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Reduction of self-dual Yang—Mills equations
with respect to subgroups of the extended
Poincaré group

V.I. LAHNO, W.I. FUSHCHYCH

For the vector potential of the Yang—Mills field in the Minkowski space R(l,3), we
construct the ansatze that are invariant under three-parameter subgroups of the
extended Poincaré group ﬁ’(l,S). We perform the symmetry reduction of self-dual
Yang—Mills equations to systems of ordinary differential equations.

1 Introduction

Classical SU(2)-invariant Yang-Mills equations (YME) comprise a system of twelve
nonlinear partial differential equations (PDE) of the second order in the Minkowski
space R(1,3). On the other hand, once the Yang-Mills potentials satisfy the self-
duality conditions, the YME are automatically satisfied. This allows one to construct
a broad subclass of solutions to the YME using the condition of self-duality, which
amounts to a system of nine first-order PDE,
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where F),, = 8“14’,, — 8"/& + effu X ff,, is the Yang-Mills strength-tensor, €,,s
is the rank-four antisymmetric tensor, and e is the gauge coupling constant, with
u,v,7,0,= 0, 3. Equations (1) are called the self-dual Yang—Mills equations (SDYME).

Self-duality properties have allowed exact solutions to YME to be explicitly con-
structed, starting with the ansatze for the Yang—Mills fields proposed by Wu and
Yang, Rosen, 't Hooft, Corrigan and Fairlie, Wilczek, and Witten. One should also
note the Atiyah—Drinfeld—Hitchin—-Manin construction that has been applied in the
construction of instanton solutions to YME (see reviews [1, 2] and the bibliographies
cited therein).

Recently, increasing interest has been given to SDYME and the corresponding Lax
pairs in the Euclidean space R(4) in view of the possibility of reducing them to classical
integrable equations (Euler—Arnold, Burgers, Kadomtsev—Petviashvili, Liouville, and
others). This problem was considered, in particular, in [3-5], where reduction with
respect to translations was performed. In [6], SDYME were reduced with respect to all
subgroups of the Euclidean group E(4), while in [7, 8], SDYME and the corresponding
Lax pairs in four- dimensional Minkowski space with the signature (+ + ——) were
reduced with respect to Abelian subgroups of the Poincaré group P(2,2).

In this paper, we continue our investigation of the problem of the symmetry
reduction of YME and SDYME in the Minkowski space R(1, 3). It is known [9] that the
maximal symmetry group (according to Lie) of the YME is the group C(1, 3) @ SU(2);
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this group also preserves SDYME (1). The presence of high symmetry allows one to
apply the method of symmetry reduction [10, 11] to the equations and, further, to
obtain exact solutions. Several conformally invariant solutions of YME were found
in [12] (see, also, [13]). A systematic investigation of conformally invariant reductions
of YME and SDYME was initiated in [14, 15], where YME and SDYME (1) were
reduced, with respect to three-parameter subgroups of the Poincaré group P(1,3), to
systems of ordinary differential equations (ODE) and new solutions to the YME were
constructed. The unified form of the P(1, 3)-invariant ansatze made it possible [16] to
perform a direct reduction of the YME to systems of ODE and to obtain conditionally
invariant solutions of the YME. In this paper, we consider the symmetry reduction
of SDYME (1) to systems of ODE that correspond to three-parameter subgroups of
the extended Poincaré group P(1,3).

The paper is organized as follows. In Section 2, we consider the general procedure
for constructing linear ansatze. Section 3 is devoted to the derivation of the unified
form of P(1,3)-invariant ansatze and to the reduction of SDYME (1) to systems of
ODE. In the last section, we consider some of the reduced systems and obtain exact
real solutions of (1).

2 Linear form of P(1,3)-invariant ansatze

As noted above, SDYME (1) are invariant under the conformal group C(1,3), in which
the generators

Pu= O T =00, — 0, + AL —amr L
v iz
D = ,0, - Am 0 @
12 i aAZL7

span a subgroup isomorphic to the extended Poincaré group ]5(1,3). Here, 0, =
6%’ with g, = 0,3 and m,n = 0,3. Here and henceforth, we sum over repeated
u

indices (from 0 to 3 for the indices p,v,v,6,0 = 0,3, and from 1 to 3 for m,n =
1,3). The indices p,v,7,d, and o are raised and lowered by the metric tensor g, =
diag (1,—1,-1,-1).

Let Ap(l,?)) be the extended Poincaré algebra whose basis is given by genera-
tors (2) and let AP(1,3) be the extended Poincaré algebra generated by the vector
fields

Pﬁl) =0, J;(A}/) =20, —2"0,, D =ux,0,.

In the classical approach, due to Lie [10, 11], symmetry reduction of SDYME (1)
to systems of ODE is associated with those subalgebras L of AP(1,3) that satisfy
the condition r = r() = 3, where r is the rank of L and r(!) is the rank of the
projection of L onto AP(") (1,3). As can be easily seen, we have dim L = r = 3, which
means that in order to perform the reduction, we need to know the three-dimensional
subalgebras of AP(1,3) satisfying the above condition. Taking into account that
SDYME (1) are invariant under the conformal group C(1,3), we can restrict ourselves
to the three-dimensional subalgebras of AP(1,3) determined up to conformal conjuga-
tion. Such subalgebras of the AP(1,3) algebra are known [17, 18]. Since the case of
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the Poincaré algebra AP(1,3) has been considered in [14, 15], we limit ourselves to
those subalgebras of AP(1,3) that are not C(1,3)-conjugates to the subalgebras of
AP(1,3). We use the results and notation of [18], in particular, the fact that the
list of three-dimensional subalgebras of AP (1,3) that are not conjugate to the three-
dimensional subalgebras of AP(1,3) is exhausted, up to C(1, 3)-conjugation, by the
following algebras:

L1 = (D, Py, Ps), Ly = (J12+ aD, Py, Ps),
= (J12, D, Py), Ly = (J12,D, P3),
= (Jo3 +aD, Py, Ps), Le = 2(Jos + aD, Py, P»),
L7 (Jos + aD, M, P) (o # 0), Ls = (Jos + D + 2T, P1, Py),
= (Joo + D + 2T, M, P,), Lyg = (Jos, D, Py),

L11 = (Jos, D, M), Ly = (Ji2 + aJoz + 8D, Py, Ps3),
L3 = (Ji2 + aJo3 + D, P1, P), 3)
Ly = (Jio+a(Jos + D +2T), P, P»), Li5 = (J12 + aJos, D, M),
Lig = (Jos + aD, iz + D, M), (0<|a] <1,82>0,|al+[8]#0),
= (Jos+ D +2T, Jio+ T, M) (a>0),
= (Jos + D, J12 + 2T, M), Lyg = (Jos, J12, D),
={(Gy,Jos+aD,Py) (0<|a] <1), Lo = {(Jo3+ D,G1+ Pa, M),
Loy = (Jos — D + M,G1, P), Loz = (Jos +2D,Gy + 2T, M),

Loy = <J03 +2D,Gq + 2T, P2>.

Here, M = Py+P3, Gy = Jo1—Jiz, and T = %(.P()—Pg); also, a, B > 0 unless explicitly
stated otherwise. In what follows, o and [ take on the values given in list (3).
Note that all of the subalgebras L; (j = 1, 24) satisfy the condition r = r(!) = 3.
Let us demonstrate that, similar to [14, 15, 19|, the ansatz for the ffu fields can
be taken, without any loss of generality, in the linear form

A, (z) = Az) B, (w), (4)

where A(z) is a known square nondegenerate order-12 matrix and éu (w) are new
unknown vector-functions of the independent variable w = w(z), with = (xg, 1, 2,
x3) € R(1,3).

Obviously, the fact that the sought for ansatz is linear requires that the algebra
L; contain an invariant w(z) independent of A u» as well as twenty linear invariants
of the form

20 (@) AT + [ (2) AT + fla(2) A" + fliz(2) A,

which are functionally dependent as functions of Af*, A7*, A3, and A%*. These invari-

ants can be considered as components of a vector FA, where F = ( (), while

/T:
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Here, the matrix F is nondegenerate in some domain in R(1,3). According to the
theorem on the conditional existence of invariant solutions [11], the ansatz FA = B(w)
results in a reduction of system (1) to a system of ODE that relates the independent
variable w, the sought for functions B}’ and the first derivatives thereof. Setting
A = F~1(x), we arrive at ansatz (4).

Let L = (X1, X5, X3) be one of the subalgebras of AP(1,3) from list (3), with X,
being an operator of form (2), i.e.,

0
Xk = &em(2)0) + pmox () AY' (k=1,2,3).

* 9Am
The function fgg(x)Az is an invariant of the operator X if and only if
ofs(x) .
k() g; AY + proa(w) AN f5, () =0
"
or
ofs,(x)
S0 (2) =5 =+ 3, (2)prr () = 0 (5)
nw

for all values of . Let F(z) = (f# (z)) and I'x(x) = (pro~(z)) be square matrices
of order 12. Then the second term on the left-hand side of (5) is an element of the
matrix F(z)[(x).
These observations lead us to the following theorem.

Theorem 1. The system of functions fgi/(m)AZ; is a system of functional invariants of
a subalgebra L if and only if F' = (f§ (x)) is a nondegenerate matriz in some domain
of R(1,3) and satisfies the system of equations

OF (x

fku(x)% + F(x)Tg(x)=0 (k=1,2,3). (6)
Tp

Similarly, the function w(zx) is an invariant of the operator Xy, if and only if Xjw = 0,
i.e.,

Ow

Ekﬂ(a:)a =0. (7)

Since all of the algebras L; satisfy the condition
rank [|§x,. (2)]] = 3,

systems (6) and (7) are compatible.

Theorem 1 assigns a matrix 'y to every generator Xj of the subalgebra L of
AP(1,3). Let us indicate the explicit form of these matrices for all generators (2) of
the algebra AP(1,3).

Since the operator P, is independent of %, the corresponding I' is a zero matrix.

Denote by —S,,, the I'matrix that corresponds to the operator J,, . It is easy to verify
that

0 -1 00 0 0 —I 0
-I 0 0 0 0 0 0 0

Sor = 0 0 00| 2= 70 0 o]l
0 0 00 0 0 0 0



190 V.I. Lahno, W.I. Fushchych

0 0 0 —I 00 0 0
0 00 0 0 0 —I 0
Sog = 0 0 0 0 , S12= oI o 0|
-1 0 0 0 00 0 0
000 O 00 0 O
00 0 —I 000 0
Ss=10900 0 | =000 -1 |
071 0 0 001 0

where 0 is the zero and [ is the unit matrix of order 3.

The D operator corresponds to the matrix —F, where F is the unit order-12
matrix.

The above matrices determine a matrix representation of the algebra AQ(l, 3) =
AQ(1,3) ® (D), because

[S/wa S&'y] = gu'ysvé + guésp,’y - guésu'y - ng/uS, [E, Spu/] = 0.
Let a = (1,0,070), b= (0,1,0,0), c = (0,0,1,0), d= (0,0,0,1), and kK = a +d.

Denote by a,, bu, ¢, and d,, the uth component of the vectors a, b, ¢, and d,
respectively. Then,

To = ar = a,r’, w1 = —bxr = —b,a",

Ty = —cr = —c, ¥, 3= —dr = —d,x".

Theorem 2. For every subalgebra L; (7 =1,...,24) from list (3), there exists a linear
ansatz (4), in which w is a solution to system (7) and

A71 = exp{f IOg OE} exp{@osog} exp{791512} eXp{7202(501 — Slg)}.
Moreover, the functions 0, 0y, 01, 62 and w can be represented as follows:
Li: O=|bx|™!, Op=0,=0,=0, w=cax(br)?,
Lo: 0=U.% 6=0=0 6 =0 w=logl, +20,
Ly: O=lde|™, Op=0,=0, 6, =0, w=T(dx)?
Ly: 0=lax|™, 6y=0,=0, 6=, w=U(ax) 2
Ls: O=|bx|™", Oy=a tlog|bz|, 6, =0,=0, w=cx(bx) ",
1 1
Lg: 0=|Uy| 2, 90:510g|(am—dx)(k'm)*1|, 0, =065 =0,
w=(1-a)log|ax — dz| + (1 4+ ) log |kx|,

Ly: 0=|cx|™, 6p=a tlog|cx|, 61 =0,=0, w=]|ka|*|cz|'™,

1
Lg: 6= \am—dmr%, 6o = 510g|ax—dx|, 61 =60, =0,
w = kx —log |ax — dx|,
Lo: 0=lcx|™, 6p=log|cx|, 6 =0,=0, w=ke—_2log|cz|,
Lig: 0=|cx|™, 6y =1log|(ax —dx)(cx)™|, 6, =60;=0,
w = Wy(cx)~2,

Liy: 0=lcx|™", 6p=—log|(kz(cx)™t], 61 =0,=0, w=ca(bx)™?,
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L22 :

L23 :

L24 :

=072, fy=—ad, 6,=0, 6,=0, w=log¥ + 2030,
0=1Wal4, 0 = 5 log|(ax — da)(ke) ",

0, — —%logKaJc —dn)(kx) Y, 6y =0,

w = (a— p)loglax — dz| + (a + B) log |kz],

0 =|ax —dz|"2, 6 = %log|aw— dz|, 6, = —%log\ax — daz|,

02 =0, w=kz—loglax — dx|,

=072 Gy=—ad, 6,=0, 6,=0, w=IloglV(kz) ]+ 220,
=02, 6= %log\\lll(kx)_z], 0=, 6,=0,

w = log[U]~(kx)?*] 4+ 26,

h—w 90—%log\111, 0=, 0,=0, w=ke—IlogW, + 200,
o=u;", 00—%log\111, 01 =B, 0=0, w=kz+20,
h=u", 00:7310g|km(ax7d1)71\, =0, 6,=0,

0=Us]7%, 6= ialog|x1:3|, 01 =0, 0= %bx(lm)_l,

w = ka2 w317,

0 = |cxkx —bx|™t, Oy = log|cxkx —bx|™', 6, =0, 6y= %c:c,
w = kz,

0=|kax|"2, 6= —%log|kx|, 0, =0, 0y= %bx(kx)_l,

w = ax — dx + log |kx| — (bx)?(kx) !,

0=|cx|™t, 6= %log|c:c\, 0, =0, 0= —ikx,

w = [4bx + (kx)?](cz) 1,

1
0 = |4bx + (kx)?|7, 6y = 3 log |4bx + (kx)?|, 61 =0, 60y = ——kz,
1 3 ? 21-3
w= |ax — dx + brkx + g(kx) [4bx + (kx)?]~°.

Here, ® = arctan £, Uy = (bx)? + (cx)?, ¥y = (ax)? — (dz)?, and V3 = (ax)® —
(bx)? — (dx)?.
Proof. All of the cases are analyzed similarly, so we can limit ourselves to the
subalgebra Lo = (J12 + aD, Py, Ps).

According to Theorem 1, the entries of column A~ A are invariants of the subal-
gebra Lo if and only if

OA oA ( OA
o to

OA OA
) — A(S]_Q + OéE) = O7 8—% = O, 8—;53 = 0(8)

Xy~
14
8x“
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The last two equations in (8) demonstrate that A = A(x1, z2), while the first equation
implies that one can set 8y = 03 = 0 in the expression for A. By the Campbell-
Hausdorff formula, we have, in this case,

oA 00 00,
A AT T I
g“axu S (890,1 * 89@)
Hence, the common factor of A can be canceled from the left on the left-hand side
of the first equation in (8), which gives an equation whose left-hand side can be

represented as a combination of the matrices ' and S12. Equating the coefficients in
these combinations to zero, we arrive at the system of equations below:

L[, 00 00 (20 99NV _
0" Oxy 201, Y2, * 0y - 9)
UMY RO R

X1 — X9 11—
0xo 0x1 0x1 0xo

which is equivalent to (8). It is not difficult to verify that system (9) is satisfied by
the functions

0= (22 +23)"% = [(bx)? + (cz)?]"2, 6 = arctan T2 _ arctan Z—x
X1 X

Equations (7) for w(zx) are of the form

g 0w (e O g Oy O
Y9z, 2 04 N R

This implies that

w = log(x] + 3) + 2arctan 2 log[(bx)? + (cz)?] + 2 arctan Z—m,
X1 Xr

which proves the theorem.

3 Covariant form of the linear ansatz
and symmetry reduction of SDYME

By Theorem 2, the ansatze that correspond to the subalgebras L; (j =1,...,24), are
of the linear form (4), where

A(l‘) = exp{202 (S()l — 513)} exp{@lSlg} exp{—GOSog} exp{log GE}
Thus, it follows that

[cosh @y + 2603e=%] 2[—0ycos0;] 2[02sinf;] [sinh by + 202e %]
2[—foe~%) [cos 6] [— sin 6] 2[02e7%]
[0] [sin 6] [cos 6] [0] ’
[sinh @y + 202¢=%] 2[—fycos6;] 2[fasinf;] [coshby — 203e~%]

where [f] denotes [f] = f - I and I is a unit matrix of order 3.
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In view of the above, ansatz (4) can be represented in the following form:

0[cosh 8y By + sinh 6y Bz + 202¢=% (By — Bj) + 205 (sin 61 By — cos 01 By )],
O[cos 0,8, — sin0, By — 2926’90(§0 - ég)],

O[sin 0, B, + cos 01§2],

= f[sinh 0o Bo + cosh 0y B3 + 205¢—% (EO — §3) + 65 (sin 0, By — cos ngl)],

(10)

!
I

and, as is not difficult to verify,

AH = auffo + bugl + CH/YQ + dugg,

EO = aygy, él = —byéy, gg == —Cyéy, gg = —dyéy,
where a,, by, c,, and d, are the uth components of the vectors a, b, ¢, and d, respec-
tively, given in Section 2.

In these notations, the linear ansatz (10), as well as the linear ansatz (4) can be
represented as

A, () = 0a,,(x)BY (w) = 0{(aua, — d,d,) cosh 6 + (d,a, — d,a,,)sinh 6y +
+2(a, + d,,)[f2 cos 01, — O3 sinb1¢,, + 02¢~% (a, + d,)] +
+ (bycy — buey)sinby — (cuc, +byby) cos by —
—2¢7%050,,(a, + d,)}B")}B" (w).

(11)

The values taken by the functions 6, 6y, 61, 02, and w in (11) are given in Theorem 2
for each of the subalgebras L; (j =1,...,24).

Thus, we have written the P(1,3)-invariant ansatz for the /Yu(a:) fields in a mani-
festly covariant form.

Let us note that ansatz (11) can be obtained from (10) by applying the proliferation
formulas that correspond to the Lorentz group AO(1,3) to the functions ffu from (10)
with the generators (2) (see, for instance, [14, 15]). Therefore, the vectors a, b, ¢, and
d can be viewed as a general system of orthonormalized vectors in the Minkowski
space R(1,3), which can be expressed as

aygat = —b,b* = —c,ct = —d,d" =1,
a,bt =a,ct =a,dt =b,ct =b,d" = c,d* = 0.

The unified form of the P(1, 3)-invariant ansatze derived in (11) allows us to perform
the reduction of SDYME (1) in the general form.

Lemma. The ansatz (11) allows one to reduce SDYME (1) to the system

i

T,uy = igul/aéTU&» (12)
where
T = o) ) — () P2) 4 1 B ) - 13
— Hy(0)Bu(@) + Spury (@) B (@) + eBu(w) x B, (w)
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In (13), the functions G, (w), H,(w), and Su~(w) are determined from

Oow

- 00 100, 100,
ey axu7

G, H,62

=a,,——, 0S50y =d5—"a a ays.
oz, it o dx, 7 7 dx, ©

To prove the lemma, it suffices to substitute ansatz (11) into SDYME (1) and to
contract the resulting expression with the tensor a/aj, using the fact that a,, satisfies
Ay Uy = Guy-

According to the lemma, the construction of the reduced systems associated with
subalgebras L; is tantamount to finding the functions G, (w), H,(w), and Sse(w)
for every such subalgebra. We skip the cumbersome calculations and give only the
explicit form of these functions for each of the subalgebras L; in the following list:

Ll : G’Y = el(c"/ - b’Yw)7 H, = 761b'y7 5507 - 07
Ly: G,=2(by+c,y), Hy=-by, Ssoy=(bscs —Dbycs5)cy,

1
Ly: G, =2yw(, —evwd,), H,=—edy, Ssmy= ﬁ(cgbg —bycs)ey,

1
Ly: Gy =2yw(by —esv/way), Hy,=—€say, Ssoy= ﬁ(cgbg — boCs)Cy,

L5 : G'Y = 61(07 - bvw), H,y = —€1b’y,
Ssoy = ela_l[bg(d(;aw — dyas) — bs(dyay — dyas)],
Ls: Gy=e(l—a)lay—dy) +e(l+a)k,y,

1
Hy = —5eeles(ay — dy) + eaky ],

2
Ssoy = 5[54@7 —dy) — esky](aods — asds),
L;: Gy= w[eg)ozkﬁfcu_é +er(l —a)ey], Hy=—e€rcy,

Ssoy = e7a_1[ca(a7d5 — dyas) — cs(aydy — dyas)],

1
Ls: Gy=ky—elay—dy), H,= _564(% —dy),

1
Ssoy = 564[(% = dy)(aods — asdy),

Ly: G,=k,—2€ec,, H,=—€rc,,

Ssory = €7(Co(ayds — dyas) — cs(ayds — dyay)),
Liop: Gy=el(ay —dy)w+ k] —2e7cqw, Hy = —e€7¢y,

Ssoy = €a(ay — dy)(apds) — asds) — €7¢5(ayds — dyas) +

+ ercs(aydy — dyag),

L1 Gy=¢ew(cy —bw), H,=—€rcy,

Ssoy = €7]co(ayds — dyas) — c5(ayde — dyas)] — esky(apds — dyas),
Liz: Go=2(by+fc,), Hy=—b,,

Ssoy = Cy(cobs — c5bs) — afcq(dsay — asdy) — cs(doay — acdy)],
Lis: Gy =ela—p)(ay —dy) +es(a+ Pky,

1
HW = —566[64k7 + GS(GW - d’Y)]’
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1 1
Ssoy = 5[54@7 —dy) = esky)(acds — asds) — %[(64(‘10 —do) —
— 65/€U)(b567 — Cgb,y) — (64(&5 — d5) — 65]65)([)007 — cgbfy)],

1
Liy: Gy=ky,—elay—d,), H,= —564(% —dy),

1
Ssoy = 564[(% —dy)(aeds — asdy) — (a6 — do)(bscy — c5by) +

+ (as — ds)(bycy — coby)],
Lis: Gy =2(by+ac, —ky,e3*), H,=—-b,,
Sso~y = Cy(Cobs — c5bs) — afco(dsay — asdy) — cs(doay — apdy)),
Lis: Gy=2[(1-a)b,+aky+pec,y), Hy,=-b,y,
Ssoy = Cy(Cobs — C5bs) — ky(aods — asds) + by (dsay — asdy) —
—bs(doay — apdy),
Li7: Gy =ky—2b,+2ac,, H,=-b,,
Ssoy = bo(dsay — asdy) — by (doay — and,y) + cy(cobs — c5bs),
Lis: Gy=ky +2, H, =—b,
Sgo.y = ba(d(;a,y — a(;dfy) — bg(daafy — aod,y) + C,Y(Cgb(; — c(;ba),
Lig: G, =2byw — egwyw(esky +es5(ay —dy)), Hy = —bs,

1
Ssony = =vVwles(ay — dy) — esky](dsas — asdy) + ¢y (bsco — cs5bo)
2

Ly : Gy =ew[(1+ a)kvw_% +es(l —a)(ay — dw)w%],

1 1 1
H, = —565[]%”7% + es(ay — dy)we],
1 1 1
Ssoy = 65[%(k7w_ﬂ + es(ay — dy)w2e ) (apds — dyas) +

+ by (ksby — kgbs)w™ 2],
L21 : G’Y = k»y, H, = 769[0’}/&) — b'y},
Ssoy = €9[(Cow — by)(ayds — dyas) — (csw — bs)(aydy — dyas)] +
+ co(ksby — kybs) — cs(koby — kybe),
1
L22 : G'Y = G — d—y + €5k‘»y, H‘y = —565]97,
1
S(;gfy = €5 [b,y(kgba — ka-b(;) — §k7(a5dg — d(;ag)],
Los: Gy =e7(4dby —we,y), Hy, = —ercy,

1 1
8507 = 567[Cg(avd5 — dwa(s) — Cg(avdg — d,yag)] — §]€V(/€5bg — k‘gb(;),

1
Loy : G’Y = 4/ |UJ| ik’y + 2610(&7 — d—y) — 126100.)1)7, ny = —4610b—y,
1
Ssovy = 2610[b0(a7d6 —dsas) — bé(a—yda - d'yao')] - Ek«,(k‘(sbg — kobs).

Here, €, = 1 for ¢ > 0 and ¢, = —1 for ¢ < 0. The values of the functions ¢ for every
k are given in Table 1.
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Table 1
k © k %)
1 bx 6 (az)? — (dz)?
2 dx 7 cx
3 ax 8 | (ax)? — (bx)? — (dz)?
4 | ax—dzr | 9 crkr — bx
5 kx 10 4bz + (kx)?

4 On the exact real solutions of SDYME

Before we proceed to analyzing the reduced systems and constructing their exact
solutions, let us make the following remark. Whereas the YME and SDYME are real
in four-dimensional Euclidean space, in Minkowski space, the YME are a system of
real second-order PDE, while SDYME (1) are a system of complex first-order PDE.
Therefore, self-dual solutions to YME in Minkowski space are, in general, complex,
which is an undesirable property.

On the other hand, the systems of PDE that represent SDYME (1) (and, hence,
the reduced systems (12) and (13), as well) are not completely defined. Moreover, the
symmetry reduction of SDYME preserves their symmetric form, which allows one to
address the problem of finding real solutions of these equations. Clearly, the necessary
condition for building real solutions of the systems of equations (12) and (13) is given
by the equations

T =0, (14)

which lead us to another system of first-order ODE, this time an overdetermined one.
By imposing additional conditions on the functions é;u we have succeeded, in some
cases, in reducing system (14) to an integrable form and in obtaining nontrivial real
non-Abelian solutions of SDYME (1). In what follows, we describe these cases in some
detail.

We use the notation & = (1,0,0), e = (0,1,0), and €3 = (0,0,
restore the explicit form of systems (13) and (14), we choose a =
(0,1,0,0), c=(0,0,1,0), and d = (0,0,0,1).

The case of the L, algebra. Let us set Eo = )\OE and Eg = )\3.§, where \g and
A3 are arbitrary real constants such that A3 + A% # 0. Equations (13) and (14) take
the following form:

1). In order to
(1,0,0,0), b

dB - =
€e1— +eBy x B=0,

dw
dB dBy
€W d2+61d +€1B276B1XB2—0 (15>

dB L L
ciw— +€eB+eB x By =0.
dw

Further, let us assume that, in (15), B = g (w)@m, B1 = A (w)ép, and B2 = f(w)és,
m = 1,2,3. Then the first two equations of (15) yield the following system for the
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functions g, by, and f:

d dh d
61£+€f93=07 61—1+€fh3:07 €1 9220’
d dh d dh
Elw_f+€1_2+€1f:0; 61£ —eqf=0, € 2 —eh f=0.
dw dw dw dw

We set f = Cw~! in (16), with C' being an arbitrary constant. Then, go = C; and
ho = Cs, where C; and C5 are arbitrary constants, while the functions g1, g3, h1,
and hg are to be determined from two similar systems of equations, which amounts

to solving the Euler equations. In particular, the system of equations for g;, g3 reads
d d
61£ +eCw gy =0, elﬂ —eCw g, =0,
dw dw

from which we have the equation

d?g d
20793 93 272 _
Wi s +wdw+ngng,

whose general solution is given by
g3 = Cysin(eC'log |w| + Cy),
and, thus,
g1 = €1C3 cos(eC'log |w| + Cy).
Similarly, we obtain
hy = €,C5 cos(eClog |w| + Cg).  h3 = Cysin(eC log |w| + Cp).

where C3, Cy, C5, and Cg are arbitrary integration constants.
Finally, having checked the last of the equations in (15), we obtain the following
solution:

BO = AoB, B3 = )\33’, E = gm(w)é'm, El = hm(w)ém, B2 = f(w)é'g,
where
g1 = Fe1Cs cos(eCy log |w| + C), g2 = Cs,
g3 = FC3sin(eC log |w| + Cs), hy = +eretsin(eCy log |w| + Ca), (17)
ho = —C1, h3= :Fe_l COS((’/Cl log |w\ + 02), f = Clw_l,
and Cq, Cy, and C5 are arbitrary constants.

The case of the Lg algebra. Let EO = ég = B and El = 0. Then the systems
of equations (13) and (14) reduce to the equation

dB  dB L
Y7 + 2 4 2B+ eB x By = 0. (18)
dw = dw
Let us set By = f(w)& and B = g(w)é] 4 h(w)és. Then it follows from (18) that

d d dh
2er -+ 2erg — efh =0, & =0, 2er——+2erh+efg=0,
dw dw dw
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which is solved by the functions
C C
f=0C, g=e “Cysin <621w + Cg), h = eze (5 cos (621(,0 + Cg) , (19)

where C7, Cs, and C3 are arbitrary integration constants.
The case of the Li7 algebra. Setting By = B3 = B, we obtain the following
reduction of the system of equations (14):

dB, _dB

L 42" 4 9B+ eBx B, =0,
dw dw
dB dB - -
20— — —2 4 eBy x B =0, (20)
dw dw
dB dB _ R .
2772 1 901 4 2B, —eB; x By = 0.
dw dw

In (20), we set By = A&y, B = f(w)@® + g(w)és, and By = h(w)é + u(w)és, where
A1 # 0 is an arbitrary constant. Then the functions f, g, h, and u can be determined
from the system of equations

d dh d
2l+2f+€)\19:0, 2— 4+ 2h + eXu =0, 27g+2g*6/\1f:0a
dw dw

dw
du _ B df dh dg —du
2%—|—2u—e/\1h—0, hg —uf =0, 2adw dw_o’ 2adw o

The general solution of the first four equations is given by the functions

f=Cie “cos (%w + Cg) , g=Cie “sin (%w + Cg) ,

A A
h = Cse™ % cos (;ew + C’4> , u=Cse “sin (;ew + C’4> ,
where C7, Cs, C3, and Cy are arbitrary constants. Having checked the last three
equations of the system, we arrive at the following solution of (20):

By=Bs =B = fé& + gés, Ba=héy+ués, B =Csé,
where

C- C-
f=Cie ¥ cos (eTsw + Cg) , g=Cre “sin (eTjw + Cg) ,

(21)
h =2aCie” ¥ cos <%w + C’g) , u=2aCie “sin <%w + Cg) ,

and Cq, Cy, and C5 are arbitrary constants, with C3 # 0.
The case of the Lig algebra. In this case, we set By = %Bg = B3 = B. Then

Egs. (14) reduce to the equation

é — — —
d——l—QB—l—eBxBlz(). (22)
dw
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In (22), let B =3, By = Im(W)€m, m =1,2,3, and A # 0 be an arbitrary constant.
Then we have the equations

d d d
ﬂ—e)\gg:O, ﬂ—|—e/\gle7 ﬁ—|—2>\:O,
dw dw dw

whose general solution is given by the functions
g1 = Cysin(edw + Cs), g2 = Cicos(edw + Cs), g3 = =2 w + Cs,

with C1, Cs, and C3 being arbitrary integration constants. Thus, we have constructed
the following solution to (22):

_ 1 _

By = =B, = By = Cyés,
_‘0 512 3 4€3 (23>
B =0y sin(eC’4w + 02)51 + 4 COS(€C4UJ + 02)52 + (03 — 204(.4))53,

where C1, Cs, C3, and C4 are arbitrary integration constants, with C4 # 0.
Inserting the solutions of the reduced equations found in (17), (19), (21), and

(23) into ansatz (10), we obtain, respectively, the following exact real solutions of
SDYME (1):

(1) Ay = No|bz|  [Fe1Cs cos(eCy log |ex(bx) ™| + Cp)é1 + Caéy T
F Oy sin(eCy log |cx(bx) ™| 4+ Cy)és),
Ay = |bx| " [£ere sin(eC) log |cx(bx) T + Co)éy — Crés T
F e tcos(eC log |cx(bx) ™t + Cy)és],
Ay = 6,01 (cx) "',
As = \s|bz| " [Fe1Cs cos(eCy log [ea(bx) ™| 4 Co)@) + Csés F
F Cysin(eCy log |cax(bx) | + Cy)és),

1
(2) Ay = Az = (cx)?e * 0y [sin (ﬁeCl(kx —2log|ecx|) + C3> €1+
+ €7 cos <%eCl(k‘x — 2log |cx|)|C3> €3:| ,
/Yl :6, Ez :Cl|0$‘71€2,

- 1 1
(3) Ay =A3=e%Cy |:COS (2603w + CQ) €5 + sin <2603(.¢J + CQ) 53:| ,

!

Ay = [(b2)? + (ca)?] 1 [(b2) C361 — 200 (cx)e™ %

o (s e+ ) i e ) )]
5 = [(bz)? + (cz)?] 7! [(c2)C561 + 2aC: (br)e™ X

X (cos %ngw + Cg) €5 + sin (%ecgw + Cz> é’g)] ,

w = kx — log[(bx)* 4 (cx)?] + 2a arctan cz(bz) ~*,



200

V.I. Lahno, W.I. Fushchych

Ay = [(bz)? + (cz)?]7? [C1(bz) (sin(eCyw + C2)é1 + cos(eCaw + C2)& +
+ (C3 — 2C4w)é3) — 2C4(cx)es),

5 = [(bz)? + (cz)?] 7! [C1 (cz)(sin(eCaw + C2)&) + cos(eCaw + Ca)é +
+ (O3 — 2C4w)é3) + 204 (ba)és], w = ka + 2arctan(cz(bx) ™).

The values of €; and €7 are given in Table 1, « is given in the list of subalgebras, and
Ao, A3, C1, Co, C3, and C4 are arbitrary real constants.

Conclusions

In this paper, we have investigated the structure of P(1,3)-invariant ansatze for the
vector potential of the Yang—Mills field. The linear form we obtained for the ansatze
is reduced to a covariant form, which allows us to simplify considerably the procedure
for the symmetry reduction of SDYME (1) to systems of ODE. We have demonstrated
the possibility of constructing real solutions of SDYME (1).

Let us note that ansatz (11) can also be used for symmetry reduction in the
Minkowski space R(1,3).
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