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Higher symmetries and exact solutions
of linear and nonlinear Schrödinger equation
W.I. FUSHCHYCH, A.G. NIKITIN

A new approach for the analysis of partial differential equations is developed which
is characterized by a simultaneous use of higher and conditional symmetries. Higher
symmetries of the Schrödinger equation with an arbitrary potential are investigated.
Nonlinear determining equations for potentials are solved using reductions to Wei-
erstrass, Painlevé, and Riccati forms. Algebraic properties of higher order symmetry
operators are analyzed. Combinations of higher and conditional symmetries are used
to generate families of exact solutions of linear and nonlinear Schrödinger equations.

1 Introduction

Higher order symmetry operators (SOs) have many important applications in modern
mathematical physics. These operators correspond to hidden symmetries of partial
differential equations, including Lie–Bäcklund symmetries [1, 2], as well as super- and
parasupersymmetries [3–7].

Higher order SOs can be used to construct new conservation laws which cannot
be found in the classical Lie approach [3, 8]. These operators are applied to separate
variables [9]. Moreover, one should use SOs whose order is higher than the order of
the equation whose variables are separated [10].

In the present paper we investigate higher order SOs of the Schrödinger equation,
which are “non-Lie symmetries” [8, 11]. The simplest non-Lie symmetries are consi-
dered in detail and all related SOs are explicitly calculated. The potentials admitting
these symmetries are found as solutions of the corresponding nonlinear compatibility
conditions. It is shown that the higher order SOs extend the class of potentials which
were previously obtained in the Lie symmetry analysis.

Algebraic properties of higher order SOs are investigated and used to construct
exact solutions of the linear and related nonlinear Schrödinger equations. We propose
a new method to generate extended families of exact solutions by using both the
conditional symmetries [8, 12–14] and higher order SOs.

The Schrödinger equation with a time-independent potential V = V (x) is studied
mainly. Time-dependent potentials V = V (t, x) are discussed briefly in Section 6.
By this, we recover the old result [15] connected with the Lax representation for
the Boussinesq equation, and generate some other nonlinear equations admitting this
representation.

The distinguishing feature of our approach is that coefficients of symmetry opera-
tors and the corresponding potentials are defined as solutions of differential equations
which can be easily generalized to the case of multidimensional Schrödinger equation
contrary to the method of inverse scattering problem.
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Institute for Mathematical Physics, Germany, 1996, 23 p.
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This paper continues (and in some sense completes) our works [16–18] where non-
Lie symmetries of the Schrödinger equation were considered. A detailed analysis of
higher symmetries of multidimensional Schrödinger equations will be a subject of our
subsequent paper.

2 Symmetry operators of the Schrödinger equation

Let us formulate the concept of higher order SO for the Schrödinger equation

LΨ(t, x) = 0, L = i∂t −H,

H =
1
2
(−∂2

x + U(x)
)
, ∂t ≡ ∂

∂t
, ∂x ≡ ∂

∂x
.

(2.1)

In every sense of the word, a SO of equation (2.1) is any (linear, nonlinear, di-
fferential, integro-differential, etc.) operator Q transforming solutions into solutions.
Restricting ourselves to linear differential operators of finite order n we represent Q
in the form

Q =
n∑

i=0

(hi · p)i, (hi · p)i = {(hi · p)i−1, p}, (hi · p)0 = hi, (2.2)

where hi are unknown functions of (t, x), {A,B} = AB +BA, p = −i∂x.
Operator (2.2) includes no derivatives w.r.t. t which can be expressed as 1

2

(
p2 + U

)
on the set of solutions of equation (2.1).
Definition [8]. Operator (2.2) is a SO of order n of equation (2.1) if

[Q,L] = 0. (2.3)

Remark. The more general invariance condition [3] [Q,L] = αQL, where αQ is
a linear operator, reduces to relation (2.3) if L and Q are operators defined in (2.1),
(2.2). Terms proportional to i ∂

∂t cannot appear as a result of commutation of Q and L;
hence, without loss of generality, αQ = 0.

For n = 1, 2 SOs (2.2) reduce to differential operators of the first order and can
be interpreted as generators of the invariance group of the equation in question. For
n > 2 these operators (which we call higher order SO) correspond to non-Lie [8, 11]
symmetries.

The Lie symmetries of equation (2.1) were described in Refs. [19–21]. The general
form of potentials admitting nontrivial (i.e., distinct from time displacements) sym-
metries is as follows

U = a0 + a1x+ a2x
2 +

a3

(x+ a4)2
, (2.4)

where a0, . . . , a4 are arbitrary constants. No other potentials admitting local invari-
ance groups exist.

Group properties of equation (2.1) with potentials (2.4) were used to solve the
equation exactly, to establish connections between equations with different potentials,
to separate variables, etc. [9]. Unfortunately, all these applications are valid for a very
restricted class of potentials given by formula (2.4).
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The class of admissible potentials can be essentially extended if we require that
equation (2.1) admits higher order SOs [17]. The problem of describing such potentials
(and the corresponding SOs) reduces to solving operator equations (2.2), (2.3). Eva-
luating the commutators and equating the coefficients for linearly independent diffe-
rentials we arrive at the following system of determining equations (which is valid for
arbitrary n) [5]:

∂xhn = 0, ∂xhn−1 + 2∂thn = 0,
∂xhn−m + 2∂thn−m+1 −

−
[m−2

2 ]∑
k=0

(−1)k 2(n−m+ 2 + 2k)!
(2k + 1)!(n−m+ 1)!

hn−m+2k+2∂
2k+1
x U = 0,

∂th0 +
[n−1

2 ]∑
p=0

(−1)p+1h2p+1∂
2p+1
x U = 0,

(2.5)

where m = 2, 3, . . . , n, and [y] is the entire part of y.
Formulae (2.5) define a system of nonlinear equations in hi and U . For n = 2 the

general solution for U is given by formula (2.4).
Let us consider the case n = 3, which corresponds to the simplest non-Lie sym-

metry, in more detail. The corresponding system (2.5) reduces to

h′3 = 0, h′2 + 2ḣ3 = 0, 2ḣ2 + h′1 − 6h3U
′ = 0, (2.6a)

2ḣ1 + h′0 − 4h2U
′ = 0, ḣ0 − h1U

′ + h3U
′′′ = 0, (2.6b)

where the dots and primes denote derivatives w.r.t. t and x respectively.
Excluding h0 from (2.6b) and using (2.6a) we arrive at the following equation:

F (a, b, c;U, x) ≡ aU ′′′′ − (2äx2 + 6aU + c− 2ḃx)U ′′ −
− 6(2äx+ aU ′ − ḃ)U ′ − 12äU − 2(2∂4

t ax
2 − 2

...

b x+ c̈) = 0,
(2.7)

where a, b, c are arbitrary functions of t.
Equation (2.7) is nothing but the compatibility condition for system (2.6). If the

potential U satisfies (2.7) then the corresponding coefficients of the SO have the form

h3 = a, h2 = −2ȧx+ b, h1 = g1 + 6aU,

h0 = −4
3

...
a x3 + 2b̈x2 − 2ċx− 4ȧϕ+ 4(b− 2ȧx)U + d,

(2.8)

where

g1 = 2äx2 − 2ḃx+ c, ϕ =
∫
Udx, u = ϕ′, d = d(t). (2.9)

3 Equations for potential

Equation (2.7) was obtained earlier [17] (see Ref. [22]) and, moreover, particular
solutions for U were found [17]. Here we analyze this equation in detail.



Higher symmetries and exact solutions of Schrödinger equation 145

First of all, let us reduce the order of equation (2.7). Integrating it twice w.r.t. x
and choosing the new dependent variable ϕ defined in (2.9) we obtain

a[ϕ′′′ − 3(ϕ′)2] − (g1ϕ)′ =
1
3
∂4

t ax
4 − 2

3
...

b x
3 + c̈x2 + dx+ e. (3.1)

Using the fact that ϕ depends on x only while a, b, c, d, e are functions of t, it is
possible to separate variables in (3.1). Indeed, dividing any term of (3.1) by a �= 0,
differentiating w.r.t. t and integrating over x we obtain the following consequence

ġ1a− g1ȧ

a2
ϕ = ∂t

1
a

(
1
15
∂4

t ax
5 − 1

6
...

b x
4 +

1
3
c̈x2 +

1
2
dx2 + ex+ f

)
. (3.2)

Consider equation (3.2) separately in two following cases:

ġ1a− g1ȧ �= 0, (3.3a)

ġ1a− g1ȧ = 0. (3.3b)

Let condition (3.3a) be valid. Then dividing the l.h.s. and r.h.s. of (3.2) by ∂t(g1/a)
we come to the following general expression for ϕ

ϕ = α3x
3 + α2x

2 + α1x+ α0 +
α4

x+ α5
+

β1x+ β2

x2 + β3x+ β4
, (3.4)

where α0, . . . , α5, β1, . . . , β4 are constants.
It is possible to verify by a straightforward but cumbersome calculation that relati-

on (3.4) is compatible with (3.1) only for β1 = β2 = 0. We will not analyze solutions
(3.4) inasmuch as they correspond to potentials (2.4) and to SOs which are products
of the usual Lie symmetries [19–21].

If condition (3.3a) is valid, we obtain from equation (3.2)

ä = ak1, ḃ = k2a, c = k3a, (3.5)

where k1, k2, k3 are arbitrary constants. The corresponding equation (3.1) reduces to

ϕ′′′ − 3(ϕ′)2 − (G′′ϕ)′ = 2k1G+ k4x+ k5, (3.6)

where

G =
1
6
k1x

4 − 1
3
k2x

3 +
1
2
k3x

2, G′′ = g1 = 2k1x
2 − 2k2x+ k3, (3.7)

k4 and k5 are constants.
Let us prove that, up to equivalence, equation (3.6) can be reduced to one of the

following forms:

U ′′ − 3U2 + 3ω1 = 0, (3.8a)

U ′′ − 3U2 − 8ω2x = 0, (3.8b)

(U ′′ − 3U2)′ − 2ω3(xU ′ + 2U) = 0, (3.8c)

ϕ′′′ − 3(ϕ′)2 − 2ω4(x2ϕ)′ =
1
3
ω2

4x
4 + ω5, U = ϕ′, (3.8d)
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where ω1, . . . ω5 are arbitrary constants. Indeed, by using invertible transformations

ϕ→ ϕ+ C1x+ C2, x→ x+ C3, (3.9)

where Ck (k = 1, 2, 3) are constants, it is possible to simplify the r.h.s. of (3.6). These
transformations cannot change the order of polynomial G, and so there exist four
nonequivalent possibilities:

k1 = 0, k2 = 0, k4 = 0, (3.10a)

k1 = 0, k2 = 0, k4 �= 0, (3.10b)

k1 = 0, k2 �= 0, (3.10c)

k1 �= 0. (3.10d)

Setting in (3.9)

C1 = −1
6
k3, C2 = C3 = 0, k5 − 1

12
k2
3 = ω1, (3.11a)

C1 = −1
6
k3, C2 = 0, C3 = −k5

k4
+

k2
3

12k4
, k4 = 8ω2, (3.11b)

C1 =
k4

4k2
, C2 =

k5

2k2
+

3k2
4

32k3
2

+
k3k4

8k2
2

, C3 =
k3

2k2
+

3k4

4k2
2

, k2 = −ω3, (3.11c)

C1 = −1
6
k3 +

k2
2

12k1
, C2 = − k4

4k1
− k2k3

6k1
+

k3
2

24k2
1

,

C3 =
k2

2k1
, k1 = ω4, k5 − k2

3

12
+
k2k4

2k1
+
k2
2k3

3k1
− k4

2

16k2
1

= ω5

(3.11d)

for cases (3.10a)–(3.10d) correspondingly, we reduce (3.6) to one of the forms (3.8a)–
(3.8d) respectively.

From (2.2), (2.8), (3.4), (3.9)–(3.11) we find the corresponding symmetry operators

Q = p3 +
3
4
{U, p} ≡ 2pH +

1
2
Up+

i

4
U ′, (3.12a)

Q = p3 +
3
4
{U, p} − ω2t, (3.12b)

Q = p3 +
3
4
{U, p} + ω3

(
tH − 1

4
{x, p}

)
, (3.12c)

Q± =
1√
24

[
p3 ± i

4
ω{{x, p}, p} +

1
4
{3ϕ′ − ω2x2, p}±

± i

2
ω

(
ϕ+ 2xϕ′ − ω2

3
x3

)]
exp(±iωt), ω =

√−ω4,

(3.12d)

where U and ϕ are solutions of (3.2) and H is the related Hamiltonian (2.1).
Thus, the Schrödinger equation (2.1) admits a third-order SO if potential U satis-

fies one of the equations (3.8). The explicit form of the corresponding SOs is present
in (3.12).
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4 Algebraic properties of SOs

Let us investigate algebraic properties of SOs defined by relations (3.12). We shall see
that these properties are predetermined by the type of equations (3.8) satisfied by U .
By direct calculations, using (2.3), (2.1) and (3.12), we find the following relations

[Q,H] = 0, (4.1a)

Q2 = 8H2 − 3
2
ω1H − C

8
(4.1)

if the potential satisfies equation (3.8a) (C is the first integral of equation (3.8a), refer
to (5.1));

[Q,H] = iω2I, [Q, I] = [H, I] = 0 (4.2)

if the potential satisfies equation (3.8b);

[Q,H] = −iω3H (4.3)

if the potential satisfies equation (3.8c), and

[H,Q±] = ±ωQ±, (4.4a)

[Q+, Q−] = ω

(
H2 +

1
48

(2ω2 + ω5)
)

(4.4b)

if the potential satisfies (3.8d).
It follows from (4.1)–(4.3) that non-Lie SOs Q and HamiltoniansH form consistent

Lie algebras which can have rather nontrivial applications.
Formula (4.1b) presents an example of the general theorem [23, 24] stating that

commuting ordinary differential operators are connected by a polynomial algebraic
relation with constant coefficients. In Section 7 we use relations (4.1) to integrate the
related equations (2.1).

Relations (4.2) define the Heisenberg algebra. The linear combinations a± =
1√
2
(H ± iQ) realize the unusual representation of creation and annihilation operators

in terms of third-order differential operators.
In accordance with (4.3), Q plays a role of dilatation operator which continuously

changes eigenvalues of H. Indeed, let

HΨE = EΨE , (4.5)

then the function Ψ′ = exp(iλQ)ΨE (where λ is a real parameter) is also an eigen-
vector of the Hamiltonian H with the eigenvalue λE.

It follows from (4.4) that for ω4 < 0 the operators Q+ and Q− are raising and
lowering operators for the corresponding Hamiltonian. In other words, if ΨE sati-
sfies (4.5) then Q±ΨE are also eigenfunctions of the Hamiltonian which, however,
correspond to the eigenvalues E ± ω:

H(Q±ΨE) = (E ± ω)(Q±ΨE). (4.6)
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Relations (4.6) are typical for creation and annihilation operators of the quantum
oscillator. This observation shows a way for constructing exact solutions of the Schrö-
dinger equation whose potential satisfies relation (3.8d). Moreover, relations (4.4a)
allow Q to be interpreted as a conditional symmetry [8, 12]; such symmetries are of
particular interest in the analysis of partial differential equations [14, 25, 26]. Thus,
third-order SOs of equation (2.1) generate algebras of certain interest. Moreover,
algebraic properties of these SOs are the same for wide classes of potentials described
by one of equations (3.8).

5 Reduction of equations for potentials

Let us consider equations (3.8) in detail and describe the corresponding classes of
potentials. A solution of some of these nonlinear equations is a complicated problem
which, however, can be simplified by using reductions to other well–studied equations.

5.a. The Weierstrass equation. Formula (3.8a) defines the Weierstrass equation
whose solutions are expressed via either elementary functions or via the Weierstrass
function, depending on values of the parameter ω1 and the integration constant.
Here we represent these well-known solutions (refer, e.g. to the classic monograph
of E.T. Whittaker and G.N. Watson [28]) in the form convenient for our purposes.

Multiplying the l.h.s. of (3.8a) by U ′ and integrating we obtain

1
2
(U ′)2 − U3 + 3ω1U = C, (5.1)

where C is an integration constant which appeared above in (4.1b). Then by changing
roles of dependent and independent variables it becomes possible to integrate (5.1) and
to find U as an implicit function of x. We will distinguish five qualitatively different
cases:

C2 − 4ω3
1 = 0, C > 0, (5.2a)

C2 − 4ω3
1 = 0, C < 0, (5.2b)

C = ω1 = 0, (5.2c)

C2 − 4ω3
1 < 0. (5.3a)

C2 − 4ω3
1 > 0. (5.3b)

For (5.2a)–(5.2c), solutions of (5.1) can be expressed via elementary functions,
while (5.3a,b) generate solutions in elliptic functions.

For our purposes, it is convenient to transform (5.1) to another equivalent form.
Using the substitution

U = V − µ

2
, (5.4)

where µ is a real root of the cubic equation

µ3 − 3ω1µ+ C = 0, (5.5)
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we obtain
1
2
(V ′)2 − V 3 − ω̄0V

2 + 4ω̄1V + 8ω̄0ω̄1 = 0, (5.6)

where ω̄0 = 3
2µ and ω̄1 = 3

4 (ω1 − µ2) are arbitrary real numbers.
The substitution (5.4), (5.5) transforms conditions (5.2), (5.3) to the following

form:

ω̄1

(
ω̄1 − ω̄2

0

)2
= 0, ω̄0 < 0, (5.7a)

ω̄1

(
ω̄1 − ω̄2

0

)2
= 0, ω̄0 > 0, (5.7b)

ω̄1

(
ω̄1 − ω̄2

0

)2
= 0, ω̄0 = 0, (5.7c)

ω̄1

(
ω̄1 − ω̄2

0

) �= 0, ω̄1 > 0, (5.8a)

ω̄1

(
ω̄1 − ω̄2

0

) �= 0, ω̄1 < 0. (5.8b)

If relations (5.7a) are satisfied, then ω̄1 = ω̄2
0 or ω̄1 = 0. Moreover, the correspon-

ding solutions for V differ by a constant shift: V → V + 2ω̄0, ω̄0 → ω̄0/2. Without
loss of generality we restrict ourselves to the former case, then solutions of equation
(5.6) corresponding to conditions (5.7a-c) have the following forms:

V = ν2
[
2 tanh2 (ν(x− k)) − 1

]
, ω̄0 = −1

2
ν2, ω̄1 =

1
4
ν4, (5.9a)

V = ν2
[
2 coth2 (ν(x− k)) − 1

]
, ω̄0 = −1

2
ν2, ω̄1 =

1
4
ν4, (5.9a′)

V = ν2
[
2 tan2 (ν(x− k) − 1)

]
, ω̄0 =

1
2
ν2, ω̄1 =

1
4
ν4, (5.9b)

V =
2

(x− k)2
. (5.9c)

Here, k and ν are arbitrary real numbers.
For the cases (5.8) the general solution of (5.1) has the form

V = 2℘(x− k) +
1
2
µ, (5.10)

where ℘ is a two-periodic Weierstrass function, which is meromorphic on all the
complex plane. The invariants of this function are g2 = − 4

3

(
ω̄2

0 + 3ω̄1

)
and g3 =

− 4
27 ω̄0

(
ω̄2

0 − 9ω̄1

)
. Moreover, if condition (5.8a) holds, the corresponding solutions

are bounded and can be expressed via the elliptic Jacobi functions

V = Bcn2(Dx+ k) + F, (5.11a)

where

B = (e3 − e2), D =
√

(e1 − e3)/2, F = e2, (5.11b)

e1 > e2 > e3 are real solutions of the cubic equation from the r.h.s. of (5.6).
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We note that formulae (5.9) present the set of well-known potentials which cor-
respond to the exactly solvable Schrödinger equations [27]. In accordance with the
above, these equations admit extended Lie symmetries.

5.b. Painlevé and Riccati equations. Relation (3.8b) defines the first Painlevé
transcendent. Its solutions are meromorphic on all the complex plane but cannot be
expressed via elementary or special functions.

Equation (3.8c) is more complicated. However, by using the special change of
variables and applying the Miura [29] ansatz, we shall reduce it to the Painlevé form
also. Indeed, making the following change of variables

U = − 3

√
ω2

3

6
V, x = − 3

√
1

6ω3
y, (5.12)

we obtain

V ′′′ + V V ′ − 1
3
xV ′ − 2

3
V = 0, V ′ = ∂V/∂y. (5.13)

The ansatz

V = W ′ − 1
6
W 2 (5.14)

reduces (5.13) to(
∂y − 1

3
W

)(
W ′′′ − 1

6
W 2W ′ − 1

3
yW ′ − 1

3
W

)
= 0.

Equating the expression in the second brackets to zero and integrating it we come
to the second Painlevé transcendent

W ′′ =
1
18
W 3 +

1
3
yW +K, (5.15)

where K is an arbitrary constant.
To make one more reduction of equation (3.8c) we take U = ϕ′. Then, integrating

the resultant equation, we obtain

ϕ′′′ − 3 (ϕ′)2 − 2ω3 (xϕ)′ = C. (5.16)

Then, defining

ϕ = 2 3
√

2ω3ξ +
1
4
y2 +

C

2ω3
, y = 3

√
2ω3x,

Ŵ = ξ′ − ξ2 − 1
2
y, ξ′ =

∂ξ

∂y

(5.17)

we represent (5.16) as

Ŵ ′′ − 4ξ′Ŵ + 2ξŴ ′ − yŴ = 0. (5.18)

The trivial solutions of (5.18) correspond to the following Riccati equation for ξ:

ξ′ − ξ2 − 1
2
y = 0. (5.19)
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It follows from the above that any solution of equations (5.15) or (5.19) generates
a potential U defined by relations (5.12), (5.14) or (5.17). The corresponding Schrö-
dinger equation admits a third-order SO.

The last of the equations considered, i.e., equation (3.8d), is the most complicated.
The change

ϕ = 2f − 1
3
ω4x

3 (5.20)

reduces it to the following form:

f ′′′ − 6(f ′)2 + 4ω4(f ′x2 − xf) = ω4 +
1
2
ω5. (5.21)

Multiplying (5.21) by f ′′ and integrating we obtain the first integral

1
2
(f ′′)2 − 2(f ′)3 + 2ω4(f − xf ′)2 −

(
ω4 +

1
2
ω5

)
f ′ = C (5.22)

which is still a very complicated nonlinear equation.
Let us demonstrate that (5.21) can be reduced to the Riccati equation. To realize

this we rewrite (5.21) as follows

F ′′ + 2fF ′ − 4f ′F =
1
2
ω5 − ω4, (5.23)

where

F = f ′ − f2 − ω4x
2.

Choosing ω5 = 2ω4 we conclude that any solution of the Riccati equation

f ′ = f2 + ω4x
2 (5.24)

generates a solution of equation (3.8d), given by relation (5.20).
One more possibility in solving of equation (3.8d) consists in its reduction to

the Painlevé form. Making the change of variables ϕ =
√−w4χ, x = 1√−ω4

y and
differentiating equation (3.8d) w.r.t. y, we obtain(

Ũ ′′ − 3Ũ2
)′′

+
(
6Ũ + 6xŨ ′ + +2Ũ ′′

)
= 4x2, (5.25)

where Ũ = ∂χ
∂y = − 1

ω4
U .

Using the following generalized Miura ansatz

Ũ = −V ′ + V 2 + 2V y + y2 − 1, (5.26)

we reduce equation (5.25) to the form

∂y (∂y − 2V − 2y − 2) ×
× (V ′′′ − 6V 2V ′ − 4V2 − 12yV V ′ − 4yV − 4V ′y2 − 2V ′) = 0.

Equating the expression in the right brackets to zero, integrating and dividing it
by 2V , we come to the fourth Painlevé transcendent

V ′′ =
V ′2

2V
+

3
2
V 3 + 8yV 2 +

(
2y2 − 1

)
V +

b

V
. (5.27)
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We note that the double differentiation and consequent change of variables

ϕ′ = −
√
ω4

3

(
Φ +

1
6
y2

)
, x =

1
4
√

4ω4
y

transform equation (3.8d) to the form

∂4Φ + Φ′′Φ + Φ′Φ′ − 1
3
(
8Φ + x2Φ′′ + 7xΦ′) = 0

which coincides with the reduced Boussinesq equation [3, 12]. The procedures outlined
above reduces the equation either to the fourth Painlevé transcendent (5.27) or to the
Riccati equation (5.24).

Thus, the third-order SO are admitted by a very extended class of potentials descri-
bed above. We should like to emphasize that in general the corresponding Schrödinger
equation does not possesses any nontrivial (distinct from time displacements) Lie
symmetry.

6 Equations for time-dependent potentials
Consider briefly the case of time-dependent potentials U = U(x, t). The determining
equations (2.6) are valid in this case also. Moreover, the compatibility condition for
system (2.6) takes the form

F (a, b, c;x,U) + 12aÜ − 4(b− 2ȧx)U̇ ′ = 0, (6.1)

where F (a, b, c;x,U) is defined in (2.7).
Equation (6.1) is much more complicated than (2.7) due to the time dependence

of U , which makes it impossible to separate variables. For any fixed set of functions
a(t), b(t), and c(t), formula (6.1) defines a nonlinear equation for potential. Moreover,
any of these equations admits the Lax representation

[H,Q] = i
∂Q

∂t
, (6.2)

cf. (2.3). Refer to Refs. [30, 31] for the general results connected with arbitrary ordi-
nary differential operators satisfying (6.2).

We will not analyze equations (6.1) here, but present a few simple examples
concerning particular choices of arbitrary functions a, b, and c.

a = const, b = c = 0:

−12Ü + U ′′′′ − 6(UU ′)′ = 0; (6.3)

a, b are constants, c = 0:

12Ü − (4bU̇ − U ′′′ + 6UU ′)′ = 0; (6.4)

ȧ = c = 0, ḃ = ω3a:

12Ü − 4(ω3t− 2x)U̇ ′ + (U ′′ − 3U2)′′ + 2ω3(xU ′ + 2U)′ = 0; (6.5)

a = exp(t), b = c = 0:

12Ü + 8xU̇ ′ + (U ′′ − U2)′′ − 12(Ux)′ − 2x2U ′′ − 4x2 = 0. (6.6)
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Formula (6.3) defines the Boussinesq equation. The Lax representation (6.2) for
this equation is well known [15]. Formulae (6.4)–(6.6) present other examples of non-
linear equations admitting this representation and arise naturally under the analysis
of third-order SOs of the Schrödinger equation.

7 Exact solutions
Let us regard the case of potentials satisfying (3.8a) or (5.4), (5.6). Taking into account
commutativity of the corresponding SO (3.12a) with Hamiltonian (2.1) it is convenient
to search for solutions of the Schrödinger equation in the form

Ψ(t, x) = exp(−iEt)ψ(x), (7.1)

where ψ(x) are eigenfunctions of the commuting operators H and Q

Hψ(x) = Eψ(x), (7.2a)

Qψ(x) = λψ(x). (7.2b)

Using (7.2a), (3.12a), and (5.4) we reduce (7.2b) to the first-order equation(
2E +

V

2
+ ω̄0

)
ψ′ =

(
1
4
V ′ + iλ

)
ψ (7.3)

whose general solution has the form

ψ = A
√
V + 4E + 2ω̄0 exp

(
2iλ
∫

dx

V + 4E + 2ω̄0

)
, (7.4)

where A is an arbitrary constant. Then, expressing ψ′ via ψ in accordance with (7.3)
and using (5.6), we reduce (7.2a) to the following algebraic relation for E and λ
(compare with (4.1b)):

λ2 = 8E2(E + ω̄0). (7.5)

Thus there exists a remarkably simple way to integrate the Schrödinger equation
which admits a third order SO. The integration reduces to the problem of solving the
first-order ordinary differential equation (7.3) and algebraic equation (7.5).

Let us show that the existence of a third-order SO for the linear Schrödinger
equation enables one to find exact solutions for the following nonlinear equation:

i∂tΨ̃ =
1
2
p2Ψ̃ +

1
2A2

(Ψ̃∗Ψ̃)Ψ̃. (7.6)

Indeed, if λ2 > 0, solutions (7.1), (7.4) satisfy the following relations

Ψ∗Ψ = A2(V + 4E + 2ω̄0). (7.7)

Using (7.2a) and (7.7) we make sure that the functions

Ψ̃ = exp(iεt)ψ(x), ε = −3E − ω̄0 (7.8)

(where ψ(x) are functions defined in (7.4)) are exact solutions of (7.6).
Thus, we obtain a wide class of exact solutions of the nonlinear Schrödinger equati-

on, which depend on arbitrary parameters ε, ω̄0, ω̄1, k (see (7.8), (7.4), (5.6), (5.8)).
Properties of these (and some more general) solutions are discussed in the following
section.



154 W.I. Fushchych, A.G. Nikitin

8 Lie symmetries and generation of solutions
It is well known that equation (7.6) is invariant under the Galilei transformations
(refer, e.g., to Refs. [2, 3])

x→ x′ = x− vt,

Ψ(t, x) → Ψ′(t, x′) = exp
[
i

(
vx− v2

2
+ ϕ0

)]
Ψ(t, x),

(8.1)

where v and ϕ0 are real parameters. Using (8.1) it is possible to generate a more
extended family of solutions starting with (7.8)

Ψ̄ = A
√
V (x− k − vt) + 4E + 2ω̄0 ×

× exp

{
i

[
(2ε− v2)

t

2
+ vx+ ϕ0 + 2λ

∫ x−k−vt

0

dy

V (y) + 4E + 2ω̄0

]}
.

(8.2)

Here, V is an arbitrary solution of equation (5.6), v, ω̄0, ω̄1, k, ϕ0 and E are real
parameters, λ and ε are defined in (7.5), (7.8).

In order for λ to be real we require ε ≥ 0, other parameters are arbitrary.
Solutions (8.2) are qualitatively different for different values of free parameters

enumerated in (5.7). If ω̄0 and ω̄1 satisfy (5.7a) or (5.7c), possible V are given by
formulae (5.9a), (5.9a′) or (5.9c). Solutions (8.2), (5.9a) are bounded for any x and t,
whereas solutions (8.2), (5.9a′) and (8.2), (5.9c) are singular at x − k − vt = 0.
For ω̄0 and ω̄1 satisfying (5.7b) the modulus of the complex function (8.2), (5.9b)
is periodic and singular at x − k − vt = (2n + 1)π/2ν. All the above mentioned
singularities are simple poles. If ω̄0 and ω̄1 satisfy relations (5.8a), the solutions (8.2)
are expressed via the two-periodic Weierstrass function ℘ (refer to (5.10)) and are,
generally speaking, unbounded. But if we restrict ourselves to solutions (5.11) for
potential, the corresponding solutions (8.2) are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider in more
detail the cases (8.2), (5.9a) and (8.2), (5.11).

For potentials (5.9a) the corresponding relation (7.5) reduces to

λ2 = 4E2ε, ε = 2E − ν2, (8.3)

and the integral in (8.2) can be easily calculated. This enables us to represent solutions
(8.2), (5.9a) as follows

Ψ̃ =
Aν

cosh[ν(x− k − vt)]
exp
{
i

[(
ν2 − v2

2

)
t+ vx+ ϕ0

]}
, E = 0; (8.4)

Ψ̃ = A
{
ν tanh[ν(x− k − vt)] ± i

√
ε
}×

× exp
{
i

[(
ν2 − v2

2
− 3E

)
t+ (v ∓√

ε)x+ ϕ0

]}
, E �= 0, ε ≥ 0.

(8.5)

For potentials (5.11) we obtain from (8.2)

Ψ̃ = Ψ̃1 = A
√
B cn [D(x− vt) + k] exp[if1(t, x)], E = 0; (8.6)

Ψ̃ = Ψ̃2 = A
√
B cn2[D(x− vt) + k] + F exp(if2(t, x)], E + ω̄0 = 0, (8.7)
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where

f1(t, x) = f2(t, x) +
3
2
Ft =

(
F − v2

2

)
t+ vx+ ϕ0,

B, D and F are parameters defined in (5.11b).
For another values of E solutions (8.2), (5.11) are also reduced to the form (8.7)

where the phase f2(t, x) is expressed via elliptic integrals.
Formula (8.4) presents a fast decreasing one-soliton solution [31]. Relation (8.5)

defines a soliton solution whose behavior at x→ ∞ is typical of solitons with a finite
density. Formulae (8.6), (8.7) describe “cnoidal” solutions for the nonlinear Schrödinger
equation.

9 Conditional symmetry and generation of solutions
Let us return to the linear Schrödinger equation (2.1) with the potential U satisfying
(3.8a). Generally speaking it possesses no non-trivial (distinct from time displace-
ments) Lie symmetry. Nevertheless, its solutions can be generated within the frame-
work of the concept of conditional symmetry [2, 3, 12, 14, 32]. Indeed, these solutions
satisfy (7.7), and equation (2.1) with the additional condition (7.7) is invariant under
the Galilei transformations (8.1) (i.e., condition (7.7) extends the symmetry of equa-
tion (2.1)).

This conditional symmetry enables us to generate new solutions. Starting with
(7.1), (7.4) and using (8.1) we obtain

Ψ = A
√
V (x− k − vt) + 4E + 2ω̄0 ×

× exp


i

−(2E + v2)

t

2
+ vx+ ϕ0 + 2λ

x−k−vt∫
0

dy

V (y) + 4E + 2ω̄0




 .

(9.1)

Functions (9.1) satisfy the Schrödinger equation with a potential V (x − k − vt)
where V (x) is a solution of equation (5.6). In the particular case E = − ω̄0

2 these
functions are reduced to solutions (8.2) of the nonlinear equation (7.6).

One more generation of solutions can be made using a third-order SO. Inasmuch
as V (x) satisfies (5.6), then V (x − vt) satisfies the Boussinesq equation (6.3). It
means that the corresponding linear Schrödinger equation admits a third-order SO.
In accordance with (2.2), (2.6) this SO can be represented in the form

Q = p3 +
1
4
{3V + 2ω̄0 + 6v2, p} +

3
2
vV ≡

≡ 2pH +
1
2
(V + 2ω̄0 + 6v2)p+

3
2
vV +

i

4
V ′.

(9.2)

Formula (9.2) generalizes (3.12a) to the case of time-dependent potential.
Acting by operator (9.2) on Ψ in (9.1) we obtain a new family of solutions

Ψ′ = QΨ = aψ + iv2Ψ1, (9.3)

where a = λ+ 4Ev + ω̄0v − 4v3, Ψ is the initial solution (9.1),

Ψ1 =
V ′ + 4iλ

2(4E + V + 2ω̄0)
Ψ. (9.4)
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We note that if Ψ is a soliton solution

Ψ =
νA

cosh[ν[x− vt)]
exp
[
i

(
−v

2

2
t+ vx+ ϕ0

)]
(9.5)

(the corresponding potential is present in (5.9a)), then (9.4) is a soliton solution too:

Ψ1 =
ν2A sinh[ν(x− vt)]

cosh2[ν(x− vt)]
exp
[
i

(
−v

2

2
t+ vx+ ϕ0

)]
. (9.6)

Starting with the potential (5.11) we obtain from (9.1) a particular solution

Ψ = A
√
B cn2z + F exp

[
i

(
−v

2

2
t+ vx+ ϕ0

)]
, z = D(x− vt). (9.7)

The corresponding generated solution (9.4) reads

Ψ1 = −ABD cn z sn z dn z
B cn2z + 2F

exp
[
i

(
−v

2

2
t+ vx+ ϕ0

)]
(9.8)

and is also bounded.
Acting by SO (9.2) on solutions (9.3), (9.8) we again obtain new solutions. Mo-

reover, this procedure can be repeated. In particular, in this way it is possible to
construct multisoliton solutions of the linear Schrödinger equation.

We see that higher order SOs present efficient possibilities for solving equations of
motion and generating new solutions starting with known ones.

10 Conclusion

Higher order SOs present a powerful tool for analyzing and solving the Schrödinger
equation. The concept of higher symmetries enables us to extend the class of privileged
potentials (2.4) and to investigate invariance algebras of the equations whose poten-
tials satisfy one of relations (3.8).

We note that potentials (5.9) can be represented in the form V = W 2 +W ′ where
W = ν tanh[ν(x − k)] for solution (5.9a) (superpotentials W for solutions (5.9a)–
(5.9c) can be also easily calculated). Moreover, the corresponding superpartners Ṽ =
W 2−W ′ reduce to constants, therefore it is possible to integrate easily the Schrödinger
equation with potentials (5.9) using the Darboux transformation [33].

It is worth to note that invariance condition (2.3) for operators (2.1), (3.12) can
be treated as a zero curvature condition for equations associated with the eigenvalue
problem for operator Q, or as the Lax condition where a role of the Lax operator L
is played by a SO, refer to (6.2). The reasons stimulating our research of such a well-
studied subject and distinguishing features of our approach are the following:

(1) The main goal of our paper is to present a constructive description of potentials
for the Schrödinger equation which admit higher symmetries. In this way we extend
the fundamental results [19–21] connected with the search for potentials admitting
usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct reductions
to the Painlevé or Riccati forms. The obtained results can be used for analysis and
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solution of the Schrödinger equation as well as for construction of exact solutions of
the Boussinesq equation, see item 5 in the following.

In the method of inverse problem, description of pairs of operators (2.1), (2.8) sati-
sfying the Lax condition (6.2) is reduced to the Gelfand–Marchenko–Levitan equati-
ons [34] or to the Riemann problem [15, 31] which can be solved explicitly for a
restricted class of potentials.

(2) We use non-Lie symmetries of the Schrödinger equation for construction and
generation of exact solutions. Moreover, we are interested not so much in finding
new solutions as in developing a new method of their derivation, which consists in
simultaneous using of higher order and conditional symmetries. Nevertheless, the
cnoidal solutions (9.7), (9.8) and (8.6), (8.7) for the linear and nonlinear Schrödinger
equations can be of interest for physicists as well as infinite series of soliton and cnoidal
solutions generated by a repeated application of the procedure described in Section 9.

We believe that the combination “higher order symmetries + conditional symmet-
ries” may be used effectively in the investigations and analysis of other equations of
mathematical physics.

(3) Our approach admits a direct generalization to multidimensional Schrödinger
equations. Note that higher symmetries of the three-dimension Schrödinger equation
were investigated in [18, 35] for particular potentials.

(4) Algebraic relations (4.1)–(4.4) are valid for extended classes of potentials. They
open additional possibilities in the application of algebraic methods to investigate the
Schrödinger equation, in particular, the use of raising and lowering operators for this
equation with potentials satisfying (3.8d). We note that relations (3.8d) are valid also
for time-independent operators Q̃± = exp(∓iωt)Q± where Q± are given by relations
(3.12d).

(5) Equations (3.8) which describe potentials that admit third-order symmetries
are equivalent to the reduced versions of the Boussinesq equation, which appear under
the similarity reduction [36] (this is the case for (3.8a,d)) and the reduction with using
symmetries [14, 25, 26] (the last is valid for (3.8b,c)). Thus, the results obtained in
Section V can be used to construct exact solutions of the Boussinesq equation.

A systematic study of higher symmetries of multidimensional Schrödinger equa-
tions is planned to be carried out elsewhere.
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