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New scale-invariant nonlinear differential
equations for a complex scalar field
R.Z. ZHDANOV, W.I. FUSHCHYCH, P.V. MARKO

We describe all complex wave equations of the form �u = F (u, u∗) invariant under
the extended Poincaré group. As a result, we have obtained the five new classes of
P̃ (1, 3)-invariant nonlinear partial differential equations for the complex scalar field.

It is well-known that the maximal symmetry group admitted by the nonlinear
wave equation

�u ≡ ux0x0 −�3u = F (u) (1)

with an arbitrary smooth function F (u) is the 10-parameter Poincaré group P (1, 3)
having the following generators:

Pµ = ∂µ, Jµν = gµαxα∂ν − gναxα∂µ, (2)

where ∂µ = ∂/∂xµ
, gµν = diag(1,−1,−1,−1), µ, ν, α = 0, 1, 2, 3. Hereafter, the

summation over the repeated indices from 0 to 3 is understood.
As established in [1] Eq. (1) admits a wider symmetry group only in the two cases:

(1) F (u) = λuk, k �= 1, (3)

(2) F (u) = λeku, k �= 0. (4)

where λ, k are arbitrary constants.
Eqs. (1) with nonlinearities (3) and (4) admit the one-parameter groups of scale

transformations D(1) having the following generators:

(1) D = xµ∂µ +
2

1 − k
u∂u,

(2) D = xµ∂µ − 2
k

∂u.

(5)

The 11-parameter transformation group with generators (2) and (5) is called the
extended Poincaré group P̃ (1, 3).

The above result admits the following group-theoretical interpretation: on the set
of solutions of the nonlinear wave equation (1) two inequivalent representations of
the extended Poincaré group are realized. Each representation gives rise to a P̃ (1, 3)-
nonlinear wave equation with a very specific nonlinearity.

Surprisingly enough, there is no an analogous result for the complex nonlinear
wave equation

�u = F (u, u∗) (6)
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which is a more realistic model for describing a charged meson field in the modern
quantum field theory. Eq. (6) admits the Poincaré group with generators (2) under
arbitrary F (u, u∗). It is natural to formulate the following problem: to describe all
functions F such that the said equation admits wider symmetry groups. We are
interested in those equations of the form (6) which are invariant under the natural
extensions of the Poincaré group — the extended Poincaré and the conformal groups.

A usual approach to the description of partial differential equations admitting
some Lie transformation group is to fix a representation of the group and then use
the infinitesimal Lie method (see, e.g. [2, 3]) to obtain an explicit form of the unknown
function F . In this way in the paper [4] two classes of P̃ (1, 3)-invariant equations of the
form (6) were constructed. But this approach may result in loosing some subclasses
of invariant equations (which is the case for the paper mentioned). It means that one
should not fix a priori a representation of the group. The only thing to be fixed is the
commutational relations of the corresponding Lie algebra. This approach guarantees
that all equations admitting a given group will be obtained.

In the paper [5] Rideau and Winternitz study two-dimensional PDEs admitting
the extended Poincaré group P̃ (1, 1) using the approach described above. They have
classified second-order P̃ (1, 1)-invariant equations within the change of independent
and dependent variables.

In the present paper we will describe within the affine transformations all equa-
tions belonging to the class (6) which are invariant under the 11-parameter extended
Poincaré group.

Putting u = u1 + iu2, u∗ = u1 − iu2 we rewrite the complex equation (6) as a
system of two real equations

�uj = Fj(u1, u2), j = 1, 2. (7)

Before formulating the principal assertions we make a remark. As a direct check
shows, the class of Eqs. (7) is invariant under the linear transformations of dependent
variables

uj → u′
j =

2∑
k=1

αjkuk + βj , (8)

where αjk, βj , j = 1, 2 are arbitrary constants with det ‖αjk‖ �= 0.

That is why we carry out symmetry classification of Eqs. (7) within the equivalence
transformations (8).

Theorem 1. The system of partial differential equations (7) is invariant under the
extended Poincaré group P̃ (1, 3) iff it is equivalent to one of the following systems:

(i) �u1 = u
(a−2)/a
1 F̃1(ω),

�u2 = u
(b−2)/a
1 F̃2(ω), ω = ub

1u
−a
2 ;

(ii) �u1 = exp
(

(a − 2)
u1

u2

){
F̃1(ω) +

u1

u2
F̃2(ω)

}
,

�u2 = exp
(

(a − 2)
u1

u2

)
F̃2(ω), ω = a

u1

u2
− ln u2;
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(iii) �u1 = exp
(

a − 2
b

u2

)
F̃1(ω),

�u2 = exp
(
−2

b
u2

)
F̃2(ω), ω = au2 − b ln u1;

(iv) �u1 = (u2
1 + u2

2)
−1/2 exp

(
a − 2

b
arctan

u1

u2

){
u2F̃1(ω) + u1F̃2(ω)

}
,

�u2 = (u2
1 + u2

2)
−1/2 exp

(
a − 2

b
arctan

u1

u2

){
u2F̃2(ω) − u1F̃1(ω)

}
,

ω = b ln(u2
1 + u2

2) − 2a arctan
u1

u2
;

(v) �u1 = exp
(
−2

b
u2

){
F̃1(ω) + u2F̃2(ω)

}
,

�u2 = b exp
(
−2

b
u2

)
F̃2(ω), ω = 2bu1 − u2

2;

(vi) �u1 = 0, �u2 = 0;

(9)

where F̃1, F̃2 are arbitrary smooth functions, a, b are arbitrary constants.
And what is more, the basis generators Pµ, Jµν are given by the formulae (2) and

the generators of the corresponding groups of scale transformations are given by the
following formulae:

(i) D = xµ∂µ + au1∂u1 + bu2∂u2 , a �= 0;
(ii) D = xµ∂µ + a(u1∂u1 + u2∂u2) + u2∂u1 ;
(iii) D = xµ∂µ + au1∂u1 + b∂u2 , b �= 0;
(iv) D = xµ∂µ + a(u1∂u1 + u2∂u2) + b(u2∂u1 − u1∂u2), b �= 0;
(v) D = xµ∂µ + u2∂u1 + b∂u2 , b �= 0;
(vi) D = xµ∂µ.

(10)

Theorem 2. The system of PDE (8) is invariant under the conformal group C(1, 3)
iff it is equivalent to the following system:

�uj = u3
1F̃j

(
u1

u2

)
, j = 1, 2.

where F1, F2 are arbitrary smooth functions.
Proofs of the Theorems 1, 2 are carried out with the use of infinitesimal algorithm

by Lie [2, 3]. Here we present the proof of the Theorem 1 only.
Within the framework of the Lie’s approach a symmetry operator for the system

of PDE (7) is looked for in the form

X = ξµ(x, u)∂µ + η1(x, u)∂u1 + η2(x, u)∂u2 , (11)

where ξµ(x, u), ηj(x, u) are some smooth functions.
Necessary and sufficient condition for the system of PDE (7) to be invariant under

the group having the infinitesimal operator (11) reads

X̃(�uj − Fj)
∣∣∣�u1−F1=0

�u2−F2=0
= 0, j = 1, 2, (12)

where X̃ stands for the second prolongation of the operator X.



New scale-invariant nonlinear differential equations 53

Splitting relations (12) by independent variables we get a Killing type system of
PDE for ξµ, ηk. Integrating it we have:

ξµ = 2xµgαβxαkβ − kµgαβxαxβ + cµαgαβxβ + dxµ + eµ, µ = 0, 3,

ηk =
2∑

j=1

akjuj + bk(x) − 2gαβkαxβuk, k = 1, 2,
(13)

where kα, cµν = −cνµ, d, eµ, akj are arbitrary constants, bk(x) are arbitrary functions
satisfying the following relations:

2∑
k=1

(
2∑

l=1

aklul + bk(x) − 2gαβkαxβuk

)
Fjuk

+ �bj(x) +

+ 2(d + 3gαβkαxβ)Fj −
2∑

l=1

ajlFl = 0, j = 1, 2.

(14)

From (13) and (14) it follows that the system of PDE (7) is invariant under the
Poincaré group P (1, 3) having the generators (2) with arbitrary F1, F2. To describe
all functions F1, F2 such that system (7) admits the extended Poincaré group P̃ (1, 3)
one has to solve the following two problems:

• to describe all operators D of the form (11), (13) which together with the
operators (2) satisfy the commutational relations of the Lie algebra of the group
P̃ (1, 3):

[Pα, Pβ ] = 0, [Pα, Jβγ ] = gαβPγ − gαγPβ ,

[Jαβ , Jµν ] = gανJβµ + gβµJαν − gαµJβν − gβνJαµ,

[D,Jαβ ] = 0, [Pα,D] = Pα, α, β, γ, µ, ν = 0, 3;

• to solve system of PDE (14) for each operator D obtained.
Substituting the operator D ≡ X with ξµ, ηk of the form (11) and (13) into

the above commutational relations and computing the coefficients of the linearly-
independent operators ∂xµ

we arrive at the following relations:

kα = 0, cµν = 0, α, µ, ν = 0, . . . , 3,

∂bk(x)
∂xµ

= 0, k = 1, 2, µ = 0, . . . , 3.

Consequently, the generator of the one-parameter scale transformation group D
admitted by the PDE (7) necessarily takes the form

D = xµ∂µ +
2∑

i=1

 2∑
j=1

Aijuj + Bi

 ∂ui
, (15)

where Aij , Bi are some constants.
Before integrating the determining Eqs. (14) we simplify the operator D using

the equivalence relation (8). Making in (15) the change of variables (8) with βj = 0
(which does not alter the form of the operators Pµ, Jµν) we have

D′ = xµ∂µ +
2∑

i=1

 2∑
j=1

Ãiju
′
j + B̃i

 ∂u′
i
,
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where

Ãij =
2∑

k,l=1

αik Akl α
−1
lj , B̃i =

2∑
k=1

αikBk, i = 1, 2. (16)

Here α−1
lj are elements of the (2 × 2)-matrix inverse to the matrix ‖αij‖.

Since an arbitrary (2 × 2)-matrix can be reduced to the Jordan form by the
transformation (16) we may assume, without loss of generality, that the matrix ‖Ãij‖
is in Jordan form. The further simplification of the form of operator (15) is achieved
at the expense of the transformation (8) with αik = 0.

As a result, the set of operators (15) is divided into the six equivalence classes
whose representatives are adduced in (10).

Next, integrating corresponding system of PDE (14) we get P̃ (1, 3)-invariant sys-
tems of equations (9).
Note 1. When proving the Theorem 1 we solve the classical problem of representation
theory: the description of inequivalent representations of the extended Poincaré group
which are realized on the set of solutions of the system of nonlinear PDE (7). The
representation space (i.e. the set of solutions of system (7)) is not a linear vector
space, whereas in the standard representation theory it is always the case. This fact
makes impossible a direct application of the standard methods of linear representation
theory (for more detail, see [5, 6]).
Note 2. If one put in the formulae (1) and (3) from (6) a = k1, b = k2 and a = k1,
b = 0 respectively, then we get P̃ (1, 3)-invariant systems of PDE constructed in [4].

Further, if we make in (6) the change of variables

u1 =
1
2

(u + u∗) , u2 =
1
2i

(u − u∗) ,

then we get the six classes of inequivalent PDE for complex field invariant under the
extended Poincaré group.

Equations of the form (3) are widely used in the quantum field theory to describe
at the classical level spinless charged mesons [7]. But PDE (3) with arbitrary F1, F2 is
“two general” to be used as a reasonable mathematical model of a real physical process.
The nonlinearities F1, F2 should be restricted in some way. To our minds the symmetry
selection principle is the most natural way of achieving this target. Furthermore, the
wide symmetry of the equation under study makes it possible to apply the symmetry
reduction procedure to obtain its exact solutions. Since all connected subgroups of
the extended Poincaré group are known [8–10] one can apply the said procedure to
reduce and to construct particular solutions of the PDE (9). This problem is now
under consideration and will be a topic of our future paper.
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