγdσ − dγaσ),

L11 : Gγ = ε7ω(cγ − bγω), Hγ = −ε7cγ ,

Sδσγ = ε7[cσ(aγdδ − dγaδ) − cδ(aγdσ − dγaσ)] − ε5kγ(aσdδ − dσaδ),
L12 : Gγ = 2(bγ + βcγ), Hγ = −bγ ,

Sδσγ = cγ(cσbδ − cδbσ) − α[cσ(dδaγ − aδdγ) − cδ(dσaγ − aσdγ)],
L13 : Gγ = ε4(α − β)(aγ − dγ) + ε5(α + β)kγ ,

Hγ = −1
2
ε6[ε4kγ + ε5(aγ − dγ)],
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Sδσγ =
1
2
[ε4(aγ − dγ) − ε5kγ ](aσdδ − aδdσ) − 1

2α
[(ε4(aσ − dσ) −

− ε5kσ)(bδcγ − cδbγ) − (ε4(aδ − dδ) − ε5kδ)(bσcγ − cσbγ)],

L14 : Gγ = kγ − ε4(aγ − dγ), Hγ = −1
2
ε4(aγ − dγ),

Sδσγ =
1
2
ε4[(aγ − dγ)(aσdδ − aδdσ) − (aσ − dσ)(bδcγ − cδbγ) +

+ (aδ − dδ)(bσcγ − cσbγ)],

L15 : Gγ = 2(bγ + αcγ − kγe
1
2 ω), Hγ = −bγ ,

Sδσγ = cγ(cσbδ − cδbσ) − α[cσ(dδaγ − aδdγ) − cδ(dσaγ − aσdγ)],
L16 : Gγ = 2[(1 − α)bγ + αkγ + βcγ ], Hγ = −bγ ,

Sδσγ = cγ(cσbδ − cδbσ) − kγ(aσdδ − aδdσ) + bσ(dδaγ − aδdγ) −
− bδ(dσaγ − aσdγ),

L17 : Gγ = kγ − 2bγ + 2αcγ , Hγ = −bγ ,

Sδσγ = bσ(dδaγ − aδdγ) − bσ(dσaγ − aσdγ) + cγ(cσbδ − cδbσ),
L18 : Gγ = kγ + 2cγ , Hγ = −bγ ,

Sδσγ = bσ(dδaγ − aδdγ) − bδ(dσaγ − aσdγ) + cγ(cσbδ − cδbσ),
L19 : Gγ = 2bγω − ε6ω

√
ω(ε4kγ + ε5(aγ − dγ)), Hγ = −bγ ,

Sδσγ =
1
2
√

ω[ε4(aγ − dγ) − ε5kγ ](dδaσ − aδdσ) + cγ(bδcσ − cδbσ)

L20 : Gγ = ε5ω[(1 + α)kγω− 1
2α + ε8(1 − α)(aγ − dγ)ω

1
2α ],

Hγ = −1
2
ε5[kγω− 1

2α + ε8(aγ − dγ)ω
1
2α ],

Sδσγ = ε5[
1
2α

(kγω− 1
2α + ε8(aγ − dγ)ω

1
2α )(aσdδ − dσaδ) +

+ bγ(kδbσ − kσbδ)ω− 1
2α ],

L21 : Gγ = kγ , Hγ = −ε9[cγω − bγ ],
Sδσγ = ε9[(cσω − bσ)(aγdδ − dγaδ) − (cδω − bδ)(aγdσ − dγaσ)] +

+ cσ(kδbγ − kγbδ) − cδ(kσbγ − kγbσ),

L22 : Gγ = aγ − dγ + ε5kγ , Hγ = −1
2
ε5kγ ,

Sδσγ = ε5[bγ(kδbσ − kσbδ) − 1
2
kγ(aδdσ − dδaσ)],

L23 : Gγ = ε7(4bγ − ωcγ), Hγ = −ε7cγ ,

Sδσγ =
1
2
ε7[cσ(aγdδ − dγaδ) − cδ(aγdσ − dγaσ)] − 1

2
kγ(kδbσ − kσbδ),

L24 : Gγ =
√

|ω|
[
1
2
kγ + 2ε10(aγ − dγ)

]
− 12ε10ωbγ , Hγ = −4ε10bγ ,

Sδσγ = 2ε10[bσ(aγdδ − dδaδ) − bδ(aγdσ − dγaσ)] − 1
2
kγ(kδbσ − kσbδ).

Here, εk = 1 for ϕ > 0 and εk = −1 for ϕ < 0. The values of the functions ϕ for every
k are given in Table 1.
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Table 1
k ϕ k ϕ
1 bx 6 (ax)2 − (dx)2

2 dx 7 cx
3 ax 8 (ax)2 − (bx)2 − (dx)2

4 ax − dx 9 cxkx − bx
5 kx 10 4bx + (kx)2

4 On the exact real solutions of SDYME

Before we proceed to analyzing the reduced systems and constructing their exact
solutions, let us make the following remark. Whereas the YME and SDYME are real
in four-dimensional Euclidean space, in Minkowski space, the YME are a system of
real second-order PDE, while SDYME (1) are a system of complex first-order PDE.
Therefore, self-dual solutions to YME in Minkowski space are, in general, complex,
which is an undesirable property.

On the other hand, the systems of PDE that represent SDYME (1) (and, hence,
the reduced systems (12) and (13), as well) are not completely defined. Moreover, the
symmetry reduction of SDYME preserves their symmetric form, which allows one to
address the problem of finding real solutions of these equations. Clearly, the necessary
condition for building real solutions of the systems of equations (12) and (13) is given
by the equations

Tµν = 0, (14)

which lead us to another system of first-order ODE, this time an overdetermined one.
By imposing additional conditions on the functions �Bµ, we have succeeded, in some
cases, in reducing system (14) to an integrable form and in obtaining nontrivial real
non-Abelian solutions of SDYME (1). In what follows, we describe these cases in some
detail.

We use the notation �e1 = (1, 0, 0), �e2 = (0, 1, 0), and �e3 = (0, 0, 1). In order to
restore the explicit form of systems (13) and (14), we choose a = (1, 0, 0, 0), b =
(0, 1, 0, 0), c = (0, 0, 1, 0), and d = (0, 0, 0, 1).

The case of the L1 algebra. Let us set �B0 = λ0
�B and �B3 = λ3

�B, where λ0 and
λ3 are arbitrary real constants such that λ2

0 + λ2
3 �= 0. Equations (13) and (14) take

the following form:

ε1
d �B

dω
+ e �B2 × �B = 0,

ε1ω
d �B2

dω
+ ε1

d �B1

dω
+ ε1 �B2 − e �B1 × �B2 = 0,

ε1ω
d �B

dω
+ ε1 �B + e �B × �B1 = 0.

(15)

Further, let us assume that, in (15), �B = gm(ω)�em, �B1 = hm(ω)�em, and B2 = f(ω)�e2,
m = 1, 2, 3. Then the first two equations of (15) yield the following system for the
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functions gm, hm, and f :

ε1
dg1

dω
+ efg3 = 0, ε1

dh1

dω
+ efh3 = 0, ε1

dg2

dω
= 0,

ε1ω
df

dω
+ ε1

dh2

dω
+ ε1f = 0, ε1

dg3

dω
− eg1f = 0, ε1

dh3

dω
− eh1f = 0.

(16)

We set f = Cω−1 in (16), with C being an arbitrary constant. Then, g2 = C1 and
h2 = C2, where C1 and C2 are arbitrary constants, while the functions g1, g3, h1,
and h3 are to be determined from two similar systems of equations, which amounts
to solving the Euler equations. In particular, the system of equations for g1, g3 reads

ε1
dg1

dω
+ eCω−1g3 = 0, ε1

dg3

dω
− eCω−1g1 = 0,

from which we have the equation

ω2 d2g3

dω2
+ ω

dg3

dω
+ e2C2g3 = 0,

whose general solution is given by

g3 = C3 sin(eC log |ω| + C4),

and, thus,

g1 = ε1C3 cos(eC log |ω| + C4).

Similarly, we obtain

h1 = ε1C5 cos(eC log |ω| + C6). h3 = C5 sin(eC log |ω| + C6).

where C3, C4, C5, and C6 are arbitrary integration constants.
Finally, having checked the last of the equations in (15), we obtain the following

solution:

�B0 = λ0
�B, �B3 = λ3

�B, �B = gm(ω)�em, �B1 = hm(ω)�em, �B2 = f(ω)�e2,

where

g1 = ∓ε1C3 cos(eC1 log |ω| + C2), g2 = C3,

g3 = ∓C3 sin(eC1 log |ω| + C2), h1 = ±ε1e
−1 sin(eC1 log |ω| + C2),

h2 = −C1, h3 = ∓e−1 cos(eC1 log |ω| + C2), f = C1ω
−1,

(17)

and C1, C2, and C3 are arbitrary constants.
The case of the L9 algebra. Let �B0 = �B3 = �B and �B1 = �0. Then the systems

of equations (13) and (14) reduce to the equation

2ε7
d �B

dω
+

d �B2

dω
+ 2ε7 �B + e �B × �B2 = 0. (18)

Let us set �B2 = f(ω)�e2 and �B = g(ω)�e1 + h(ω)�e3. Then it follows from (18) that

2ε7
dg

dω
+ 2ε7g − efh = 0,

df

dω
= 0, 2ε7

dh

dω
+ 2ε7h + efg = 0,
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which is solved by the functions

f = C1, g = e−ωC2 sin
(

eC1

2
ω + C3

)
, h = ε7e

−ωC2 cos
(

eC1

2
ω + C3

)
, (19)

where C1, C2, and C3 are arbitrary integration constants.
The case of the L17 algebra. Setting �B0 = �B3 = �B, we obtain the following

reduction of the system of equations (14):

d �B1

dω
+ 2

d �B

dω
+ 2 �B + e �B × �B1 = 0,

2α
d�B

dω
− d �B2

dω
+ e �B2 × �B = 0,

2
d �B2

dω
+ 2α

d�B1

dω
+ 2 �B2 − e �B1 × �B2 = 0.

(20)

In (20), we set �B1 = λ1�e1, �B = f(ω)�e2 + g(ω)�e3, and �B2 = h(ω)�e2 + u(ω)�e3, where
λ1 �= 0 is an arbitrary constant. Then the functions f , g, h, and u can be determined
from the system of equations

2
df

dω
+ 2f + eλ1g = 0, 2

dh

dω
+ 2h + eλ1u = 0, 2

dg

dω
+ 2g − eλ1f = 0,

2
du

dω
+ 2u − eλ1h = 0, hg − uf = 0, 2α

df

dω
− dh

dω
= 0, 2α

dg

dω
− du

dω
= 0.

The general solution of the first four equations is given by the functions

f = C1e
−ω cos

(
λ1e

2
ω + C2

)
, g = C1e

−ω sin
(

λ1e

2
ω + C2

)
,

h = C3e
−ω cos

(
λ1e

2
ω + C4

)
, u = C3e

−ω sin
(

λ1e

2
ω + C4

)
,

where C1, C2, C3, and C4 are arbitrary constants. Having checked the last three
equations of the system, we arrive at the following solution of (20):

�B0 = �B3 = �B = f�e2 + g�e3, �B2 = h�e2 + u�e3, �B1 = C3�e1,

where

f = C1e
−ω cos

(
eC3

2
ω + C2

)
, g = C1e

−ω sin
(

eC3

2
ω + C2

)
,

h = 2αC1e
−ω cos

(
eC3

2
ω + C2

)
, u = 2αC1e

−ω sin
(

eC3

2
ω + C2

)
,

(21)

and C1, C2, and C3 are arbitrary constants, with C3 �= 0.
The case of the L18 algebra. In this case, we set �B0 = 1

2
�B2 = �B3 = �B. Then

Eqs. (14) reduce to the equation

d �B

dω
+ 2 �B + e �B × �B1 = 0. (22)
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In (22), let �B = λ�e3, �B1 = gm(ω)�em, m = 1, 2, 3, and λ �= 0 be an arbitrary constant.
Then we have the equations

dg1

dω
− eλg2 = 0,

dg2

dω
+ eλg1 = 0,

dg3

dω
+ 2λ = 0,

whose general solution is given by the functions

g1 = C1 sin(eλω + C2), g2 = C1 cos(eλω + C2), g3 = −2λω + C3,

with C1, C2, and C3 being arbitrary integration constants. Thus, we have constructed
the following solution to (22):

�B0 =
1
2

�B2 = �B3 = C4�e3,

�B1 = C1 sin(eC4ω + C2)�e1 + C1 cos(eC4ω + C2)�e2 + (C3 − 2C4ω)�e3,
(23)

where C1, C2, C3, and C4 are arbitrary integration constants, with C4 �= 0.
Inserting the solutions of the reduced equations found in (17), (19), (21), and

(23) into ansatz (10), we obtain, respectively, the following exact real solutions of
SDYME (1):

(1) �A0 = λ0|bx|−1[∓ε1C3 cos(eC1 log |cx(bx)−1| + C2)�e1 + C3�e2 ∓
∓ C3 sin(eC1 log |cx(bx)−1| + C2)�e3],

�A1 = |bx|−1[±ε1e
−1 sin(eC1 log |cx(bx)−1| + C2)�e1 − C1�e2 ∓

∓ e−1 cos(eC1 log |cx(bx)−1| + C2)�e3],
�A2 = ε1C1(cx)−1�e2,

�A3 = λ3|bx|−1[∓ε1C3 cos(eC1 log |cx(bx)−1| + C2)�e1 + C3�e2 ∓
∓ C3 sin(eC1 log |cx(bx)−1| + C2)�e3],

(2) �A0 = �A3 = (cx)2e−kxC2

[
sin

(
1
2
eC1(kx − 2 log |cx|) + C3

)
�e1 +

+ ε7 cos
(

1
2
eC1(kx − 2 log |cx|)|C3

)
�e3

]
,

�A1 = �0, �A2 = C1|cx|−1�e2,

(3) �A0 = �A3 = e−ωC1

[
cos

(
1
2
eC3ω + C2

)
�e2 + sin

(
1
2
eC3ω + C2

)
�e3

]
,

�A1 = [(bx)2 + (cx)2]−1
[
(bx)C3�e1 − 2αC1(cx)e−ω ×

×
(

cos
(

1
2
eC3ω + C2

)
�e2 + sin

(
1
2
eC3ω + C2

)
�e3

)]
,

�A2 = [(bx)2 + (cx)2]−1
[
(cx)C3�e1 + 2αC1(bx)e−ω ×

×
(

cos
(

1
2
eC3ω + C2

)
�e2 + sin

(
1
2
eC3ω + C2

)
�e3

)]
,

ω = kx − log[(bx)2 + (cx)2] + 2α arctan cx(bx)−1,
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(4) �A0 = �A3 = C4�e3,

�A1 = [(bx)2 + (cx)2]−1
[
C1(bx)(sin(eC4ω + C2)�e1 + cos(eC4ω + C2)�e2 +

+ (C3 − 2C4ω)�e3) − 2C4(cx)�e3

]
,

�A2 = [(bx)2 + (cx)2]−1
[
C1(cx)(sin(eC4ω + C2)�e1 + cos(eC4ω + C2)�e2 +

+ (C3 − 2C4ω)�e3) + 2C4(bx)�e3

]
, ω = kx + 2arctan(cx(bx)−1).

The values of ε1 and ε7 are given in Table 1, α is given in the list of subalgebras, and
λ0, λ3, C1, C2, C3, and C4 are arbitrary real constants.

Conclusions
In this paper, we have investigated the structure of P̃ (1, 3)-invariant ansatze for the
vector potential of the Yang–Mills field. The linear form we obtained for the ansatze
is reduced to a covariant form, which allows us to simplify considerably the procedure
for the symmetry reduction of SDYME (1) to systems of ODE. We have demonstrated
the possibility of constructing real solutions of SDYME (1).

Let us note that ansatz (11) can also be used for symmetry reduction in the
Minkowski space R(1, 3).
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