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Symmetry of equations
with convection terms
W.I. FUSHCHYCH, Z.I. SYMENOH

We study symmetry properties of the heat equation with convection term (the equa-
tion of convection diffusion) and the Schrödinger equation with convection term. We
also investigate the symmetry of systems of these equations with additional conditions
for potentials. The obtained results are applied to construction of exact solutions of
the system of the Schrödinger equation with convection term and the Euler equations
for potentials.

Study of symmetry properties of evolution equations is an important problem in
mathematical physics. These equations are thoroughly investigated by a number of
authors (see, e.g., [1, 2, 3]). The fundamental property of these equations is the fact
that they are invariant under the Galilei transformations.

It is known [4] that the nonlinear heat equation

∂u

∂t
− λ�u = F (u) (1)

is not invariant under the Galilei transformations if F (u) �= 0. It is Galilei–invariant
only in the case of linear equation, i.e., in the case where F (u) = 0 (up to equivalence
transformations). Therefore, it is important to consider nonlinear evolution equations
which admit the Galilei operator.

In the present paper, we study symmetry properties of equations with convection
terms, namely, the heat equation with convection term (the equation of convection
diffusion) and the Schrödinger equation with convection term. We also investigate the
symmetry of systems of these equations with additional conditions for potentials Vk.
The results of symmetry classification are applied to constructing exact solutions of
the system of the Schrödinger equation with convection term and the Euler equations
for potentials.

1 Symmetry of the equation of convection diffusion

The equation of convection diffusion has the form

∂u

∂t
− λ�u = Vk

∂u

∂xk
, (2)

where u = u(t, �x) is a real function, λ is a real parameter, the index k varies from 1
to n.

To extend the symmetry of equation (2), we apply the idea proposed in [4, 5, 6].
Namely, we assume that the functions Vk = Vk(t, �x) are new dependent variables on
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equal conditions with the function u. In other words, we seek for symmetry operators
of equation (2) in the form

X = ξµ∂xµ
+ η∂u + ρk∂Vk

, (3)

where ξµ, η, ρk are real functions of t, �x, u, �V . Applying the Lie algorithm [7, 8, 9],
we find that the unknown functions ξµ, η, ρk have the form

ξ0 = 2A(t), ξk = Ȧ(t)xk +Bkl(t)xl + Uk(t),

ρk = Bkl(t)Vl − Ä(t)xk − Ḃkl(t)xl − U̇k(t) − Ȧ(t)Vk, η = C1u+ C2,
(4)

where A, Bkl, (k, l = 1, n, k �= l), Bkl = −Blk, Uk (k = 1, n) are arbitrary smooth
real functions of t; C1, C2 are arbitrary constants. Thus, the following assertion is
true:
Theorem 1. The equation of convection diffusion (2) in the class of operators (3) is
invariant under the infinite-dimensional Lie algebra with infinitesimal operators

QA = 2A(t)∂t + Ȧ(t)xr∂xr
− [Ä(t)xr + Ȧ(t)Vr]∂Vr

,

Qkl = Bkl(t) [xl∂xk
− xk∂xl

+ Vl∂Vk
− Vk∂Vl

] − Ḃkl(t)(xl∂Vk
− xk∂Vl

),

Qa = Ua(t)∂xa
− U̇a(t)∂Va

, a = 1, n,
Z1 = u∂u, Z2 = ∂u,

(5)

where we mean summation from 1 to n over the repeated index r and no summation
over indices k, l, and a.
Remark 1. Infinite-dimensional algebra (5) includes the Galilei operator Qa. This
operator generates the following transformations:

t→ t̃ = t,

xb → x̃b = xb + αbU
b(t)δab,

u→ ũ = u,

V b → Ṽ b = Vb − αbU̇
b(t)δab,

(6)

where αb is an arbitrary real parameter of transformations, δab is the Kronecker
symbol, there is summation from 1 to n over the repeated index b and no summation
over the repeated index a. We see that the function u is not changed under the action
of this operator. This fact is essentially different from the Galilei transformations for
the standard free heat equation

∂u

∂t
− λ�u = 0, (7)

where the Galilei operator has the form

Ga = t∂xa
− 1

2λ
xau∂u. (8)

For operator (8), the function u is changed as follows:

u→ ũ = u exp
(
−xaαa

2λ
− t(αa)2

4λ

)
, (9)



Symmetry of equations with convection terms 173

Thus, the operators Qa and Ga are essentially different representations of the Galilei
operator.

Let us now investigate the symmetry of systems including equation (2) and addi-
tional conditions for the potentials. Note that in [3], the authors find a nontrivial
symmetry of the nonlinear Fokker–Planck equation by imposing the additional condi-
tions for coefficient functions.

Let the additional conditions for the potentials Vk be the Euler equations. In other
words, consider the following system:

∂u

∂t
− λ�u = Vk

∂u

∂xk
,

∂Vk
∂t

− λ1Vl
∂Vk
∂xl

= 0, k = 1, n.
(10)

Symmetry of the nonlinear system (10) essentially depends on the value of the
parameter λ1. There are two different cases.

The first case. λ1 = 1. In this case, system (10) in the class of operators (3) is
invariant under the Lie algebra with the basis operators

P0 = ∂t, Pa = ∂xa
, Jab = xa∂xb

− xb∂xa
+ Va∂Vb

− Vb∂Va
,

G̃a = t∂xa
− ∂Va

, D = 2t∂t + xk∂xk
− Vk∂Vk

,

A = t2∂t + txk∂xk
− (xk + tVk)∂Vk

, Z1 = u∂u, Z2 = ∂u.

(11)

The Galilei operator G̃a generates the following finite transformations:

t→ t̃ = t,

xb → x̃b = xb + tαbδab,

Vb → Ṽ b = Vb − αbδab,

u→ ũ = u,

(12)

where we mean summation from 1 to n over the repeated index b.
Conclusion 1. Thus, the scalar function u, unlike the heat equation, is not changed
under the Galilei transformations.

The second case. λ1 �= 1. In this case, the invariance algebra of system (10) is
essentially more restricted and does not include the Galilei operator and the projective
one. In other words, for λ1 �= 1 in the class of operators (3), system (10) is invariant
under the Lie algebra with basis elements P0, Pa, Jab, D, Z1, Z2 of the form (11).

The first case is essentially more interesting and important that the second one.
Therefore, in what follows, we consider system (10) in the case where λ1 = 1.

Consider now system (10), where the Euler equations have the right-hand sides of
the form F (u) ∂u∂xk

, i.e., the following nonlinear system:

∂u

∂t
− λ�u = Vk

∂u

∂xk
,

∂Vk
∂t

− Vl
∂Vk
∂xl

= F (u)
∂u

∂xk
, k = 1, n,

(13)

where F (u) is a smooth function of u. Let us carry out symmetry classification of
system (13), i.e., determine all classes of functions F (u), which admit a nontrivial
symmetry of system (13). We consider the following six cases:
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Case 1. F (u) is an arbitrary smooth function. System (13) is invariant under the
Galilei algebra

AG(1, n) = 〈P0, Pa, Jab, G̃a〉, (14)

where the basis operators have the form (11).
Case 2. F = C exp(κu) (κ and C are arbitrary constants, κ �= 0, C �= 0). In this

case, the symmetry of system (13) is more extended and includes algebra (14) and
the dilation operator

D(1) = 2t∂t + xk∂xk
− Vk∂Vk

− 2
κ
∂u.

Case 3. F = Cuκ (κ and C are arbitrary constants, κ �= 0, κ �= 1, C �= 0). In
this case, system (13) is invariant under the extended Galilei algebra (14) with the
dilation operator

D(2) = 2t∂t + xk∂xk
− Vk∂Vk

− 2
κ+ 1

u∂u.

Case 4. F = C
u (C is an arbitrary constant, C �= 0). The maximal invariance

algebra is

〈P0, Pa, Jab, G̃a, Z1〉,
where Z1 = u∂u.

Case 5. F = C (C is an arbitrary constant, C �= 0). The maximal invariance
algebra is

〈P0, Pa, Jab, G̃a,D
(2), Z2〉,

where Z2 = ∂u. In this case, the dilation operator D(2) has the form

D(2) = 2t∂t + xk∂xk
− Vk∂Vk

− 2u∂u.

Case 6. F = 0. In this case, system (13) admits the widest invariance algebra,
namely,

〈P0, Pa, Jab, G̃a,D,A,Z1, Z2〉,
where the dilation operator D and the projective operator A have the form (11).
Conclusion 2. It is important that system (13) is invariant under the Galilei transfor-
mations for an arbitrary smooth function F (u). It should be stressed once more that,
unlike the standard heat equation, the function u is not changed under the Galilei
transformations.

Consider other examples of systems of the equation of convection diffusion and
additional conditions for the potentials Vk.

Let the functions Vk satisfy the heat equation, i.e., we investigate the following
system:

∂u

∂t
− λ�u = Vk

∂u

∂xk
,

∂Vk
∂t

− λ1�Vk = 0, k = 1, n,
(15)

where λ1 �= 0 is an arbitrary real parameter.
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Theorem 2. System (14) in the class of operators (3) is invariant under the Lie
algebra with the basis operators

P0, Pa, Jab, D, Z1, Z2

of the form (11).
The case where the functions Vk satisfy the Laplace equation is more important:

∂u

∂t
− λ�u = Vk

∂u

∂xk
,

�Vk = 0, k = 1, n.
(16)

Theorem 3. System of equations (16) in the class of operators (3) is invariant under
the infinite-dimensional Lie algebra with the basis operators

QA, Qkl, Qa, Z1, Z2

of the form (5).
Note that the symmetry of system (16) is the same as the symmetry of equa-

tion (2). In other words, the conditions �Vk = 0 do not contract the symmetry of the
equation of convection diffusion.

2 The Schrödinger equation with convection term
Consider the Schrödinger equation with convection term

i
∂ψ

∂t
+ λ∆ψ = Vk

∂ψ

∂xk
, (17)

where ψ = ψ(t, �x) and Vk = Vk(t, �x) (k = 1, n) are complex functions. For exten-
sion of symmetry, we regard the functions Vk as dependent variables. Note that the
requirement that the functions Vk are complex is essential for the symmetry of (17).

Let us investigate the symmetry of (17) in the class of first-order differential
operators

X = ξµ∂xµ
+ η∂ψ + η∗∂ψ∗ + ρk∂Vk

+ ρ∗k∂V ∗
k
, (18)

where ξµ, η, η∗, ρk, ρ∗k are functions of t, �x, ψ, ψ∗, �V , �V ∗.
Theorem 4. Equation (17) is invariant under the infinite-dimensional Lie algebra
with the infinitesimal operators

QA = 2A∂t + Ȧxr∂xr
− iÄxr(∂Vr

− ∂V ∗
r
) − Ȧ(Vr∂Vr

+ V ∗
r ∂V ∗

r
),

Qkl = Bkl(xl∂xk
− xk∂xl

+ Vl∂Vk
− Vk∂Vl

+ V ∗
l ∂V ∗

k
− V ∗

k ∂V ∗
l
) −

− iḂkl(xl∂Vk
− xk∂Vl

− xl∂V ∗
k

+ xk∂V ∗
l
),

Qa = Ua∂xa
− iU̇a(∂Va

− ∂V ∗
a
),

Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ , Z3 = ∂ψ, Z4 = ∂ψ∗ ,

(19)

where A, Bkl (k < l, k, l = 1, n) , Ua (a = 1, n) are arbitrary smooth functions of t,
Bkl = −Blk, we mean summation over the index r and no summation over indices
a, k, and l.
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This theorem is proved by the standard Lie algorithm in the class of operators (18).
Note that algebra (19) includes as a particular case the Galilei operator of the

form:

G̃a = t∂xa
− i∂Va

+ i∂V ∗
a
. (20)

This operator generates the following finite transformations:

xb → x̃b = xb + βbtδab,

t→ t̃ = t,

ψ → ψ̃ = ψ, ψ∗ → ψ̃∗ = ψ∗,

Vb → Ṽb = Vb − iβbδab, V
∗
b → Ṽ ∗

b = V ∗
b + iβbδab,

where βb is an arbitrary real parameter and we mean summation from 1 to n over the
repeated index b. Note that the wave function ψ is not changed for these transforma-
tions. Operator (20) is essentially different from the standard Galilei operator

Ga = t∂xa
+

i

2λ
xa(ψ∂ψ − ψ∗∂ψ∗). (21)

of the free Schrödinger equation (Vk = 0). Note that we cannot derive operator (21)
from algebra (19). Thus, we have two essentially different representations of the Galilei
operator: (20) for the Schrödinger equation with convection term and (21) for the free
Schrödinger equation.
Remark 2. If we assume that the functions Vk are real in equation (17) and study
symmetry in the class of operators

X = ξµ∂xµ
+ η∂ψ + η∗∂ψ∗ + ρa∂Va

, (22)

where the unknown functions ξµ, η, η∗, ρa depend on t, �x, ψ, ψ∗, �V , then the maxi-
mal invariance algebra of equation (17) is sufficiently restricted. Namely, in the class
of operators (22), equation (17) is invariant under the Lie algebra with the basis
operators

P0, Pa, Jab = xa∂xb
− xb∂xa

+ Va∂Vb
− Vb∂Va

,

D = 2t∂t + xr∂xr
− Vr∂Vr

, Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ , Z3 = ∂ψ, Z4 = ∂ψ∗ .

Thus, in the case of real functions Vk, equation (17) is not invariant under the Galilei
transformations.

Consider now the system of equation (17) with the additional condition for the
potentials Vk, namely, the complex Euler equations:

i
∂ψ

∂t
+ λ∆ψ = Vk

∂ψ

∂xk
,

i
∂Vk
∂t

− Vl
∂Vk
∂xl

= F (|ψ|) ∂ψ
∂xk

.

(23)

Here, ψ and Vk are complex dependent variables of t and �x, F is a smooth function
of |ψ|. The coefficients of the second equation of (23) provide the broad symmetry of
this system.
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Let us investigate symmetry classification of system (23). Consider the following
five cases.

Case 1. F is an arbitrary smooth function. The maximal invariance algebra is
〈P0, Pa, Jab, Ga〉, where

Jab = xa∂xb
− xb∂xa

+ Va∂Vb
− Vb∂Va

+ V ∗
a ∂V ∗

b
− V ∗

b ∂V ∗
a
,

G̃a = t∂xa
− i∂Va

+ i∂V ∗
a
.

Case 2. F = C|ψ|k (C is an arbitrary complex constant, C �= 0, k is an arbitrary
real number, k �= 0 and k �= −1). The maximal invariance algebra is 〈P0, Pa, Jab, G̃a,
D(1)〉, where

D(1) = 2t∂t + xr∂xr
− Vr∂Vr

− V ∗
r ∂V ∗

r
− 2

1 + k
(ψ∂ψ + ψ∗∂ψ∗).

Case 3. F = C
|ψ| (C is an arbitrary complex constant, C �= 0). The maximal

invariance algebra is 〈P0, Pa, Jab, G̃a, Z = Z1 + Z2〉, where

Z = ψ∂ψ + ψ∗∂ψ∗ , Z1 = ψ∂ψ, Z2 = ψ∗∂ψ∗ .

Case 4. F = C �= 0 (C is an arbitrary complex constant). The maximal invariance
algebra is 〈P0, Pa, Jab, G̃a,D

(1), Z3, Z4〉, where

Z3 = ∂ψ, Z4 = ∂ψ∗ .

Case 5. F = 0. The maximal invariance algebra is 〈P0, Pa, Jab, G̃a,D,A,Z1, Z2, Z3,
Z4〉, where

D = 2t∂t + xr∂xr
− Vr∂Vr

− V ∗
r ∂V ∗

r
,

A = t2∂t + txr∂xr
− (ixr + tVr)∂Vr

+ (ixr − tV ∗
r )∂V ∗

r
.

Thus, system (23) is invariant under the Galilei transformations generated by
operator (20) for an arbitrary function F (|ψ|).

Let us now apply these results to obtain invariant solutions of system (23) with
λ = 1 in two-dimensional space-time in the case where F (|ψ|) = 0:

i
∂ψ

∂t
+
∂2ψ

∂x2
= V

∂ψ

∂x
, i

∂V

∂t
− V

∂V

∂x
= 0. (24)

The invariance algebra of system (24) includes the translation operators, Galilei,
dilation, and projective operators:

P0 = ∂t, P1 = ∂x, G̃ = t∂x − i∂V + i∂V ∗ ,

D = 2t∂t + x∂x − V ∂V − V ∗∂V ∗ ,

A = t2∂t + tx∂x − (ix+ tV )∂V + (ix− tV ∗)∂V ∗ .

1) The one-dimensional subalgebra G̃+αP0 is associated with the symmetry ansatz

ψ = ϕ(2αx− t2), V = − i

α
t+ U(2αx− t2). (25)
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Ansatz (25) reduces system (24) to the following system of ordinary differential equa-
tions:

2αϕ′′ = Uϕ′,
1
α
− 2αUU ′ = 0, (26)

where ϕ′ ≡ ∂ϕ
∂ω , ω = 2αx− t2. The general solution of system (26) has the form

U =

√
C1 +

1
α2
ω, ϕ = C2

∫
exp

{
α

3
(C1 +

1
α2
ω)3/2

}
dω + C3, (27)

where C1, C2, C3 are arbitrary constants. Thus, we obtain the partial solution of
system (24), where ψ has the form (27), and

V = − i

α
t+

√
C1 +

1
α2
ω.

2) The subalgebra

G̃+ α(Z3 + Z4) = t∂x − i∂V + i∂V ∗ + α(∂ψ + ∂ψ∗)

is associated with the symmetry ansatz

ψ = α
x

t
+ ϕ(t), V = −ix

t
+ U(t). (28)

Ansatz (28) reduces system (24) to the following system of ordinary differential equa-
tions:

iϕ̇ =
α

t
U, U̇ +

U

t
= 0

with the general solution of the form

U =
C1

t
, ϕ = i

C1α

t
+ C2,

where C1, C2 are arbitrary constants. Thus, we get the partial solution of system (24):

V = −ix
t

+
C1

t
, ψ = α

x

t
+ i

C1α

t
+ C2.

3) The subalgebra

G̃+ α(Z1 + Z2) = t∂x − i∂V + i∂V ∗ + α(ψ∂ψ + ψ∗∂ψ∗)

is associated with the symmetry ansatz

ψ = exp
(
α
x

t

)
ϕ(t), V = −ix

t
+ U(t). (29)

Ansatz (29) reduces system (24) to the following system of ordinary differential equa-
tions:

iϕ̇+
α2

t2
ϕ = U

α

t
ϕ, U̇ +

U

t
= 0



Symmetry of equations with convection terms 179

with the general solution

U =
C1

t
, ϕ = C2 exp

(
i

t
C1α− iα2

t

)
,

where C1, C2 are arbitrary constants. Thus, we get the partial solution of system (24):

V = −ix
t

+
C1

t
, ψ = C2 exp

(
αx

t
+
i

t
C1α− iα2

t

)
.

4) The subalgebra

A+ αi(Z1 − Z2) = t2∂t + tx∂x − (ix+ tV )∂V + (ix+ tV ∗)∂V ∗ +
+ iα(ψ∂ψ − ψ∗∂ψ∗)

is associated with the symmetry ansatz

ψ = exp
(
−iα

t

)
ϕ

(x
t

)
, V = −ix

t
+

1
t
U

(x
t

)
. (30)

Ansatz (30 reduces system (24) to the following system of ordinary differential equa-
tions:

U = 0, ϕ′′ − αϕ = 0.

where ϕ′′ ≡ ∂2ϕ
∂ω2 , ω = x

t . Consider the following two cases:
4a) α > 0. In this case, system (24) has the following solution:

V = −ix
t
, ψ = exp

(
−iα

t

) [
C1 exp

(√
α
x

t

)
+ C2 exp

(
−√

α
x

t

)]
,

where C1, C2 are arbitrary constants.
4b) α < 0. In this case, system (24) has the following solution:

V = −ix
t
, ψ = exp

(
−iα

t

) [
C1 cos

(√−α x
t

)
+ C2 sin

(√−α x
t

)]
,

where C1, C2 are arbitrary constants.
5) The one-dimensional algebra

A+ α(Z3 + Z4) = t2∂t + tx∂x − (ix+ tV )∂V + (ix+ tV ∗)∂V ∗ + α(∂ψ + ∂ψ∗)

is associated with the symmetry ansatz

ψ = −α
t

+ ϕ
(x
t

)
, V = −ix

t
+

1
t
U

(x
t

)
, (31)

which reduces system (24) to the following one:

U = 0, ϕ′′ + iα = 0.

where ϕ′′ ≡ ∂2ϕ
∂ω2 , ω = x

t . Solving this system, we obtain the exact solution of
system (24):

V = −ix
t
, ψ = −α

t
− i

α

2
x2

t2
+ C1

x

t
+ C2,

where C1, C2 are arbitrary constants.
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