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High-order equations of motion in quantum
mechanics and Galilean relativity
W.I. FUSHCHYCH, Z.I. SYMENOH

Linear partial differential equations of arbitrary order invariant under the Galilei
transformations are described. Symmetry classification of potentials for these equa-
tions in two-dimensional space is carried out. High-order nonlinear partial differential
equations invariant under the Galilei, extended Galilei and full Galilei algebras are
studied.

Non-relativistic quantum mechanics is based on the equation

LΨ ≡ (S + V )Ψ = 0, (1)

where S = p0 − p2
a/2m, p0 = i∂/∂x0 = i∂/∂t, pa = −i∂/∂xa, V = V (x,Ψ∗Ψ). In the

case where V is a function only of x, equation (1) coincides with the standard linear
Schrödinger equation.

The fundamental property of (1) (in the case V = 0) is the fact that this equa-
tion is compatible with the Galilean relativity principle. In other words, equation (1)
(V = 0) is invariant under the Galilei group G(1, 3). The Lie algebra AG(1, 3) =
〈P0, Pa, Jab, Ga〉 of the Galilei group is generated (see, e.g., [1, 2]) by the operators

P0 = p0, Pa = pa, Jab = xapb − xbpa, a �= b, a, b = 1, 2, 3,

Ga = tpa − mxa.
(2)

The operators 〈Ga〉 generate the standard Galilei transformations

t → t′ = t, xa → x′
a = xa + vat.

Definition 1. We say that the equation of type (1) is compatible with the Galilei
principle of relativity if it is invariant under the operators 〈P0, Pa, Jab, Ga〉.

Let X be one of the operators 〈P0, Pa, Jab, Ga〉.
Definition 2. Equation (1) is invariant under the operator X if the following condi-
tion is true:

X
(2)

LΨ
∣∣∣
LΨ=0

= 0, (3)

where X
(2)

is the second Lie prolongation of the operator X [1–4].

The equation of type (3) is a Lie condition of invariance of the equation under the
Lie algebra. In our case, it is the condition of invariance under the algebra AG(1, 3).
Theorem 1 [1, 2, 5]. Among linear equations of the first order in t and of the second
order in the space variables x there exists the unique equation (1) (V = λ = const)
invariant under the algebra AG(1, 3) with the basic elements (2).
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Conclusion. We can regard the theorem formulated above as a method of deriving
the Schrödinger equation from the Galilei principle of relativity [5, 6].

In the present paper, we give the answer on the following question: Do there exist
equations not equivalent to the Schrödinger equation for which the Galilei principle
of relativity is true?

In [6, 7], the following generalization of the Schödinger equation was proposed

(λ1S + λ2S
2 + · · · + λnSn + V )Ψ = 0, (4)

S2 = SS, . . . , Sn = Sn−1S, λ1, λ2, . . . , λn are arbitrary parameters.
If V = 0, equation (4), as well as equation (1), is invariant under the algebra

AG(1, 3), i.e. this equation is compatible with the Galilei principle of relativity. Is
this equation unique among high-order linear equations? In what follows, we get the
positive answer for this question.

More precisely, we solve the following problems:
(i) We describe all linear equations of arbitrary order invariant under the algebra

AG(1, 3).
(ii) We describe the maximal (in Lie sense) symmetry of equation (4) in the two-

dimensional space (t, x).
(iii) We describe nonlinear equations of type (4) invariant under the algebra

AG(1, 3), the extended Galilei algebra AG1(1, 3) = 〈AG(1, 3),D〉, and the full Galilei
algebra AG2(1, 3) = 〈AG1(1, 3), A〉. D and A are the dilation and projective operators,
respectively.

(i) For solving the above problems we use the method described in [1, 2, 5, 6, 7].
Theorem 2. A: Among linear partial differential equations (PDE) of arbitrary even
order 2n

LΨ = 0,

L = A + Bµ∂µ + Cµν∂µν + Dµνσ∂µνσ + · · · + E

2n︷ ︸︸ ︷
µνσ...κ∂µνσ...κ︸ ︷︷ ︸

2n

,
(5)

there exists the unique equation

(λ1S + λ2S
2 + · · · + λnSn)Ψ = λΨ (6)

invariant under the algebra AG(1, 3).
B: There are no linear PDE of arbitrary odd order 2n + 1

LΨ = 0,
L = A + Bµ∂µ + Cµν∂µν + Dµνσ∂µνσ + · · ·

· · · + E

2n︷ ︸︸ ︷
µνσ...κ∂µνσ...κ︸ ︷︷ ︸

2n

+ G

2n+1︷ ︸︸ ︷
µνσ...κρ∂µνσ...κρ︸ ︷︷ ︸

2n+1

,

(7)

with one non-zero coefficient of the highest derivatives at least, invariant under
AG(1, 3).

Here, A,Bµ, Cµν ,Dµνσ, . . . , E

2n︷ ︸︸ ︷
µνσ...κ, G

2n+1︷ ︸︸ ︷
µνσ...κρ are arbitrary functions of t and x;

λ1, λ2, . . . , λn, λ are arbitrary constants, λn �= 0; ∂µ ≡ ∂/∂xµ, ∂µν ≡ ∂2/∂xµ∂xν , . . .
(µ, ν, . . . , ρ = 0, 3).
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Proof. The scheme and idea of the proof of the theorem is very simple but the
concrete realization is not simple. We describe in more details the proof of part A.
Part B is proved in the same way as the first part of the theorem.

According to the Lie method [1, 3, 4], we find the 2nth prolongations of the
operators (2) and consider the system of determining equations

X
(2n)

LΨ
∣∣∣
LΨ=0

= 0, ∀ X ∈ AG(1, 3). (8)

Writing equations (8) in the explicit form and equating coefficients for equal deri-
vatives, we solve the system of partial differential equations to obtain functions A,

Bµ, Cµν , Dµνσ, . . ., E

2n︷ ︸︸ ︷
µνσ...κ.

Invariance of equation (5) under the operators P0, Pa results in the fact that functi-

ons A, Bµ, Cµν , Dµνσ, . . ., E

2n︷ ︸︸ ︷
µνσ...κ do not depend on t and x, i.e. these coefficients are

arbitrary constants. In other words, our PDE has the form LΨ ≡ Q(1)(p0, pa)Ψ = 0,
where Q(1) is a polynomial in (p0, pa) with constant coefficients.

After taking into account the invariance under the operators Jab, we find that the
equation has the form LΨ ≡ Q(2)(p0, p

2
a)Ψ = 0, where Q(2) is a polynomial in (p0, p

2
a).

After considering the invariance under the Galilei operators Ga, we obtain that the
equation has the form LΨ ≡ Q(3)(p0 − 1

2mp2
a)Ψ = 0, where Q(3) is a polynomial in

(p0 − 1
2mp2

a). In other words, the equation has the form (6). The theorem is proved.
Consequence. Among fourth-order linear PDE there exists the unique equation in-
variant under the algebra AG(1, 3) with basic operators (2). This equation has the
form

(λ1S + λ2S
2)Ψ = λΨ,

where λ2 �= 0.
(ii) Now, we consider equation (4) in two dimensions t, x and carry out symmetry

classification of potentials V = V (x) of this equation, i.e., we find all functions V =
V (x) admitting an extension of symmetry of (4). The following statement is true.
Theorem 3. Two-dimensional equation (4) with λn �= 0, n �= 1 is invariant under
the following algebras:

(1) 〈P0, I〉, iff V (x) is an arbitrary differentiable function;
(2) AG(1, 1) = 〈P0, P1, G, I〉, iff V = const;
(3) AG2(1, 1) = 〈P̃0, P1, G,D,A, I〉, iff V = V1 = const the following equalities

are true:

λk

λn
=

(
n

k

)(
V1

λn

)(n−k)/n

, k = 1, . . . , n − 1; (9)

(4) 〈P̃0,D,A, I〉, iff V = V1 + C/x2n, V1, C are constants and (9) are true;
(
n
k

)
are the binomial coefficients.

The operators in Theorem 3 have the following representation:

P0 = p0, P1 = p1, G = tp1 − mx, P̃0 = p̃0 = P0 + n
√

V1/λn,

D = 2tp̃0 − xp1 − (i/2)(2n − 3), A = t2p̃0 − tD − (1/2)mx2,
(10)

I is the unit operator.
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Consequence. The 2nth-order PDE

(Sn + V (x))Ψ = 0

is invariant under the following algebras:
(1) 〈P0, I〉, iff V (x) is an arbitrary differentiable function;
(2) AG(1, 1) = 〈P0, P1, G, I〉, iff V = const;
(3) AG2(1, 1) = 〈P0, P1, G,D,A, I〉, iff V = 0;
(4) 〈P0,D,A, I〉, iff V = C/x2n, where C is an arbitrary constant.
The above operators have representation (10) with V1 = 0.
Note that symmetry classification of potentials for the fourth-order PDE of the

form

(λ1S + λ2S
2 + V (x))Ψ = 0

was carried out in [8]. In this case, symmetry operators have representation (10) with
V1 = λ2

1
4λ2

and n = 2.
(iii) Now, let us consider nonlinear PDE of type (4) in (r + 1)-dimensional space:

SnΨ + F (ΨΨ∗)Ψ = 0, (11)

where Ψ∗ is complex conjugated function, n is an arbitrary integer power, F is an
arbitrary complex function of ΨΨ∗.

We study symmetry classification of (11), i.e. we find all functions F (ΨΨ∗) which
admit an extension of symmetry of equation (11).
Theorem 4. Equation (11) is invariant under the following algebras:

(1) 〈P0, Pa, Jab, Ga, Q1〉, iff F is an arbitrary differentiable function;
(2) 〈P0, Pa, Jab, Ga, Q1, Q2〉, iff F = const �= 0;
(3) 〈P0, Pa, Jab, Ga, Q1, D̃〉, iff F = C(ΨΨ∗)k, k �= 0;
(4) 〈P0, Pa, Jab, Ga, Q1,D,A〉, iff F = C(ΨΨ∗)(2n)/(r+2−2n);
(5) 〈P0, Pa, Jab, Ga, Q1, Q2,D,A〉, iff F = 0.
Here, indices a, b are from 1 to r, a �= b, k is an arbitrary number (k �= 0), and

the above operators have the following representation:

P0 = p0, Pa = pa, Jab = xapb − xbpa, Ga = t∂xa
+ imxaQ1,

Q1 = Ψ∂Ψ − Ψ∗∂Ψ∗ , Q2 = Ψ∂Ψ + Ψ∗∂Ψ∗ ,

D̃ = 2t∂t + xc∂xc
− (n/k)Q2, D = 2t∂t + xc∂xc

− r + 2 − 2n

2
Q2,

A = t2∂t + txc∂xc
+ (i/2)mxcxcQ1 − r + 2 − 2n

2
tQ2,

where summation from 1 to r over the repeated indices c is understood.
Thus, in the present paper, we have described the unique linear PDE of arbit-

rary even order which is invariant under the Galilei group. We have investigated the
exhaustive symmetry classification of potentials V (x) of (4) and functions F (ΨΨ∗)
of the nonlinear equation (11), i.e. we have pointed out all functions admitting an
extension of the invariance algebra.
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